Age | Commit message (Collapse) | Author | Files | Lines |
|
The verifier only enumerates valid control-flow paths and skips paths that
are unreachable in the non-speculative domain. And so it can miss issues
under speculative execution on mispredicted branches.
For example, a type confusion has been demonstrated with the following
crafted program:
// r0 = pointer to a map array entry
// r6 = pointer to readable stack slot
// r9 = scalar controlled by attacker
1: r0 = *(u64 *)(r0) // cache miss
2: if r0 != 0x0 goto line 4
3: r6 = r9
4: if r0 != 0x1 goto line 6
5: r9 = *(u8 *)(r6)
6: // leak r9
Since line 3 runs iff r0 == 0 and line 5 runs iff r0 == 1, the verifier
concludes that the pointer dereference on line 5 is safe. But: if the
attacker trains both the branches to fall-through, such that the following
is speculatively executed ...
r6 = r9
r9 = *(u8 *)(r6)
// leak r9
... then the program will dereference an attacker-controlled value and could
leak its content under speculative execution via side-channel. This requires
to mistrain the branch predictor, which can be rather tricky, because the
branches are mutually exclusive. However such training can be done at
congruent addresses in user space using different branches that are not
mutually exclusive. That is, by training branches in user space ...
A: if r0 != 0x0 goto line C
B: ...
C: if r0 != 0x0 goto line D
D: ...
... such that addresses A and C collide to the same CPU branch prediction
entries in the PHT (pattern history table) as those of the BPF program's
lines 2 and 4, respectively. A non-privileged attacker could simply brute
force such collisions in the PHT until observing the attack succeeding.
Alternative methods to mistrain the branch predictor are also possible that
avoid brute forcing the collisions in the PHT. A reliable attack has been
demonstrated, for example, using the following crafted program:
// r0 = pointer to a [control] map array entry
// r7 = *(u64 *)(r0 + 0), training/attack phase
// r8 = *(u64 *)(r0 + 8), oob address
// [...]
// r0 = pointer to a [data] map array entry
1: if r7 == 0x3 goto line 3
2: r8 = r0
// crafted sequence of conditional jumps to separate the conditional
// branch in line 193 from the current execution flow
3: if r0 != 0x0 goto line 5
4: if r0 == 0x0 goto exit
5: if r0 != 0x0 goto line 7
6: if r0 == 0x0 goto exit
[...]
187: if r0 != 0x0 goto line 189
188: if r0 == 0x0 goto exit
// load any slowly-loaded value (due to cache miss in phase 3) ...
189: r3 = *(u64 *)(r0 + 0x1200)
// ... and turn it into known zero for verifier, while preserving slowly-
// loaded dependency when executing:
190: r3 &= 1
191: r3 &= 2
// speculatively bypassed phase dependency
192: r7 += r3
193: if r7 == 0x3 goto exit
194: r4 = *(u8 *)(r8 + 0)
// leak r4
As can be seen, in training phase (phase != 0x3), the condition in line 1
turns into false and therefore r8 with the oob address is overridden with
the valid map value address, which in line 194 we can read out without
issues. However, in attack phase, line 2 is skipped, and due to the cache
miss in line 189 where the map value is (zeroed and later) added to the
phase register, the condition in line 193 takes the fall-through path due
to prior branch predictor training, where under speculation, it'll load the
byte at oob address r8 (unknown scalar type at that point) which could then
be leaked via side-channel.
One way to mitigate these is to 'branch off' an unreachable path, meaning,
the current verification path keeps following the is_branch_taken() path
and we push the other branch to the verification stack. Given this is
unreachable from the non-speculative domain, this branch's vstate is
explicitly marked as speculative. This is needed for two reasons: i) if
this path is solely seen from speculative execution, then we later on still
want the dead code elimination to kick in in order to sanitize these
instructions with jmp-1s, and ii) to ensure that paths walked in the
non-speculative domain are not pruned from earlier walks of paths walked in
the speculative domain. Additionally, for robustness, we mark the registers
which have been part of the conditional as unknown in the speculative path
given there should be no assumptions made on their content.
The fix in here mitigates type confusion attacks described earlier due to
i) all code paths in the BPF program being explored and ii) existing
verifier logic already ensuring that given memory access instruction
references one specific data structure.
An alternative to this fix that has also been looked at in this scope was to
mark aux->alu_state at the jump instruction with a BPF_JMP_TAKEN state as
well as direction encoding (always-goto, always-fallthrough, unknown), such
that mixing of different always-* directions themselves as well as mixing of
always-* with unknown directions would cause a program rejection by the
verifier, e.g. programs with constructs like 'if ([...]) { x = 0; } else
{ x = 1; }' with subsequent 'if (x == 1) { [...] }'. For unprivileged, this
would result in only single direction always-* taken paths, and unknown taken
paths being allowed, such that the former could be patched from a conditional
jump to an unconditional jump (ja). Compared to this approach here, it would
have two downsides: i) valid programs that otherwise are not performing any
pointer arithmetic, etc, would potentially be rejected/broken, and ii) we are
required to turn off path pruning for unprivileged, where both can be avoided
in this work through pushing the invalid branch to the verification stack.
The issue was originally discovered by Adam and Ofek, and later independently
discovered and reported as a result of Benedict and Piotr's research work.
Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation")
Reported-by: Adam Morrison <mad@cs.tau.ac.il>
Reported-by: Ofek Kirzner <ofekkir@gmail.com>
Reported-by: Benedict Schlueter <benedict.schlueter@rub.de>
Reported-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Reviewed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
|
|
... in such circumstances, we do not want to mark the instruction as seen given
the goal is still to jmp-1 rewrite/sanitize dead code, if it is not reachable
from the non-speculative path verification. We do however want to verify it for
safety regardless.
With the patch as-is all the insns that have been marked as seen before the
patch will also be marked as seen after the patch (just with a potentially
different non-zero count). An upcoming patch will also verify paths that are
unreachable in the non-speculative domain, hence this extension is needed.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Reviewed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
|
|
Instead of relying on current env->pass_cnt, use the seen count from the
old aux data in adjust_insn_aux_data(), and expand it to the new range of
patched instructions. This change is valid given we always expand 1:n
with n>=1, so what applies to the old/original instruction needs to apply
for the replacement as well.
Not relying on env->pass_cnt is a prerequisite for a later change where we
want to avoid marking an instruction seen when verified under speculative
execution path.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Reviewed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
|
|
Commit 59438b46471a ("security,lockdown,selinux: implement SELinux lockdown")
added an implementation of the locked_down LSM hook to SELinux, with the aim
to restrict which domains are allowed to perform operations that would breach
lockdown. This is indirectly also getting audit subsystem involved to report
events. The latter is problematic, as reported by Ondrej and Serhei, since it
can bring down the whole system via audit:
1) The audit events that are triggered due to calls to security_locked_down()
can OOM kill a machine, see below details [0].
2) It also seems to be causing a deadlock via avc_has_perm()/slow_avc_audit()
when trying to wake up kauditd, for example, when using trace_sched_switch()
tracepoint, see details in [1]. Triggering this was not via some hypothetical
corner case, but with existing tools like runqlat & runqslower from bcc, for
example, which make use of this tracepoint. Rough call sequence goes like:
rq_lock(rq) -> -------------------------+
trace_sched_switch() -> |
bpf_prog_xyz() -> +-> deadlock
selinux_lockdown() -> |
audit_log_end() -> |
wake_up_interruptible() -> |
try_to_wake_up() -> |
rq_lock(rq) --------------+
What's worse is that the intention of 59438b46471a to further restrict lockdown
settings for specific applications in respect to the global lockdown policy is
completely broken for BPF. The SELinux policy rule for the current lockdown check
looks something like this:
allow <who> <who> : lockdown { <reason> };
However, this doesn't match with the 'current' task where the security_locked_down()
is executed, example: httpd does a syscall. There is a tracing program attached
to the syscall which triggers a BPF program to run, which ends up doing a
bpf_probe_read_kernel{,_str}() helper call. The selinux_lockdown() hook does
the permission check against 'current', that is, httpd in this example. httpd
has literally zero relation to this tracing program, and it would be nonsensical
having to write an SELinux policy rule against httpd to let the tracing helper
pass. The policy in this case needs to be against the entity that is installing
the BPF program. For example, if bpftrace would generate a histogram of syscall
counts by user space application:
bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[comm] = count(); }'
bpftrace would then go and generate a BPF program from this internally. One way
of doing it [for the sake of the example] could be to call bpf_get_current_task()
helper and then access current->comm via one of bpf_probe_read_kernel{,_str}()
helpers. So the program itself has nothing to do with httpd or any other random
app doing a syscall here. The BPF program _explicitly initiated_ the lockdown
check. The allow/deny policy belongs in the context of bpftrace: meaning, you
want to grant bpftrace access to use these helpers, but other tracers on the
system like my_random_tracer _not_.
Therefore fix all three issues at the same time by taking a completely different
approach for the security_locked_down() hook, that is, move the check into the
program verification phase where we actually retrieve the BPF func proto. This
also reliably gets the task (current) that is trying to install the BPF tracing
program, e.g. bpftrace/bcc/perf/systemtap/etc, and it also fixes the OOM since
we're moving this out of the BPF helper's fast-path which can be called several
millions of times per second.
The check is then also in line with other security_locked_down() hooks in the
system where the enforcement is performed at open/load time, for example,
open_kcore() for /proc/kcore access or module_sig_check() for module signatures
just to pick few random ones. What's out of scope in the fix as well as in
other security_locked_down() hook locations /outside/ of BPF subsystem is that
if the lockdown policy changes on the fly there is no retrospective action.
This requires a different discussion, potentially complex infrastructure, and
it's also not clear whether this can be solved generically. Either way, it is
out of scope for a suitable stable fix which this one is targeting. Note that
the breakage is specifically on 59438b46471a where it started to rely on 'current'
as UAPI behavior, and _not_ earlier infrastructure such as 9d1f8be5cf42 ("bpf:
Restrict bpf when kernel lockdown is in confidentiality mode").
[0] https://bugzilla.redhat.com/show_bug.cgi?id=1955585, Jakub Hrozek says:
I starting seeing this with F-34. When I run a container that is traced with
BPF to record the syscalls it is doing, auditd is flooded with messages like:
type=AVC msg=audit(1619784520.593:282387): avc: denied { confidentiality }
for pid=476 comm="auditd" lockdown_reason="use of bpf to read kernel RAM"
scontext=system_u:system_r:auditd_t:s0 tcontext=system_u:system_r:auditd_t:s0
tclass=lockdown permissive=0
This seems to be leading to auditd running out of space in the backlog buffer
and eventually OOMs the machine.
[...]
auditd running at 99% CPU presumably processing all the messages, eventually I get:
Apr 30 12:20:42 fedora kernel: audit: backlog limit exceeded
Apr 30 12:20:42 fedora kernel: audit: backlog limit exceeded
Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152579 > audit_backlog_limit=64
Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152626 > audit_backlog_limit=64
Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152694 > audit_backlog_limit=64
Apr 30 12:20:42 fedora kernel: audit: audit_lost=6878426 audit_rate_limit=0 audit_backlog_limit=64
Apr 30 12:20:45 fedora kernel: oci-seccomp-bpf invoked oom-killer: gfp_mask=0x100cca(GFP_HIGHUSER_MOVABLE), order=0, oom_score_adj=-1000
Apr 30 12:20:45 fedora kernel: CPU: 0 PID: 13284 Comm: oci-seccomp-bpf Not tainted 5.11.12-300.fc34.x86_64 #1
Apr 30 12:20:45 fedora kernel: Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014
[...]
[1] https://lore.kernel.org/linux-audit/CANYvDQN7H5tVp47fbYcRasv4XF07eUbsDwT_eDCHXJUj43J7jQ@mail.gmail.com/,
Serhei Makarov says:
Upstream kernel 5.11.0-rc7 and later was found to deadlock during a
bpf_probe_read_compat() call within a sched_switch tracepoint. The problem
is reproducible with the reg_alloc3 testcase from SystemTap's BPF backend
testsuite on x86_64 as well as the runqlat, runqslower tools from bcc on
ppc64le. Example stack trace:
[...]
[ 730.868702] stack backtrace:
[ 730.869590] CPU: 1 PID: 701 Comm: in:imjournal Not tainted, 5.12.0-0.rc2.20210309git144c79ef3353.166.fc35.x86_64 #1
[ 730.871605] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
[ 730.873278] Call Trace:
[ 730.873770] dump_stack+0x7f/0xa1
[ 730.874433] check_noncircular+0xdf/0x100
[ 730.875232] __lock_acquire+0x1202/0x1e10
[ 730.876031] ? __lock_acquire+0xfc0/0x1e10
[ 730.876844] lock_acquire+0xc2/0x3a0
[ 730.877551] ? __wake_up_common_lock+0x52/0x90
[ 730.878434] ? lock_acquire+0xc2/0x3a0
[ 730.879186] ? lock_is_held_type+0xa7/0x120
[ 730.880044] ? skb_queue_tail+0x1b/0x50
[ 730.880800] _raw_spin_lock_irqsave+0x4d/0x90
[ 730.881656] ? __wake_up_common_lock+0x52/0x90
[ 730.882532] __wake_up_common_lock+0x52/0x90
[ 730.883375] audit_log_end+0x5b/0x100
[ 730.884104] slow_avc_audit+0x69/0x90
[ 730.884836] avc_has_perm+0x8b/0xb0
[ 730.885532] selinux_lockdown+0xa5/0xd0
[ 730.886297] security_locked_down+0x20/0x40
[ 730.887133] bpf_probe_read_compat+0x66/0xd0
[ 730.887983] bpf_prog_250599c5469ac7b5+0x10f/0x820
[ 730.888917] trace_call_bpf+0xe9/0x240
[ 730.889672] perf_trace_run_bpf_submit+0x4d/0xc0
[ 730.890579] perf_trace_sched_switch+0x142/0x180
[ 730.891485] ? __schedule+0x6d8/0xb20
[ 730.892209] __schedule+0x6d8/0xb20
[ 730.892899] schedule+0x5b/0xc0
[ 730.893522] exit_to_user_mode_prepare+0x11d/0x240
[ 730.894457] syscall_exit_to_user_mode+0x27/0x70
[ 730.895361] entry_SYSCALL_64_after_hwframe+0x44/0xae
[...]
Fixes: 59438b46471a ("security,lockdown,selinux: implement SELinux lockdown")
Reported-by: Ondrej Mosnacek <omosnace@redhat.com>
Reported-by: Jakub Hrozek <jhrozek@redhat.com>
Reported-by: Serhei Makarov <smakarov@redhat.com>
Reported-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Jiri Olsa <jolsa@redhat.com>
Cc: Paul Moore <paul@paul-moore.com>
Cc: James Morris <jamorris@linux.microsoft.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Frank Eigler <fche@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/bpf/01135120-8bf7-df2e-cff0-1d73f1f841c3@iogearbox.net
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from Jakub Kicinski:
"Networking fixes for 5.13-rc4, including fixes from bpf, netfilter,
can and wireless trees. Notably including fixes for the recently
announced "FragAttacks" WiFi vulnerabilities. Rather large batch,
touching some core parts of the stack, too, but nothing hair-raising.
Current release - regressions:
- tipc: make node link identity publish thread safe
- dsa: felix: re-enable TAS guard band mode
- stmmac: correct clocks enabled in stmmac_vlan_rx_kill_vid()
- stmmac: fix system hang if change mac address after interface
ifdown
Current release - new code bugs:
- mptcp: avoid OOB access in setsockopt()
- bpf: Fix nested bpf_bprintf_prepare with more per-cpu buffers
- ethtool: stats: fix a copy-paste error - init correct array size
Previous releases - regressions:
- sched: fix packet stuck problem for lockless qdisc
- net: really orphan skbs tied to closing sk
- mlx4: fix EEPROM dump support
- bpf: fix alu32 const subreg bound tracking on bitwise operations
- bpf: fix mask direction swap upon off reg sign change
- bpf, offload: reorder offload callback 'prepare' in verifier
- stmmac: Fix MAC WoL not working if PHY does not support WoL
- packetmmap: fix only tx timestamp on request
- tipc: skb_linearize the head skb when reassembling msgs
Previous releases - always broken:
- mac80211: address recent "FragAttacks" vulnerabilities
- mac80211: do not accept/forward invalid EAPOL frames
- mptcp: avoid potential error message floods
- bpf, ringbuf: deny reserve of buffers larger than ringbuf to
prevent out of buffer writes
- bpf: forbid trampoline attach for functions with variable arguments
- bpf: add deny list of functions to prevent inf recursion of tracing
programs
- tls splice: check SPLICE_F_NONBLOCK instead of MSG_DONTWAIT
- can: isotp: prevent race between isotp_bind() and
isotp_setsockopt()
- netfilter: nft_set_pipapo_avx2: Add irq_fpu_usable() check,
fallback to non-AVX2 version
Misc:
- bpf: add kconfig knob for disabling unpriv bpf by default"
* tag 'net-5.13-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (172 commits)
net: phy: Document phydev::dev_flags bits allocation
mptcp: validate 'id' when stopping the ADD_ADDR retransmit timer
mptcp: avoid error message on infinite mapping
mptcp: drop unconditional pr_warn on bad opt
mptcp: avoid OOB access in setsockopt()
nfp: update maintainer and mailing list addresses
net: mvpp2: add buffer header handling in RX
bnx2x: Fix missing error code in bnx2x_iov_init_one()
net: zero-initialize tc skb extension on allocation
net: hns: Fix kernel-doc
sctp: fix the proc_handler for sysctl encap_port
sctp: add the missing setting for asoc encap_port
bpf, selftests: Adjust few selftest result_unpriv outcomes
bpf: No need to simulate speculative domain for immediates
bpf: Fix mask direction swap upon off reg sign change
bpf: Wrap aux data inside bpf_sanitize_info container
bpf: Fix BPF_LSM kconfig symbol dependency
selftests/bpf: Add test for l3 use of bpf_redirect_peer
bpftool: Add sock_release help info for cgroup attach/prog load command
net: dsa: microchip: enable phy errata workaround on 9567
...
|
|
In 801c6058d14a ("bpf: Fix leakage of uninitialized bpf stack under
speculation") we replaced masking logic with direct loads of immediates
if the register is a known constant. Given in this case we do not apply
any masking, there is also no reason for the operation to be truncated
under the speculative domain.
Therefore, there is also zero reason for the verifier to branch-off and
simulate this case, it only needs to do it for unknown but bounded scalars.
As a side-effect, this also enables few test cases that were previously
rejected due to simulation under zero truncation.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
|
|
Masking direction as indicated via mask_to_left is considered to be
calculated once and then used to derive pointer limits. Thus, this
needs to be placed into bpf_sanitize_info instead so we can pass it
to sanitize_ptr_alu() call after the pointer move. Piotr noticed a
corner case where the off reg causes masking direction change which
then results in an incorrect final aux->alu_limit.
Fixes: 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask")
Reported-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
|
|
Add a container structure struct bpf_sanitize_info which holds
the current aux info, and update call-sites to sanitize_ptr_alu()
to pass it in. This is needed for passing in additional state
later on.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
|
|
Similarly as 6bdacdb48e94 ("bpf: Fix BPF_JIT kconfig symbol dependency") we
need to detangle the hard BPF_LSM dependency on NET. This was previously
implicit by its dependency on BPF_JIT which itself was dependent on NET (but
without any actual/real hard dependency code-wise). Given the latter was
lifted, so should be the former as BPF_LSMs could well exist on net-less
systems. This therefore also fixes a randconfig build error recently reported
by Randy:
ld: kernel/bpf/bpf_lsm.o: in function `bpf_lsm_func_proto':
bpf_lsm.c:(.text+0x1a0): undefined reference to `bpf_sk_storage_get_proto'
ld: bpf_lsm.c:(.text+0x1b8): undefined reference to `bpf_sk_storage_delete_proto'
[...]
Fixes: b24abcff918a ("bpf, kconfig: Add consolidated menu entry for bpf with core options")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup fixes from Tejun Heo:
- "cgroup_disable=" boot param was being applied too late confusing
some subsystems. Fix it by moving application to __setup() time.
- Comment spelling fixes. Included here to lower the chance of trivial
future merge conflicts.
* 'for-5.13-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: fix spelling mistakes
cgroup: disable controllers at parse time
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue fix from Tejun Heo:
"One commit to fix spurious workqueue stall warnings across VM
suspensions"
* 'for-5.13-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
wq: handle VM suspension in stall detection
|
|
Fix some spelling mistakes in comments:
hierarhcy ==> hierarchy
automtically ==> automatically
overriden ==> overridden
In absense of .. or ==> In absence of .. and
assocaited ==> associated
taget ==> target
initate ==> initiate
succeded ==> succeeded
curremt ==> current
udpated ==> updated
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking fixes from Thomas Gleixner:
"Two locking fixes:
- Invoke the lockdep tracepoints in the correct place so the ordering
is correct again
- Don't leave the mutex WAITER bit stale when the last waiter is
dropping out early due to a signal as that forces all subsequent
lock operations needlessly into the slowpath until it's cleaned up
again"
* tag 'locking-urgent-2021-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/mutex: clear MUTEX_FLAGS if wait_list is empty due to signal
locking/lockdep: Correct calling tracepoints
|
|
Commit 9bf3bc949f8a ("watchdog: cleanup handling of false positives")
tried to handle a virtual host stopped by the host a more
straightforward and cleaner way.
But it introduced a risk of false softlockup reports. The virtual host
might be stopped at any time, for example between
kvm_check_and_clear_guest_paused() and is_softlockup(). As a result,
is_softlockup() might read the updated jiffies and detects a softlockup.
A solution might be to put back kvm_check_and_clear_guest_paused() after
is_softlockup() and detect it. But it would put back the cycle that
complicates the logic.
In fact, the handling of all the timestamps is not reliable. The code
does not guarantee when and how many times the timestamps are read. For
example, "period_ts" might be touched anytime also from NMI and re-read in
is_softlockup(). It works just by chance.
Fix all the problems by making the code even more explicit.
1. Make sure that "now" and "period_ts" timestamps are read only once.
They might be changed at anytime by NMI or when the virtual guest is
stopped by the host. Note that "now" timestamp does this implicitly
because "jiffies" is marked volatile.
2. "now" time must be read first. The state of "period_ts" will
decide whether it will be used or the period will get restarted.
3. kvm_check_and_clear_guest_paused() must be called before reading
"period_ts". It touches the variable when the guest was stopped.
As a result, "now" timestamp is used only when the watchdog was not
touched and the guest not stopped in the meantime. "period_ts" is
restarted in all other situations.
Link: https://lkml.kernel.org/r/YKT55gw+RZfyoFf7@alley
Fixes: 9bf3bc949f8aeefeacea4b ("watchdog: cleanup handling of false positives")
Signed-off-by: Petr Mladek <pmladek@suse.com>
Reported-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull siginfo fix from Eric Biederman:
"During the merge window an issue with si_perf and the siginfo ABI came
up. The alpha and sparc siginfo structure layout had changed with the
addition of SIGTRAP TRAP_PERF and the new field si_perf.
The reason only alpha and sparc were affected is that they are the
only architectures that use si_trapno.
Looking deeper it was discovered that si_trapno is used for only a few
select signals on alpha and sparc, and that none of the other
_sigfault fields past si_addr are used at all. Which means technically
no regression on alpha and sparc.
While the alignment concerns might be dismissed the abuse of si_errno
by SIGTRAP TRAP_PERF does have the potential to cause regressions in
existing userspace.
While we still have time before userspace starts using and depending
on the new definition siginfo for SIGTRAP TRAP_PERF this set of
changes cleans up siginfo_t.
- The si_trapno field is demoted from magic alpha and sparc status
and made an ordinary union member of the _sigfault member of
siginfo_t. Without moving it of course.
- si_perf is replaced with si_perf_data and si_perf_type ending the
abuse of si_errno.
- Unnecessary additions to signalfd_siginfo are removed"
* 'for-v5.13-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
signalfd: Remove SIL_PERF_EVENT fields from signalfd_siginfo
signal: Deliver all of the siginfo perf data in _perf
signal: Factor force_sig_perf out of perf_sigtrap
signal: Implement SIL_FAULT_TRAPNO
siginfo: Move si_trapno inside the union inside _si_fault
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jeyu/linux
Pull module fix from Jessica Yu:
"When CONFIG_MODULE_UNLOAD=n, module exit sections get sorted into the
init region of the module in order to satisfy the requirements of
jump_labels and static_calls.
Previously, the exit section check was done in module_init_section(),
but the solution there is not completely arch-indepedent as ARM is a
special case and supplies its own module_init_section() function.
Instead of pushing this logic further to the arch-specific code,
switch to an arch-independent solution to check for module exit
sections in the core module loader code in layout_sections() instead"
* tag 'modules-for-v5.13-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/jeyu/linux:
module: check for exit sections in layout_sections() instead of module_init_section()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull kcsan fix from Paul McKenney:
"Fix for a regression introduced in this merge window by commit
e36299efe7d7 ("kcsan, debugfs: Move debugfs file creation out of early
init").
The regression is not easy to trigger, requiring a KCSAN build using
clang with CONFIG_LTO_CLANG=y. The fix is to simply make the
kcsan_debugfs_init() function's type initcall-compatible. This has
been posted to the relevant mailing lists:"
* 'urgent.2021.05.20a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu:
kcsan: Fix debugfs initcall return type
|
|
Commit 4976b718c355 ("bpf: Introduce pseudo_btf_id") switched the
order of resolve_pseudo_ldimm(), in which some pseudo instructions
are rewritten. Thus those rewritten instructions cannot be passed
to driver via 'prepare' offload callback.
Reorder the 'prepare' offload callback to fix it.
Fixes: 4976b718c355 ("bpf: Introduce pseudo_btf_id")
Signed-off-by: Yinjun Zhang <yinjun.zhang@corigine.com>
Signed-off-by: Simon Horman <simon.horman@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210520085834.15023-1-simon.horman@netronome.com
|
|
The cppcheck static code analysis reported the following error:
if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bufs->tmp_bufs))) {
^
ARRAY_SIZE is a macro that expands to sizeofs, so bufs is not actually
dereferenced at runtime, and the code is actually safe. But to keep
things tidy, this patch removes the need for a call to ARRAY_SIZE by
extracting the size of the array into a macro. Cppcheck should no longer
be confused and the code ends up being a bit cleaner.
Fixes: e2d5b2bb769f ("bpf: Fix nested bpf_bprintf_prepare with more per-cpu buffers")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <song@kernel.org>
Link: https://lore.kernel.org/bpf/20210517092830.1026418-2-revest@chromium.org
|
|
The per-cpu buffers contain bprintf data rather than printf arguments.
The macro name and comment were a bit confusing, this rewords them in a
clearer way.
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <song@kernel.org>
Link: https://lore.kernel.org/bpf/20210517092830.1026418-1-revest@chromium.org
|
|
Randy reported a randconfig build error recently on i386:
ld: arch/x86/net/bpf_jit_comp32.o: in function `do_jit':
bpf_jit_comp32.c:(.text+0x28c9): undefined reference to `__bpf_call_base'
ld: arch/x86/net/bpf_jit_comp32.o: in function `bpf_int_jit_compile':
bpf_jit_comp32.c:(.text+0x3694): undefined reference to `bpf_jit_blind_constants'
ld: bpf_jit_comp32.c:(.text+0x3719): undefined reference to `bpf_jit_binary_free'
ld: bpf_jit_comp32.c:(.text+0x3745): undefined reference to `bpf_jit_binary_alloc'
ld: bpf_jit_comp32.c:(.text+0x37d3): undefined reference to `bpf_jit_prog_release_other'
[...]
The cause was that b24abcff918a ("bpf, kconfig: Add consolidated menu entry for
bpf with core options") moved BPF_JIT from net/Kconfig into kernel/bpf/Kconfig
and previously BPF_JIT was guarded by a 'if NET'. However, there is no actual
dependency on NET, it's just that menuconfig NET selects BPF. And the latter in
turn causes kernel/bpf/core.o to be built which contains above symbols. Randy's
randconfig didn't have NET set, and BPF wasn't either, but BPF_JIT otoh was.
Detangle this by making BPF_JIT depend on BPF instead. arm64 was the only arch
that pulled in its JIT in net/ via obj-$(CONFIG_NET), all others unconditionally
pull this dir in via obj-y. Do the same since CONFIG_NET guard there is really
useless as we compiled the JIT via obj-$(CONFIG_BPF_JIT) += bpf_jit_comp.o anyway.
Fixes: b24abcff918a ("bpf, kconfig: Add consolidated menu entry for bpf with core options")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
|
|
If VCPU is suspended (VM suspend) in wq_watchdog_timer_fn() then
once this VCPU resumes it will see the new jiffies value, while it
may take a while before IRQ detects PVCLOCK_GUEST_STOPPED on this
VCPU and updates all the watchdogs via pvclock_touch_watchdogs().
There is a small chance of misreported WQ stalls in the meantime,
because new jiffies is time_after() old 'ts + thresh'.
wq_watchdog_timer_fn()
{
for_each_pool(pool, pi) {
if (time_after(jiffies, ts + thresh)) {
pr_emerg("BUG: workqueue lockup - pool");
}
}
}
Save jiffies at the beginning of this function and use that value
for stall detection. If VM gets suspended then we continue using
"old" jiffies value and old WQ touch timestamps. If IRQ at some
point restarts the stall detection cycle (pvclock_touch_watchdogs())
then old jiffies will always be before new 'ts + thresh'.
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
This patch effectively reverts the commit a3e72739b7a7 ("cgroup: fix
too early usage of static_branch_disable()"). The commit 6041186a3258
("init: initialize jump labels before command line option parsing") has
moved the jump_label_init() before parse_args() which has made the
commit a3e72739b7a7 unnecessary. On the other hand there are
consequences of disabling the controllers later as there are subsystems
doing the controller checks for different decisions. One such incident
is reported [1] regarding the memory controller and its impact on memory
reclaim code.
[1] https://lore.kernel.org/linux-mm/921e53f3-4b13-aab8-4a9e-e83ff15371e4@nec.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reported-by: NOMURA JUNICHI(野村 淳一) <junichi.nomura@nec.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Tested-by: Jun'ichi Nomura <junichi.nomura@nec.com>
|
|
Don't abuse si_errno and deliver all of the perf data in _perf member
of siginfo_t.
Note: The data field in the perf data structures in a u64 to allow a
pointer to be encoded without needed to implement a 32bit and 64bit
version of the same structure. There already exists a 32bit and 64bit
versions siginfo_t, and the 32bit version can not include a 64bit
member as it only has 32bit alignment. So unsigned long is used in
siginfo_t instead of a u64 as unsigned long can encode a pointer on
all architectures linux supports.
v1: https://lkml.kernel.org/r/m11rarqqx2.fsf_-_@fess.ebiederm.org
v2: https://lkml.kernel.org/r/20210503203814.25487-10-ebiederm@xmission.com
v3: https://lkml.kernel.org/r/20210505141101.11519-11-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20210517195748.8880-4-ebiederm@xmission.com
Reviewed-by: Marco Elver <elver@google.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
Separate filling in siginfo for TRAP_PERF from deciding that
siginal needs to be sent.
There are enough little details that need to be correct when
properly filling in siginfo_t that it is easy to make mistakes
if filling in the siginfo_t is in the same function with other
logic. So factor out force_sig_perf to reduce the cognative
load of on reviewers, maintainers and implementors.
v1: https://lkml.kernel.org/r/m17dkjqqxz.fsf_-_@fess.ebiederm.org
v2: https://lkml.kernel.org/r/20210505141101.11519-10-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20210517195748.8880-3-ebiederm@xmission.com
Reviewed-by: Marco Elver <elver@google.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
Now that si_trapno is part of the union in _si_fault and available on
all architectures, add SIL_FAULT_TRAPNO and update siginfo_layout to
return SIL_FAULT_TRAPNO when the code assumes si_trapno is valid.
There is room for future changes to reduce when si_trapno is valid but
this is all that is needed to make si_trapno and the other members of
the the union in _sigfault mutually exclusive.
Update the code that uses siginfo_layout to deal with SIL_FAULT_TRAPNO
and have the same code ignore si_trapno in in all other cases.
v1: https://lkml.kernel.org/r/m1o8dvs7s7.fsf_-_@fess.ebiederm.org
v2: https://lkml.kernel.org/r/20210505141101.11519-6-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20210517195748.8880-2-ebiederm@xmission.com
Reviewed-by: Marco Elver <elver@google.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
It turns out that linux uses si_trapno very sparingly, and as such it
can be considered extra information for a very narrow selection of
signals, rather than information that is present with every fault
reported in siginfo.
As such move si_trapno inside the union inside of _si_fault. This
results in no change in placement, and makes it eaiser
to extend _si_fault in the future as this reduces the number of
special cases. In particular with si_trapno included in the union it
is no longer a concern that the union must be pointer aligned on most
architectures because the union follows immediately after si_addr
which is a pointer.
This change results in a difference in siginfo field placement on
sparc and alpha for the fields si_addr_lsb, si_lower, si_upper,
si_pkey, and si_perf. These architectures do not implement the
signals that would use si_addr_lsb, si_lower, si_upper, si_pkey, and
si_perf. Further these architecture have not yet implemented the
userspace that would use si_perf.
The point of this change is in fact to correct these placement issues
before sparc or alpha grow userspace that cares. This change was
discussed[1] and the agreement is that this change is currently safe.
[1]: https://lkml.kernel.org/r/CAK8P3a0+uKYwL1NhY6Hvtieghba2hKYGD6hcKx5n8=4Gtt+pHA@mail.gmail.com
Acked-by: Marco Elver <elver@google.com>
v1: https://lkml.kernel.org/r/m1tunns7yf.fsf_-_@fess.ebiederm.org
v2: https://lkml.kernel.org/r/20210505141101.11519-5-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20210517195748.8880-1-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
clang with CONFIG_LTO_CLANG points out that an initcall function should
return an 'int' due to the changes made to the initcall macros in commit
3578ad11f3fb ("init: lto: fix PREL32 relocations"):
kernel/kcsan/debugfs.c:274:15: error: returning 'void' from a function with incompatible result type 'int'
late_initcall(kcsan_debugfs_init);
~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~
include/linux/init.h:292:46: note: expanded from macro 'late_initcall'
#define late_initcall(fn) __define_initcall(fn, 7)
Fixes: e36299efe7d7 ("kcsan, debugfs: Move debugfs file creation out of early init")
Cc: stable <stable@vger.kernel.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Reviewed-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
When a interruptible mutex locker is interrupted by a signal
without acquiring this lock and removed from the wait queue.
if the mutex isn't contended enough to have a waiter
put into the wait queue again, the setting of the WAITER
bit will force mutex locker to go into the slowpath to
acquire the lock every time, so if the wait queue is empty,
the WAITER bit need to be clear.
Fixes: 040a0a371005 ("mutex: Add support for wound/wait style locks")
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Zqiang <qiang.zhang@windriver.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210517034005.30828-1-qiang.zhang@windriver.com
|
|
The commit eb1f00237aca ("lockdep,trace: Expose tracepoints") reverses
tracepoints for lock_contended() and lock_acquired(), thus the ftrace
log shows the wrong locking sequence that "acquired" event is prior to
"contended" event:
<idle>-0 [001] d.s3 20803.501685: lock_acquire: 0000000008b91ab4 &sg_policy->update_lock
<idle>-0 [001] d.s3 20803.501686: lock_acquired: 0000000008b91ab4 &sg_policy->update_lock
<idle>-0 [001] d.s3 20803.501689: lock_contended: 0000000008b91ab4 &sg_policy->update_lock
<idle>-0 [001] d.s3 20803.501690: lock_release: 0000000008b91ab4 &sg_policy->update_lock
This patch fixes calling tracepoints for lock_contended() and
lock_acquired().
Fixes: eb1f00237aca ("lockdep,trace: Expose tracepoints")
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210512120937.90211-1-leo.yan@linaro.org
|
|
module_init_section()
Previously, when CONFIG_MODULE_UNLOAD=n, the module loader just does not
attempt to load exit sections since it never expects that any code in those
sections will ever execute. However, dynamic code patching (alternatives,
jump_label and static_call) can have sites in __exit code, even if __exit is
never executed. Therefore __exit must be present at runtime, at least for as
long as __init code is.
Commit 33121347fb1c ("module: treat exit sections the same as init
sections when !CONFIG_MODULE_UNLOAD") solves the requirements of
jump_labels and static_calls by putting the exit sections in the init
region of the module so that they are at least present at init, and
discarded afterwards. It does this by including a check for exit
sections in module_init_section(), so that it also returns true for exit
sections, and the module loader will automatically sort them in the init
region of the module.
However, the solution there was not completely arch-independent. ARM is
a special case where it supplies its own module_{init, exit}_section()
functions. Instead of pushing the exit section checks into
module_init_section(), just implement the exit section check in
layout_sections(), so that we don't have to touch arch-dependent code.
Fixes: 33121347fb1c ("module: treat exit sections the same as init sections when !CONFIG_MODULE_UNLOAD")
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fixes from Thomas Gleixner:
"Two fixes for timers:
- Use the ALARM feature check in the alarmtimer core code insted of
the old method of checking for the set_alarm() callback.
Drivers can have that callback set but the feature bit cleared. If
such a RTC device is selected then alarms wont work.
- Use a proper define to let the preprocessor check whether Hyper-V
VDSO clocksource should be active.
The code used a constant in an enum with #ifdef, which evaluates to
always false and disabled the clocksource for VDSO"
* tag 'timers-urgent-2021-05-16' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
clocksource/drivers/hyper-v: Re-enable VDSO_CLOCKMODE_HVCLOCK on X86
alarmtimer: Check RTC features instead of ops
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar:
"Fix an idle CPU selection bug, and an AMD Ryzen maximum frequency
enumeration bug"
* tag 'sched-urgent-2021-05-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, sched: Fix the AMD CPPC maximum performance value on certain AMD Ryzen generations
sched/fair: Fix clearing of has_idle_cores flag in select_idle_cpu()
|
|
Merge misc fixes from Andrew Morton:
"13 patches.
Subsystems affected by this patch series: resource, squashfs, hfsplus,
modprobe, and mm (hugetlb, slub, userfaultfd, ksm, pagealloc, kasan,
pagemap, and ioremap)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
mm/ioremap: fix iomap_max_page_shift
docs: admin-guide: update description for kernel.modprobe sysctl
hfsplus: prevent corruption in shrinking truncate
mm/filemap: fix readahead return types
kasan: fix unit tests with CONFIG_UBSAN_LOCAL_BOUNDS enabled
mm: fix struct page layout on 32-bit systems
ksm: revert "use GET_KSM_PAGE_NOLOCK to get ksm page in remove_rmap_item_from_tree()"
userfaultfd: release page in error path to avoid BUG_ON
squashfs: fix divide error in calculate_skip()
kernel/resource: fix return code check in __request_free_mem_region
mm, slub: move slub_debug static key enabling outside slab_mutex
mm/hugetlb: fix cow where page writtable in child
mm/hugetlb: fix F_SEAL_FUTURE_WRITE
|
|
Splitting an earlier version of a patch that allowed calling
__request_region() while holding the resource lock into a series of
patches required changing the return code for the newly introduced
__request_region_locked().
Unfortunately this change was not carried through to a subsequent commit
56fd94919b8b ("kernel/resource: fix locking in request_free_mem_region")
in the series. This resulted in a use-after-free due to freeing the
struct resource without properly releasing it. Fix this by correcting the
return code check so that the struct is not freed if the request to add it
was successful.
Link: https://lkml.kernel.org/r/20210512073528.22334-1-apopple@nvidia.com
Fixes: 56fd94919b8b ("kernel/resource: fix locking in request_free_mem_region")
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Muchun Song <smuchun@gmail.com>
Cc: Oliver Sang <oliver.sang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fix from Steven Rostedt:
"Fix trace_check_vprintf() for %.*s
The sanity check of all strings being read from the ring buffer to
make sure they are in safe memory space did not account for the %.*s
notation having another parameter to process (the length).
Add that to the check"
* tag 'trace-v5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
tracing: Handle %.*s in trace_check_vprintf()
|
|
If a trace event uses the %*.s notation, the trace_check_vprintf() will
fail and will warn about a bad processing of strings, because it does not
take into account the length field when processing the star (*) part.
Have it handle this case as well.
Link: https://lore.kernel.org/linux-nfs/238C0E2D-C2A4-4578-ADD2-C565B3B99842@oracle.com/
Reported-by: Chuck Lever III <chuck.lever@oracle.com>
Fixes: 9a6944fee68e2 ("tracing: Add a verifier to check string pointers for trace events")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
Suppose we have 2 threads, the group-leader L and a sub-theread T,
both parked in ptrace_stop(). Debugger tries to resume both threads
and does
ptrace(PTRACE_CONT, T);
ptrace(PTRACE_CONT, L);
If the sub-thread T execs in between, the 2nd PTRACE_CONT doesn not
resume the old leader L, it resumes the post-exec thread T which was
actually now stopped in PTHREAD_EVENT_EXEC. In this case the
PTHREAD_EVENT_EXEC event is lost, and the tracer can't know that the
tracee changed its pid.
This patch makes ptrace() fail in this case until debugger does wait()
and consumes PTHREAD_EVENT_EXEC which reports old_pid. This affects all
ptrace requests except the "asynchronous" PTRACE_INTERRUPT/KILL.
The patch doesn't add the new PTRACE_ option to not complicate the API,
and I _hope_ this won't cause any noticeable regression:
- If debugger uses PTRACE_O_TRACEEXEC and the thread did an exec
and the tracer does a ptrace request without having consumed
the exec event, it's 100% sure that the thread the ptracer
thinks it is targeting does not exist anymore, or isn't the
same as the one it thinks it is targeting.
- To some degree this patch adds nothing new. In the scenario
above ptrace(L) can fail with -ESRCH if it is called after the
execing sub-thread wakes the leader up and before it "steals"
the leader's pid.
Test-case:
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <sys/ptrace.h>
#include <sys/wait.h>
#include <errno.h>
#include <pthread.h>
#include <assert.h>
void *tf(void *arg)
{
execve("/usr/bin/true", NULL, NULL);
assert(0);
return NULL;
}
int main(void)
{
int leader = fork();
if (!leader) {
kill(getpid(), SIGSTOP);
pthread_t th;
pthread_create(&th, NULL, tf, NULL);
for (;;)
pause();
return 0;
}
waitpid(leader, NULL, WSTOPPED);
ptrace(PTRACE_SEIZE, leader, 0,
PTRACE_O_TRACECLONE | PTRACE_O_TRACEEXEC);
waitpid(leader, NULL, 0);
ptrace(PTRACE_CONT, leader, 0,0);
waitpid(leader, NULL, 0);
int status, thread = waitpid(-1, &status, 0);
assert(thread > 0 && thread != leader);
assert(status == 0x80137f);
ptrace(PTRACE_CONT, thread, 0,0);
/*
* waitid() because waitpid(leader, &status, WNOWAIT) does not
* report status. Why ????
*
* Why WEXITED? because we have another kernel problem connected
* to mt-exec.
*/
siginfo_t info;
assert(waitid(P_PID, leader, &info, WSTOPPED|WEXITED|WNOWAIT) == 0);
assert(info.si_pid == leader && info.si_status == 0x0405);
/* OK, it sleeps in ptrace(PTRACE_EVENT_EXEC == 0x04) */
assert(ptrace(PTRACE_CONT, leader, 0,0) == -1);
assert(errno == ESRCH);
assert(leader == waitpid(leader, &status, WNOHANG));
assert(status == 0x04057f);
assert(ptrace(PTRACE_CONT, leader, 0,0) == 0);
return 0;
}
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Simon Marchi <simon.marchi@efficios.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Acked-by: Pedro Alves <palves@redhat.com>
Acked-by: Simon Marchi <simon.marchi@efficios.com>
Acked-by: Jan Kratochvil <jan.kratochvil@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In commit:
9fe1f127b913 ("sched/fair: Merge select_idle_core/cpu()")
in select_idle_cpu(), we check if an idle core is present in the LLC
of the target CPU via the flag "has_idle_cores". We look for the idle
core in select_idle_cores(). If select_idle_cores() isn't able to find
an idle core/CPU, we need to unset the has_idle_cores flag in the LLC
of the target to prevent other CPUs from going down this route.
However, the current code is unsetting it in the LLC of the current
CPU instead of the target CPU. This patch fixes this issue.
Fixes: 9fe1f127b913 ("sched/fair: Merge select_idle_core/cpu()")
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lore.kernel.org/r/1620746169-13996-1-git-send-email-ego@linux.vnet.ibm.com
|
|
Daniel Borkmann says:
====================
pull-request: bpf 2021-05-11
The following pull-request contains BPF updates for your *net* tree.
We've added 13 non-merge commits during the last 8 day(s) which contain
a total of 21 files changed, 817 insertions(+), 382 deletions(-).
The main changes are:
1) Fix multiple ringbuf bugs in particular to prevent writable mmap of
read-only pages, from Andrii Nakryiko & Thadeu Lima de Souza Cascardo.
2) Fix verifier alu32 known-const subregister bound tracking for bitwise
operations and/or/xor, from Daniel Borkmann.
3) Reject trampoline attachment for functions with variable arguments,
and also add a deny list of other forbidden functions, from Jiri Olsa.
4) Fix nested bpf_bprintf_prepare() calls used by various helpers by
switching to per-CPU buffers, from Florent Revest.
5) Fix kernel compilation with BTF debug info on ppc64 due to pahole
missing TCP-CC functions like cubictcp_init, from Martin KaFai Lau.
6) Add a kconfig entry to provide an option to disallow unprivileged
BPF by default, from Daniel Borkmann.
7) Fix libbpf compilation for older libelf when GELF_ST_VISIBILITY()
macro is not available, from Arnaldo Carvalho de Melo.
8) Migrate test_tc_redirect to test_progs framework as prep work
for upcoming skb_change_head() fix & selftest, from Jussi Maki.
9) Fix a libbpf segfault in add_dummy_ksym_var() if BTF is not
present, from Ian Rogers.
10) Fix tx_only micro-benchmark in xdpsock BPF sample with proper frame
size, from Magnus Karlsson.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The bpf_seq_printf, bpf_trace_printk and bpf_snprintf helpers share one
per-cpu buffer that they use to store temporary data (arguments to
bprintf). They "get" that buffer with try_get_fmt_tmp_buf and "put" it
by the end of their scope with bpf_bprintf_cleanup.
If one of these helpers gets called within the scope of one of these
helpers, for example: a first bpf program gets called, uses
bpf_trace_printk which calls raw_spin_lock_irqsave which is traced by
another bpf program that calls bpf_snprintf, then the second "get"
fails. Essentially, these helpers are not re-entrant. They would return
-EBUSY and print a warning message once.
This patch triples the number of bprintf buffers to allow three levels
of nesting. This is very similar to what was done for tracepoints in
"9594dc3c7e7 bpf: fix nested bpf tracepoints with per-cpu data"
Fixes: d9c9e4db186a ("bpf: Factorize bpf_trace_printk and bpf_seq_printf")
Reported-by: syzbot+63122d0bc347f18c1884@syzkaller.appspotmail.com
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210511081054.2125874-1-revest@chromium.org
|
|
The recursion check in __bpf_prog_enter and __bpf_prog_exit
leaves some (not inlined) functions unprotected:
In __bpf_prog_enter:
- migrate_disable is called before prog->active is checked
In __bpf_prog_exit:
- migrate_enable,rcu_read_unlock_strict are called after
prog->active is decreased
When attaching trampoline to them we get panic like:
traps: PANIC: double fault, error_code: 0x0
double fault: 0000 [#1] SMP PTI
RIP: 0010:__bpf_prog_enter+0x4/0x50
...
Call Trace:
<IRQ>
bpf_trampoline_6442466513_0+0x18/0x1000
migrate_disable+0x5/0x50
__bpf_prog_enter+0x9/0x50
bpf_trampoline_6442466513_0+0x18/0x1000
migrate_disable+0x5/0x50
__bpf_prog_enter+0x9/0x50
bpf_trampoline_6442466513_0+0x18/0x1000
migrate_disable+0x5/0x50
__bpf_prog_enter+0x9/0x50
bpf_trampoline_6442466513_0+0x18/0x1000
migrate_disable+0x5/0x50
...
Fixing this by adding deny list of btf ids for tracing
programs and checking btf id during program verification.
Adding above functions to this list.
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210429114712.43783-1-jolsa@kernel.org
|
|
Add a kconfig knob which allows for unprivileged bpf to be disabled by default.
If set, the knob sets /proc/sys/kernel/unprivileged_bpf_disabled to value of 2.
This still allows a transition of 2 -> {0,1} through an admin. Similarly,
this also still keeps 1 -> {1} behavior intact, so that once set to permanently
disabled, it cannot be undone aside from a reboot.
We've also added extra2 with max of 2 for the procfs handler, so that an admin
still has a chance to toggle between 0 <-> 2.
Either way, as an additional alternative, applications can make use of CAP_BPF
that we added a while ago.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/74ec548079189e4e4dffaeb42b8987bb3c852eee.1620765074.git.daniel@iogearbox.net
|
|
Right now, all core BPF related options are scattered in different Kconfig
locations mainly due to historic reasons. Moving forward, lets add a proper
subsystem entry under ...
General setup --->
BPF subsystem --->
... in order to have all knobs in a single location and thus ease BPF related
configuration. Networking related bits such as sockmap are out of scope for
the general setup and therefore better suited to remain in net/Kconfig.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/f23f58765a4d59244ebd8037da7b6a6b2fb58446.1620765074.git.daniel@iogearbox.net
|
|
RTC drivers used to leave .set_alarm() NULL in order to signal the RTC
device doesn't support alarms. The drivers are now clearing the
RTC_FEATURE_ALARM bit for that purpose in order to keep the rtc_class_ops
structure const. So now, .set_alarm() is set unconditionally and this
possibly causes the alarmtimer code to select an RTC device that doesn't
support alarms.
Test RTC_FEATURE_ALARM instead of relying on ops->set_alarm to determine
whether alarms are available.
Fixes: 7ae41220ef58 ("rtc: introduce features bitfield")
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210511014516.563031-1-alexandre.belloni@bootlin.com
|
|
Only the very first page of BPF ringbuf that contains consumer position
counter is supposed to be mapped as writeable by user-space. Producer
position is read-only and can be modified only by the kernel code. BPF ringbuf
data pages are read-only as well and are not meant to be modified by
user-code to maintain integrity of per-record headers.
This patch allows to map only consumer position page as writeable and
everything else is restricted to be read-only. remap_vmalloc_range()
internally adds VM_DONTEXPAND, so all the established memory mappings can't be
extended, which prevents any future violations through mremap()'ing.
Fixes: 457f44363a88 ("bpf: Implement BPF ring buffer and verifier support for it")
Reported-by: Ryota Shiga (Flatt Security)
Reported-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
|
|
A BPF program might try to reserve a buffer larger than the ringbuf size.
If the consumer pointer is way ahead of the producer, that would be
successfully reserved, allowing the BPF program to read or write out of
the ringbuf allocated area.
Reported-by: Ryota Shiga (Flatt Security)
Fixes: 457f44363a88 ("bpf: Implement BPF ring buffer and verifier support for it")
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
|
|
Fix a bug in the verifier's scalar32_min_max_*() functions which leads to
incorrect tracking of 32 bit bounds for the simulation of and/or/xor bitops.
When both the src & dst subreg is a known constant, then the assumption is
that scalar_min_max_*() will take care to update bounds correctly. However,
this is not the case, for example, consider a register R2 which has a tnum
of 0xffffffff00000000, meaning, lower 32 bits are known constant and in this
case of value 0x00000001. R2 is then and'ed with a register R3 which is a
64 bit known constant, here, 0x100000002.
What can be seen in line '10:' is that 32 bit bounds reach an invalid state
where {u,s}32_min_value > {u,s}32_max_value. The reason is scalar32_min_max_*()
delegates 32 bit bounds updates to scalar_min_max_*(), however, that really
only takes place when both the 64 bit src & dst register is a known constant.
Given scalar32_min_max_*() is intended to be designed as closely as possible
to scalar_min_max_*(), update the 32 bit bounds in this situation through
__mark_reg32_known() which will set all {u,s}32_{min,max}_value to the correct
constant, which is 0x00000000 after the fix (given 0x00000001 & 0x00000002 in
32 bit space). This is possible given var32_off already holds the final value
as dst_reg->var_off is updated before calling scalar32_min_max_*().
Before fix, invalid tracking of R2:
[...]
9: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=-9223372036854775807 (0x8000000000000001),smax_value=9223372032559808513 (0x7fffffff00000001),umin_value=1,umax_value=0xffffffff00000001,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_min_value=1,u32_max_value=1) R3_w=inv4294967298 R10=fp0
9: (5f) r2 &= r3
10: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=0,smax_value=4294967296 (0x100000000),umin_value=0,umax_value=0x100000000,var_off=(0x0; 0x100000000),s32_min_value=1,s32_max_value=0,u32_min_value=1,u32_max_value=0) R3_w=inv4294967298 R10=fp0
[...]
After fix, correct tracking of R2:
[...]
9: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=-9223372036854775807 (0x8000000000000001),smax_value=9223372032559808513 (0x7fffffff00000001),umin_value=1,umax_value=0xffffffff00000001,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_min_value=1,u32_max_value=1) R3_w=inv4294967298 R10=fp0
9: (5f) r2 &= r3
10: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=0,smax_value=4294967296 (0x100000000),umin_value=0,umax_value=0x100000000,var_off=(0x0; 0x100000000),s32_min_value=0,s32_max_value=0,u32_min_value=0,u32_max_value=0) R3_w=inv4294967298 R10=fp0
[...]
Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Fixes: 2921c90d4718 ("bpf: Fix a verifier failure with xor")
Reported-by: Manfred Paul (@_manfp)
Reported-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Thomas Gleixner:
"A set of scheduler updates:
- Prevent PSI state corruption when schedule() races with cgroup
move.
A recent commit combined two PSI callbacks to reduce the number of
cgroup tree updates, but missed that schedule() can drop rq::lock
for load balancing, which opens the race window for
cgroup_move_task() which then observes half updated state.
The fix is to solely use task::ps_flags instead of looking at the
potentially mismatching scheduler state
- Prevent an out-of-bounds access in uclamp caused bu a rounding
division which can lead to an off-by-one error exceeding the
buckets array size.
- Prevent unfairness caused by missing load decay when a task is
attached to a cfs runqueue.
The old load of the task was attached to the runqueue and never
removed. Fix it by enforcing the load update through the hierarchy
for unthrottled run queue instances.
- A documentation fix fot the 'sched_verbose' command line option"
* tag 'sched-urgent-2021-05-09' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Fix unfairness caused by missing load decay
sched: Fix out-of-bound access in uclamp
psi: Fix psi state corruption when schedule() races with cgroup move
sched,doc: sched_debug_verbose cmdline should be sched_verbose
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking fixes from Thomas Gleixner:
"A set of locking related fixes and updates:
- Two fixes for the futex syscall related to the timeout handling.
FUTEX_LOCK_PI does not support the FUTEX_CLOCK_REALTIME bit and
because it's not set the time namespace adjustment for clock
MONOTONIC is applied wrongly.
FUTEX_WAIT cannot support the FUTEX_CLOCK_REALTIME bit because its
always a relative timeout.
- Cleanups in the futex syscall entry points which became obvious
when the two timeout handling bugs were fixed.
- Cleanup of queued_write_lock_slowpath() as suggested by Linus
- Fixup of the smp_call_function_single_async() prototype"
* tag 'locking-urgent-2021-05-09' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
futex: Make syscall entry points less convoluted
futex: Get rid of the val2 conditional dance
futex: Do not apply time namespace adjustment on FUTEX_LOCK_PI
Revert 337f13046ff0 ("futex: Allow FUTEX_CLOCK_REALTIME with FUTEX_WAIT op")
locking/qrwlock: Cleanup queued_write_lock_slowpath()
smp: Fix smp_call_function_single_async prototype
|