summaryrefslogtreecommitdiff
path: root/kernel
AgeCommit message (Collapse)AuthorFilesLines
2021-03-06static_call: Fix the module key fixupPeter Zijlstra1-3/+4
Provided the target address of a R_X86_64_PC32 relocation is aligned, the low two bits should be invariant between the relative and absolute value. Turns out the address is not aligned and things go sideways, ensure we transfer the bits in the absolute form when fixing up the key address. Fixes: 73f44fe19d35 ("static_call: Allow module use without exposing static_call_key") Reported-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Link: https://lkml.kernel.org/r/20210225220351.GE4746@worktop.programming.kicks-ass.net
2021-03-06genirq: Add IRQF_NO_AUTOEN for request_irq/nmi()Barry Song1-2/+9
Many drivers don't want interrupts enabled automatically via request_irq(). So they are handling this issue by either way of the below two: (1) irq_set_status_flags(irq, IRQ_NOAUTOEN); request_irq(dev, irq...); (2) request_irq(dev, irq...); disable_irq(irq); The code in the second way is silly and unsafe. In the small time gap between request_irq() and disable_irq(), interrupts can still come. The code in the first way is safe though it's subobtimal. Add a new IRQF_NO_AUTOEN flag which can be handed in by drivers to request_irq() and request_nmi(). It prevents the automatic enabling of the requested interrupt/nmi in the same safe way as #1 above. With that the various usage sites of #1 and #2 above can be simplified and corrected. Signed-off-by: Barry Song <song.bao.hua@hisilicon.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: dmitry.torokhov@gmail.com Link: https://lore.kernel.org/r/20210302224916.13980-2-song.bao.hua@hisilicon.com
2021-03-06psi: Optimize task switch inside shared cgroupsChengming Zhou2-26/+37
The commit 36b238d57172 ("psi: Optimize switching tasks inside shared cgroups") only update cgroups whose state actually changes during a task switch only in task preempt case, not in task sleep case. We actually don't need to clear and set TSK_ONCPU state for common cgroups of next and prev task in sleep case, that can save many psi_group_change especially when most activity comes from one leaf cgroup. sleep before: psi_dequeue() while ((group = iterate_groups(prev))) # all ancestors psi_group_change(prev, .clear=TSK_RUNNING|TSK_ONCPU) psi_task_switch() while ((group = iterate_groups(next))) # all ancestors psi_group_change(next, .set=TSK_ONCPU) sleep after: psi_dequeue() nop psi_task_switch() while ((group = iterate_groups(next))) # until (prev & next) psi_group_change(next, .set=TSK_ONCPU) while ((group = iterate_groups(prev))) # all ancestors psi_group_change(prev, .clear=common?TSK_RUNNING:TSK_RUNNING|TSK_ONCPU) When a voluntary sleep switches to another task, we remove one call of psi_group_change() for every common cgroup ancestor of the two tasks. Co-developed-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lkml.kernel.org/r/20210303034659.91735-5-zhouchengming@bytedance.com
2021-03-06psi: Pressure states are unlikelyJohannes Weiner1-7/+7
Move the unlikely branches out of line. This eliminates undesirable jumps during wakeup and sleeps for workloads that aren't under any sort of resource pressure. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20210303034659.91735-4-zhouchengming@bytedance.com
2021-03-06psi: Use ONCPU state tracking machinery to detect reclaimChengming Zhou3-51/+24
Move the reclaim detection from the timer tick to the task state tracking machinery using the recently added ONCPU state. And we also add task psi_flags changes checking in the psi_task_switch() optimization to update the parents properly. In terms of performance and cost, this ONCPU task state tracking is not cheaper than previous timer tick in aggregate. But the code is simpler and shorter this way, so it's a maintainability win. And Johannes did some testing with perf bench, the performace and cost changes would be acceptable for real workloads. Thanks to Johannes Weiner for pointing out the psi_task_switch() optimization things and the clearer changelog. Co-developed-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lkml.kernel.org/r/20210303034659.91735-3-zhouchengming@bytedance.com
2021-03-06psi: Add PSI_CPU_FULL stateChengming Zhou1-3/+11
The FULL state doesn't exist for the CPU resource at the system level, but exist at the cgroup level, means all non-idle tasks in a cgroup are delayed on the CPU resource which used by others outside of the cgroup or throttled by the cgroup cpu.max configuration. Co-developed-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lkml.kernel.org/r/20210303034659.91735-2-zhouchengming@bytedance.com
2021-03-06sched/topology: fix the issue groups don't span domain->span for NUMA ↵Barry Song1-30/+61
diameter > 2 As long as NUMA diameter > 2, building sched_domain by sibling's child domain will definitely create a sched_domain with sched_group which will span out of the sched_domain: +------+ +------+ +-------+ +------+ | node | 12 |node | 20 | node | 12 |node | | 0 +---------+1 +--------+ 2 +-------+3 | +------+ +------+ +-------+ +------+ domain0 node0 node1 node2 node3 domain1 node0+1 node0+1 node2+3 node2+3 + domain2 node0+1+2 | group: node0+1 | group:node2+3 <-------------------+ when node2 is added into the domain2 of node0, kernel is using the child domain of node2's domain2, which is domain1(node2+3). Node 3 is outside the span of the domain including node0+1+2. This will make load_balance() run based on screwed avg_load and group_type in the sched_group spanning out of the sched_domain, and it also makes select_task_rq_fair() pick an idle CPU outside the sched_domain. Real servers which suffer from this problem include Kunpeng920 and 8-node Sun Fire X4600-M2, at least. Here we move to use the *child* domain of the *child* domain of node2's domain2 as the new added sched_group. At the same, we re-use the lower level sgc directly. +------+ +------+ +-------+ +------+ | node | 12 |node | 20 | node | 12 |node | | 0 +---------+1 +--------+ 2 +-------+3 | +------+ +------+ +-------+ +------+ domain0 node0 node1 +- node2 node3 | domain1 node0+1 node0+1 | node2+3 node2+3 | domain2 node0+1+2 | group: node0+1 | group:node2 <-------------------+ While the lower level sgc is re-used, this patch only changes the remote sched_groups for those sched_domains playing grandchild trick, therefore, sgc->next_update is still safe since it's only touched by CPUs that have the group span as local group. And sgc->imbalance is also safe because sd_parent remains the same in load_balance and LB only tries other CPUs from the local group. Moreover, since local groups are not touched, they are still getting roughly equal size in a TL. And should_we_balance() only matters with local groups, so the pull probability of those groups are still roughly equal. Tested by the below topology: qemu-system-aarch64 -M virt -nographic \ -smp cpus=8 \ -numa node,cpus=0-1,nodeid=0 \ -numa node,cpus=2-3,nodeid=1 \ -numa node,cpus=4-5,nodeid=2 \ -numa node,cpus=6-7,nodeid=3 \ -numa dist,src=0,dst=1,val=12 \ -numa dist,src=0,dst=2,val=20 \ -numa dist,src=0,dst=3,val=22 \ -numa dist,src=1,dst=2,val=22 \ -numa dist,src=2,dst=3,val=12 \ -numa dist,src=1,dst=3,val=24 \ -m 4G -cpu cortex-a57 -kernel arch/arm64/boot/Image w/o patch, we get lots of "groups don't span domain->span": [ 0.802139] CPU0 attaching sched-domain(s): [ 0.802193] domain-0: span=0-1 level=MC [ 0.802443] groups: 0:{ span=0 cap=1013 }, 1:{ span=1 cap=979 } [ 0.802693] domain-1: span=0-3 level=NUMA [ 0.802731] groups: 0:{ span=0-1 cap=1992 }, 2:{ span=2-3 cap=1943 } [ 0.802811] domain-2: span=0-5 level=NUMA [ 0.802829] groups: 0:{ span=0-3 cap=3935 }, 4:{ span=4-7 cap=3937 } [ 0.802881] ERROR: groups don't span domain->span [ 0.803058] domain-3: span=0-7 level=NUMA [ 0.803080] groups: 0:{ span=0-5 mask=0-1 cap=5843 }, 6:{ span=4-7 mask=6-7 cap=4077 } [ 0.804055] CPU1 attaching sched-domain(s): [ 0.804072] domain-0: span=0-1 level=MC [ 0.804096] groups: 1:{ span=1 cap=979 }, 0:{ span=0 cap=1013 } [ 0.804152] domain-1: span=0-3 level=NUMA [ 0.804170] groups: 0:{ span=0-1 cap=1992 }, 2:{ span=2-3 cap=1943 } [ 0.804219] domain-2: span=0-5 level=NUMA [ 0.804236] groups: 0:{ span=0-3 cap=3935 }, 4:{ span=4-7 cap=3937 } [ 0.804302] ERROR: groups don't span domain->span [ 0.804520] domain-3: span=0-7 level=NUMA [ 0.804546] groups: 0:{ span=0-5 mask=0-1 cap=5843 }, 6:{ span=4-7 mask=6-7 cap=4077 } [ 0.804677] CPU2 attaching sched-domain(s): [ 0.804687] domain-0: span=2-3 level=MC [ 0.804705] groups: 2:{ span=2 cap=934 }, 3:{ span=3 cap=1009 } [ 0.804754] domain-1: span=0-3 level=NUMA [ 0.804772] groups: 2:{ span=2-3 cap=1943 }, 0:{ span=0-1 cap=1992 } [ 0.804820] domain-2: span=0-5 level=NUMA [ 0.804836] groups: 2:{ span=0-3 mask=2-3 cap=3991 }, 4:{ span=0-1,4-7 mask=4-5 cap=5985 } [ 0.804944] ERROR: groups don't span domain->span [ 0.805108] domain-3: span=0-7 level=NUMA [ 0.805134] groups: 2:{ span=0-5 mask=2-3 cap=5899 }, 6:{ span=0-1,4-7 mask=6-7 cap=6125 } [ 0.805223] CPU3 attaching sched-domain(s): [ 0.805232] domain-0: span=2-3 level=MC [ 0.805249] groups: 3:{ span=3 cap=1009 }, 2:{ span=2 cap=934 } [ 0.805319] domain-1: span=0-3 level=NUMA [ 0.805336] groups: 2:{ span=2-3 cap=1943 }, 0:{ span=0-1 cap=1992 } [ 0.805383] domain-2: span=0-5 level=NUMA [ 0.805399] groups: 2:{ span=0-3 mask=2-3 cap=3991 }, 4:{ span=0-1,4-7 mask=4-5 cap=5985 } [ 0.805458] ERROR: groups don't span domain->span [ 0.805605] domain-3: span=0-7 level=NUMA [ 0.805626] groups: 2:{ span=0-5 mask=2-3 cap=5899 }, 6:{ span=0-1,4-7 mask=6-7 cap=6125 } [ 0.805712] CPU4 attaching sched-domain(s): [ 0.805721] domain-0: span=4-5 level=MC [ 0.805738] groups: 4:{ span=4 cap=984 }, 5:{ span=5 cap=924 } [ 0.805787] domain-1: span=4-7 level=NUMA [ 0.805803] groups: 4:{ span=4-5 cap=1908 }, 6:{ span=6-7 cap=2029 } [ 0.805851] domain-2: span=0-1,4-7 level=NUMA [ 0.805867] groups: 4:{ span=4-7 cap=3937 }, 0:{ span=0-3 cap=3935 } [ 0.805915] ERROR: groups don't span domain->span [ 0.806108] domain-3: span=0-7 level=NUMA [ 0.806130] groups: 4:{ span=0-1,4-7 mask=4-5 cap=5985 }, 2:{ span=0-3 mask=2-3 cap=3991 } [ 0.806214] CPU5 attaching sched-domain(s): [ 0.806222] domain-0: span=4-5 level=MC [ 0.806240] groups: 5:{ span=5 cap=924 }, 4:{ span=4 cap=984 } [ 0.806841] domain-1: span=4-7 level=NUMA [ 0.806866] groups: 4:{ span=4-5 cap=1908 }, 6:{ span=6-7 cap=2029 } [ 0.806934] domain-2: span=0-1,4-7 level=NUMA [ 0.806953] groups: 4:{ span=4-7 cap=3937 }, 0:{ span=0-3 cap=3935 } [ 0.807004] ERROR: groups don't span domain->span [ 0.807312] domain-3: span=0-7 level=NUMA [ 0.807386] groups: 4:{ span=0-1,4-7 mask=4-5 cap=5985 }, 2:{ span=0-3 mask=2-3 cap=3991 } [ 0.807686] CPU6 attaching sched-domain(s): [ 0.807710] domain-0: span=6-7 level=MC [ 0.807750] groups: 6:{ span=6 cap=1017 }, 7:{ span=7 cap=1012 } [ 0.807840] domain-1: span=4-7 level=NUMA [ 0.807870] groups: 6:{ span=6-7 cap=2029 }, 4:{ span=4-5 cap=1908 } [ 0.807952] domain-2: span=0-1,4-7 level=NUMA [ 0.807985] groups: 6:{ span=4-7 mask=6-7 cap=4077 }, 0:{ span=0-5 mask=0-1 cap=5843 } [ 0.808045] ERROR: groups don't span domain->span [ 0.808257] domain-3: span=0-7 level=NUMA [ 0.808571] groups: 6:{ span=0-1,4-7 mask=6-7 cap=6125 }, 2:{ span=0-5 mask=2-3 cap=5899 } [ 0.808848] CPU7 attaching sched-domain(s): [ 0.808860] domain-0: span=6-7 level=MC [ 0.808880] groups: 7:{ span=7 cap=1012 }, 6:{ span=6 cap=1017 } [ 0.808953] domain-1: span=4-7 level=NUMA [ 0.808974] groups: 6:{ span=6-7 cap=2029 }, 4:{ span=4-5 cap=1908 } [ 0.809034] domain-2: span=0-1,4-7 level=NUMA [ 0.809055] groups: 6:{ span=4-7 mask=6-7 cap=4077 }, 0:{ span=0-5 mask=0-1 cap=5843 } [ 0.809128] ERROR: groups don't span domain->span [ 0.810361] domain-3: span=0-7 level=NUMA [ 0.810400] groups: 6:{ span=0-1,4-7 mask=6-7 cap=5961 }, 2:{ span=0-5 mask=2-3 cap=5903 } w/ patch, we don't get "groups don't span domain->span" any more: [ 1.486271] CPU0 attaching sched-domain(s): [ 1.486820] domain-0: span=0-1 level=MC [ 1.500924] groups: 0:{ span=0 cap=980 }, 1:{ span=1 cap=994 } [ 1.515717] domain-1: span=0-3 level=NUMA [ 1.515903] groups: 0:{ span=0-1 cap=1974 }, 2:{ span=2-3 cap=1989 } [ 1.516989] domain-2: span=0-5 level=NUMA [ 1.517124] groups: 0:{ span=0-3 cap=3963 }, 4:{ span=4-5 cap=1949 } [ 1.517369] domain-3: span=0-7 level=NUMA [ 1.517423] groups: 0:{ span=0-5 mask=0-1 cap=5912 }, 6:{ span=4-7 mask=6-7 cap=4054 } [ 1.520027] CPU1 attaching sched-domain(s): [ 1.520097] domain-0: span=0-1 level=MC [ 1.520184] groups: 1:{ span=1 cap=994 }, 0:{ span=0 cap=980 } [ 1.520429] domain-1: span=0-3 level=NUMA [ 1.520487] groups: 0:{ span=0-1 cap=1974 }, 2:{ span=2-3 cap=1989 } [ 1.520687] domain-2: span=0-5 level=NUMA [ 1.520744] groups: 0:{ span=0-3 cap=3963 }, 4:{ span=4-5 cap=1949 } [ 1.520948] domain-3: span=0-7 level=NUMA [ 1.521038] groups: 0:{ span=0-5 mask=0-1 cap=5912 }, 6:{ span=4-7 mask=6-7 cap=4054 } [ 1.522068] CPU2 attaching sched-domain(s): [ 1.522348] domain-0: span=2-3 level=MC [ 1.522606] groups: 2:{ span=2 cap=1003 }, 3:{ span=3 cap=986 } [ 1.522832] domain-1: span=0-3 level=NUMA [ 1.522885] groups: 2:{ span=2-3 cap=1989 }, 0:{ span=0-1 cap=1974 } [ 1.523043] domain-2: span=0-5 level=NUMA [ 1.523092] groups: 2:{ span=0-3 mask=2-3 cap=4037 }, 4:{ span=4-5 cap=1949 } [ 1.523302] domain-3: span=0-7 level=NUMA [ 1.523352] groups: 2:{ span=0-5 mask=2-3 cap=5986 }, 6:{ span=0-1,4-7 mask=6-7 cap=6102 } [ 1.523748] CPU3 attaching sched-domain(s): [ 1.523774] domain-0: span=2-3 level=MC [ 1.523825] groups: 3:{ span=3 cap=986 }, 2:{ span=2 cap=1003 } [ 1.524009] domain-1: span=0-3 level=NUMA [ 1.524086] groups: 2:{ span=2-3 cap=1989 }, 0:{ span=0-1 cap=1974 } [ 1.524281] domain-2: span=0-5 level=NUMA [ 1.524331] groups: 2:{ span=0-3 mask=2-3 cap=4037 }, 4:{ span=4-5 cap=1949 } [ 1.524534] domain-3: span=0-7 level=NUMA [ 1.524586] groups: 2:{ span=0-5 mask=2-3 cap=5986 }, 6:{ span=0-1,4-7 mask=6-7 cap=6102 } [ 1.524847] CPU4 attaching sched-domain(s): [ 1.524873] domain-0: span=4-5 level=MC [ 1.524954] groups: 4:{ span=4 cap=958 }, 5:{ span=5 cap=991 } [ 1.525105] domain-1: span=4-7 level=NUMA [ 1.525153] groups: 4:{ span=4-5 cap=1949 }, 6:{ span=6-7 cap=2006 } [ 1.525368] domain-2: span=0-1,4-7 level=NUMA [ 1.525428] groups: 4:{ span=4-7 cap=3955 }, 0:{ span=0-1 cap=1974 } [ 1.532726] domain-3: span=0-7 level=NUMA [ 1.532811] groups: 4:{ span=0-1,4-7 mask=4-5 cap=6003 }, 2:{ span=0-3 mask=2-3 cap=4037 } [ 1.534125] CPU5 attaching sched-domain(s): [ 1.534159] domain-0: span=4-5 level=MC [ 1.534303] groups: 5:{ span=5 cap=991 }, 4:{ span=4 cap=958 } [ 1.534490] domain-1: span=4-7 level=NUMA [ 1.534572] groups: 4:{ span=4-5 cap=1949 }, 6:{ span=6-7 cap=2006 } [ 1.534734] domain-2: span=0-1,4-7 level=NUMA [ 1.534783] groups: 4:{ span=4-7 cap=3955 }, 0:{ span=0-1 cap=1974 } [ 1.536057] domain-3: span=0-7 level=NUMA [ 1.536430] groups: 4:{ span=0-1,4-7 mask=4-5 cap=6003 }, 2:{ span=0-3 mask=2-3 cap=3896 } [ 1.536815] CPU6 attaching sched-domain(s): [ 1.536846] domain-0: span=6-7 level=MC [ 1.536934] groups: 6:{ span=6 cap=1005 }, 7:{ span=7 cap=1001 } [ 1.537144] domain-1: span=4-7 level=NUMA [ 1.537262] groups: 6:{ span=6-7 cap=2006 }, 4:{ span=4-5 cap=1949 } [ 1.537553] domain-2: span=0-1,4-7 level=NUMA [ 1.537613] groups: 6:{ span=4-7 mask=6-7 cap=4054 }, 0:{ span=0-1 cap=1805 } [ 1.537872] domain-3: span=0-7 level=NUMA [ 1.537998] groups: 6:{ span=0-1,4-7 mask=6-7 cap=6102 }, 2:{ span=0-5 mask=2-3 cap=5845 } [ 1.538448] CPU7 attaching sched-domain(s): [ 1.538505] domain-0: span=6-7 level=MC [ 1.538586] groups: 7:{ span=7 cap=1001 }, 6:{ span=6 cap=1005 } [ 1.538746] domain-1: span=4-7 level=NUMA [ 1.538798] groups: 6:{ span=6-7 cap=2006 }, 4:{ span=4-5 cap=1949 } [ 1.539048] domain-2: span=0-1,4-7 level=NUMA [ 1.539111] groups: 6:{ span=4-7 mask=6-7 cap=4054 }, 0:{ span=0-1 cap=1805 } [ 1.539571] domain-3: span=0-7 level=NUMA [ 1.539610] groups: 6:{ span=0-1,4-7 mask=6-7 cap=6102 }, 2:{ span=0-5 mask=2-3 cap=5845 } Signed-off-by: Barry Song <song.bao.hua@hisilicon.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Tested-by: Meelis Roos <mroos@linux.ee> Link: https://lkml.kernel.org/r/20210224030944.15232-1-song.bao.hua@hisilicon.com
2021-03-06cpu/hotplug: Add cpuhp_invoke_callback_range()Vincent Donnefort1-68/+102
Factorizing and unifying cpuhp callback range invocations, especially for the hotunplug path, where two different ways of decrementing were used. The first one, decrements before the callback is called: cpuhp_thread_fun() state = st->state; st->state--; cpuhp_invoke_callback(state); The second one, after: take_down_cpu()|cpuhp_down_callbacks() cpuhp_invoke_callback(st->state); st->state--; This is problematic for rolling back the steps in case of error, as depending on the decrement, the rollback will start from N or N-1. It also makes tracing inconsistent, between steps run in the cpuhp thread and the others. Additionally, avoid useless cpuhp_thread_fun() loops by skipping empty steps. Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20210216103506.416286-4-vincent.donnefort@arm.com
2021-03-06cpu/hotplug: CPUHP_BRINGUP_CPU failure exceptionVincent Donnefort1-3/+16
The atomic states (between CPUHP_AP_IDLE_DEAD and CPUHP_AP_ONLINE) are triggered by the CPUHP_BRINGUP_CPU step. If the latter fails, no atomic state can be rolled back. DEAD callbacks too can't fail and disallow recovery. As a consequence, during hotunplug, the fail injection interface should prohibit all states from CPUHP_BRINGUP_CPU to CPUHP_ONLINE. Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20210216103506.416286-3-vincent.donnefort@arm.com
2021-03-06cpu/hotplug: Allowing to reset fail injectionVincent Donnefort1-0/+5
Currently, the only way of resetting the fail injection is to trigger a hotplug, hotunplug or both. This is rather annoying for testing and, as the default value for this file is -1, it seems pretty natural to let a user write it. Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20210216103506.416286-2-vincent.donnefort@arm.com
2021-03-06sched/pelt: Fix task util_est update filteringVincent Donnefort1-3/+12
Being called for each dequeue, util_est reduces the number of its updates by filtering out when the EWMA signal is different from the task util_avg by less than 1%. It is a problem for a sudden util_avg ramp-up. Due to the decay from a previous high util_avg, EWMA might now be close enough to the new util_avg. No update would then happen while it would leave ue.enqueued with an out-of-date value. Taking into consideration the two util_est members, EWMA and enqueued for the filtering, ensures, for both, an up-to-date value. This is for now an issue only for the trace probe that might return the stale value. Functional-wise, it isn't a problem, as the value is always accessed through max(enqueued, ewma). This problem has been observed using LISA's UtilConvergence:test_means on the sd845c board. No regression observed with Hackbench on sd845c and Perf-bench sched pipe on hikey/hikey960. Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20210225165820.1377125-1-vincent.donnefort@arm.com
2021-03-06sched/fair: Fix shift-out-of-bounds in load_balance()Valentin Schneider2-2/+8
Syzbot reported a handful of occurrences where an sd->nr_balance_failed can grow to much higher values than one would expect. A successful load_balance() resets it to 0; a failed one increments it. Once it gets to sd->cache_nice_tries + 3, this *should* trigger an active balance, which will either set it to sd->cache_nice_tries+1 or reset it to 0. However, in case the to-be-active-balanced task is not allowed to run on env->dst_cpu, then the increment is done without any further modification. This could then be repeated ad nauseam, and would explain the absurdly high values reported by syzbot (86, 149). VincentG noted there is value in letting sd->cache_nice_tries grow, so the shift itself should be fixed. That means preventing: """ If the value of the right operand is negative or is greater than or equal to the width of the promoted left operand, the behavior is undefined. """ Thus we need to cap the shift exponent to BITS_PER_TYPE(typeof(lefthand)) - 1. I had a look around for other similar cases via coccinelle: @expr@ position pos; expression E1; expression E2; @@ ( E1 >> E2@pos | E1 >> E2@pos ) @cst depends on expr@ position pos; expression expr.E1; constant cst; @@ ( E1 >> cst@pos | E1 << cst@pos ) @script:python depends on !cst@ pos << expr.pos; exp << expr.E2; @@ # Dirty hack to ignore constexpr if exp.upper() != exp: coccilib.report.print_report(pos[0], "Possible UB shift here") The only other match in kernel/sched is rq_clock_thermal() which employs sched_thermal_decay_shift, and that exponent is already capped to 10, so that one is fine. Fixes: 5a7f55590467 ("sched/fair: Relax constraint on task's load during load balance") Reported-by: syzbot+d7581744d5fd27c9fbe1@syzkaller.appspotmail.com Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: http://lore.kernel.org/r/000000000000ffac1205b9a2112f@google.com
2021-03-06sched/fair: use lsub_positive in cpu_util_next()Vincent Donnefort1-1/+1
The sub_positive local version is saving an explicit load-store and is enough for the cpu_util_next() usage. Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Quentin Perret <qperret@google.com> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lkml.kernel.org/r/20210225083612.1113823-3-vincent.donnefort@arm.com
2021-03-06sched/fair: Fix task utilization accountability in compute_energy()Vincent Donnefort1-4/+20
find_energy_efficient_cpu() (feec()) computes for each perf_domain (pd) an energy delta as follows: feec(task) for_each_pd base_energy = compute_energy(task, -1, pd) -> for_each_cpu(pd) -> cpu_util_next(cpu, task, -1) energy_delta = compute_energy(task, dst_cpu, pd) -> for_each_cpu(pd) -> cpu_util_next(cpu, task, dst_cpu) energy_delta -= base_energy Then it picks the best CPU as being the one that minimizes energy_delta. cpu_util_next() estimates the CPU utilization that would happen if the task was placed on dst_cpu as follows: max(cpu_util + task_util, cpu_util_est + _task_util_est) The task contribution to the energy delta can then be either: (1) _task_util_est, on a mostly idle CPU, where cpu_util is close to 0 and _task_util_est > cpu_util. (2) task_util, on a mostly busy CPU, where cpu_util > _task_util_est. (cpu_util_est doesn't appear here. It is 0 when a CPU is idle and otherwise must be small enough so that feec() takes the CPU as a potential target for the task placement) This is problematic for feec(), as cpu_util_next() might give an unfair advantage to a CPU which is mostly busy (2) compared to one which is mostly idle (1). _task_util_est being always bigger than task_util in feec() (as the task is waking up), the task contribution to the energy might look smaller on certain CPUs (2) and this breaks the energy comparison. This issue is, moreover, not sporadic. By starving idle CPUs, it keeps their cpu_util < _task_util_est (1) while others will maintain cpu_util > _task_util_est (2). Fix this problem by always using max(task_util, _task_util_est) as a task contribution to the energy (ENERGY_UTIL). The new estimated CPU utilization for the energy would then be: max(cpu_util, cpu_util_est) + max(task_util, _task_util_est) compute_energy() still needs to know which OPP would be selected if the task would be migrated in the perf_domain (FREQUENCY_UTIL). Hence, cpu_util_next() is still used to estimate the maximum util within the pd. Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Quentin Perret <qperret@google.com> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lkml.kernel.org/r/20210225083612.1113823-2-vincent.donnefort@arm.com
2021-03-06sched/fair: Reduce the window for duplicated updateVincent Guittot1-3/+8
Start to update last_blocked_load_update_tick to reduce the possibility of another cpu starting the update one more time Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20210224133007.28644-8-vincent.guittot@linaro.org
2021-03-06sched/fair: Trigger the update of blocked load on newly idle cpuVincent Guittot4-4/+35
Instead of waking up a random and already idle CPU, we can take advantage of this_cpu being about to enter idle to run the ILB and update the blocked load. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20210224133007.28644-7-vincent.guittot@linaro.org
2021-03-06sched/membarrier: fix missing local execution of ipi_sync_rq_state()Mathieu Desnoyers1-3/+1
The function sync_runqueues_membarrier_state() should copy the membarrier state from the @mm received as parameter to each runqueue currently running tasks using that mm. However, the use of smp_call_function_many() skips the current runqueue, which is unintended. Replace by a call to on_each_cpu_mask(). Fixes: 227a4aadc75b ("sched/membarrier: Fix p->mm->membarrier_state racy load") Reported-by: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: stable@vger.kernel.org # 5.4.x+ Link: https://lore.kernel.org/r/74F1E842-4A84-47BF-B6C2-5407DFDD4A4A@gmail.com
2021-03-06sched/fair: Reorder newidle_balance pulled_task testsVincent Guittot1-5/+5
Reorder the tests and skip useless ones when no load balance has been performed and rq lock has not been released. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20210224133007.28644-6-vincent.guittot@linaro.org
2021-03-06sched: Simplify set_affinity_pending refcountsPeter Zijlstra1-12/+20
Now that we have set_affinity_pending::stop_pending to indicate if a stopper is in progress, and we have the guarantee that if that stopper exists, it will (eventually) complete our @pending we can simplify the refcount scheme by no longer counting the stopper thread. Fixes: 6d337eab041d ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()") Cc: stable@kernel.org Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20210224131355.724130207@infradead.org
2021-03-06sched/fair: Merge for each idle cpu loop of ILBVincent Guittot1-25/+7
Remove the specific case for handling this_cpu outside for_each_cpu() loop when running ILB. Instead we use for_each_cpu_wrap() and start with the next cpu after this_cpu so we will continue to finish with this_cpu. update_nohz_stats() is now used for this_cpu too and will prevents unnecessary update. We don't need a special case for handling the update of nohz.next_balance for this_cpu anymore because it is now handled by the loop like others. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20210224133007.28644-5-vincent.guittot@linaro.org
2021-03-06sched: Fix affine_move_task() self-concurrencyPeter Zijlstra1-3/+12
Consider: sched_setaffinity(p, X); sched_setaffinity(p, Y); Then the first will install p->migration_pending = &my_pending; and issue stop_one_cpu_nowait(pending); and the second one will read p->migration_pending and _also_ issue: stop_one_cpu_nowait(pending), the _SAME_ @pending. This causes stopper list corruption. Add set_affinity_pending::stop_pending, to indicate if a stopper is in progress. Fixes: 6d337eab041d ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()") Cc: stable@kernel.org Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20210224131355.649146419@infradead.org
2021-03-06sched/fair: Remove unused parameter of update_nohz_statsVincent Guittot1-3/+3
idle load balance is the only user of update_nohz_stats and doesn't use force parameter. Remove it Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20210224133007.28644-4-vincent.guittot@linaro.org
2021-03-06sched: Optimize migration_cpu_stop()Peter Zijlstra1-1/+12
When the purpose of migration_cpu_stop() is to migrate the task to 'any' valid CPU, don't migrate the task when it's already running on a valid CPU. Fixes: 6d337eab041d ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()") Cc: stable@kernel.org Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20210224131355.569238629@infradead.org
2021-03-06sched/fair: Remove unused return of _nohz_idle_balanceVincent Guittot1-9/+1
The return of _nohz_idle_balance() is not used anymore so we can remove it Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20210224133007.28644-3-vincent.guittot@linaro.org
2021-03-06sched: Collate affine_move_task() stoppersPeter Zijlstra1-15/+8
The SCA_MIGRATE_ENABLE and task_running() cases are almost identical, collapse them to avoid further duplication. Fixes: 6d337eab041d ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()") Cc: stable@kernel.org Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20210224131355.500108964@infradead.org
2021-03-06sched/fair: Remove update of blocked load from newidle_balanceVincent Guittot1-28/+5
newidle_balance runs with both preempt and irq disabled which prevent local irq to run during this period. The duration for updating the blocked load of CPUs varies according to the number of CPU cgroups with non-decayed load and extends this critical period to an uncontrolled level. Remove the update from newidle_balance and trigger a normal ILB that will take care of the update instead. This reduces the IRQ latency from O(nr_cgroups * nr_nohz_cpus) to O(nr_cgroups). Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20210224133007.28644-2-vincent.guittot@linaro.org
2021-03-06sched: Simplify migration_cpu_stop()Valentin Schneider1-9/+18
Since, when ->stop_pending, only the stopper can uninstall p->migration_pending. This could simplify a few ifs, because: (pending != NULL) => (pending == p->migration_pending) Also, the fatty comment above affine_move_task() probably needs a bit of gardening. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2021-03-06sched: Simplify migration_cpu_stop()Peter Zijlstra1-48/+8
When affine_move_task() issues a migration_cpu_stop(), the purpose of that function is to complete that @pending, not any random other p->migration_pending that might have gotten installed since. This realization much simplifies migration_cpu_stop() and allows further necessary steps to fix all this as it provides the guarantee that @pending's stopper will complete @pending (and not some random other @pending). Fixes: 6d337eab041d ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()") Cc: stable@kernel.org Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20210224131355.430014682@infradead.org
2021-03-06sched: Fix migration_cpu_stop() requeueingPeter Zijlstra1-11/+28
When affine_move_task(p) is called on a running task @p, which is not otherwise already changing affinity, we'll first set p->migration_pending and then do: stop_one_cpu(cpu_of_rq(rq), migration_cpu_stop, &arg); This then gets us to migration_cpu_stop() running on the CPU that was previously running our victim task @p. If we find that our task is no longer on that runqueue (this can happen because of a concurrent migration due to load-balance etc.), then we'll end up at the: } else if (dest_cpu < 1 || pending) { branch. Which we'll take because we set pending earlier. Here we first check if the task @p has already satisfied the affinity constraints, if so we bail early [A]. Otherwise we'll reissue migration_cpu_stop() onto the CPU that is now hosting our task @p: stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, &pending->arg, &pending->stop_work); Except, we've never initialized pending->arg, which will be all 0s. This then results in running migration_cpu_stop() on the next CPU with arg->p == NULL, which gives the by now obvious result of fireworks. The cure is to change affine_move_task() to always use pending->arg, furthermore we can use the exact same pattern as the SCA_MIGRATE_ENABLE case, since we'll block on the pending->done completion anyway, no point in adding yet another completion in stop_one_cpu(). This then gives a clear distinction between the two migration_cpu_stop() use cases: - sched_exec() / migrate_task_to() : arg->pending == NULL - affine_move_task() : arg->pending != NULL; And we can have it ignore p->migration_pending when !arg->pending. Any stop work from sched_exec() / migrate_task_to() is in addition to stop works from affine_move_task(), which will be sufficient to issue the completion. Fixes: 6d337eab041d ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()") Cc: stable@kernel.org Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20210224131355.357743989@infradead.org
2021-03-05Merge tag 'io_uring-5.12-2021-03-05' of git://git.kernel.dk/linux-blockLinus Torvalds1-0/+30
Pull io_uring fixes from Jens Axboe: "A bit of a mix between fallout from the worker change, cleanups and reductions now possible from that change, and fixes in general. In detail: - Fully serialize manager and worker creation, fixing races due to that. - Clean up some naming that had gone stale. - SQPOLL fixes. - Fix race condition around task_work rework that went into this merge window. - Implement unshare. Used for when the original task does unshare(2) or setuid/seteuid and friends, drops the original workers and forks new ones. - Drop the only remaining piece of state shuffling we had left, which was cred. Move it into issue instead, and we can drop all of that code too. - Kill f_op->flush() usage. That was such a nasty hack that we had out of necessity, we no longer need it. - Following from ->flush() removal, we can also drop various bits of ctx state related to SQPOLL and cancelations. - Fix an issue with IOPOLL retry, which originally was fallout from a filemap change (removing iov_iter_revert()), but uncovered an issue with iovec re-import too late. - Fix an issue with system suspend. - Use xchg() for fallback work, instead of cmpxchg(). - Properly destroy io-wq on exec. - Add create_io_thread() core helper, and use that in io-wq and io_uring. This allows us to remove various silly completion events related to thread setup. - A few error handling fixes. This should be the grunt of fixes necessary for the new workers, next week should be quieter. We've got a pending series from Pavel on cancelations, and how tasks and rings are indexed. Outside of that, should just be minor fixes. Even with these fixes, we're still killing a net ~80 lines" * tag 'io_uring-5.12-2021-03-05' of git://git.kernel.dk/linux-block: (41 commits) io_uring: don't restrict issue_flags for io_openat io_uring: make SQPOLL thread parking saner io-wq: kill hashed waitqueue before manager exits io_uring: clear IOCB_WAITQ for non -EIOCBQUEUED return io_uring: don't keep looping for more events if we can't flush overflow io_uring: move to using create_io_thread() kernel: provide create_io_thread() helper io_uring: reliably cancel linked timeouts io_uring: cancel-match based on flags io-wq: ensure all pending work is canceled on exit io_uring: ensure that threads freeze on suspend io_uring: remove extra in_idle wake up io_uring: inline __io_queue_async_work() io_uring: inline io_req_clean_work() io_uring: choose right tctx->io_wq for try cancel io_uring: fix -EAGAIN retry with IOPOLL io-wq: fix error path leak of buffered write hash map io_uring: remove sqo_task io_uring: kill sqo_dead and sqo submission halting io_uring: ignore double poll add on the same waitqueue head ...
2021-03-05bpf: Explicitly zero-extend R0 after 32-bit cmpxchgBrendan Jackman2-1/+22
As pointed out by Ilya and explained in the new comment, there's a discrepancy between x86 and BPF CMPXCHG semantics: BPF always loads the value from memory into r0, while x86 only does so when r0 and the value in memory are different. The same issue affects s390. At first this might sound like pure semantics, but it makes a real difference when the comparison is 32-bit, since the load will zero-extend r0/rax. The fix is to explicitly zero-extend rax after doing such a CMPXCHG. Since this problem affects multiple archs, this is done in the verifier by patching in a BPF_ZEXT_REG instruction after every 32-bit cmpxchg. Any archs that don't need such manual zero-extension can do a look-ahead with insn_is_zext to skip the unnecessary mov. Note this still goes on top of Ilya's patch: https://lore.kernel.org/bpf/20210301154019.129110-1-iii@linux.ibm.com/T/#u Differences v5->v6[1]: - Moved is_cmpxchg_insn and ensured it can be safely re-used. Also renamed it and removed 'inline' to match the style of the is_*_function helpers. - Fixed up comments in verifier test (thanks for the careful review, Martin!) Differences v4->v5[1]: - Moved the logic entirely into opt_subreg_zext_lo32_rnd_hi32, thanks to Martin for suggesting this. Differences v3->v4[1]: - Moved the optimization against pointless zext into the correct place: opt_subreg_zext_lo32_rnd_hi32 is called _after_ fixup_bpf_calls. Differences v2->v3[1]: - Moved patching into fixup_bpf_calls (patch incoming to rename this function) - Added extra commentary on bpf_jit_needs_zext - Added check to avoid adding a pointless zext(r0) if there's already one there. Difference v1->v2[1]: Now solved centrally in the verifier instead of specifically for the x86 JIT. Thanks to Ilya and Daniel for the suggestions! [1] v5: https://lore.kernel.org/bpf/CA+i-1C3ytZz6FjcPmUg5s4L51pMQDxWcZNvM86w4RHZ_o2khwg@mail.gmail.com/T/#t v4: https://lore.kernel.org/bpf/CA+i-1C3ytZz6FjcPmUg5s4L51pMQDxWcZNvM86w4RHZ_o2khwg@mail.gmail.com/T/#t v3: https://lore.kernel.org/bpf/08669818-c99d-0d30-e1db-53160c063611@iogearbox.net/T/#t v2: https://lore.kernel.org/bpf/08669818-c99d-0d30-e1db-53160c063611@iogearbox.net/T/#t v1: https://lore.kernel.org/bpf/d7ebaefb-bfd6-a441-3ff2-2fdfe699b1d2@iogearbox.net/T/#t Reported-by: Ilya Leoshkevich <iii@linux.ibm.com> Fixes: 5ffa25502b5a ("bpf: Add instructions for atomic_[cmp]xchg") Signed-off-by: Brendan Jackman <jackmanb@google.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Ilya Leoshkevich <iii@linux.ibm.com> Tested-by: Ilya Leoshkevich <iii@linux.ibm.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2021-03-05bpf: Add BTF_KIND_FLOAT supportIlya Leoshkevich1-2/+81
On the kernel side, introduce a new btf_kind_operations. It is similar to that of BTF_KIND_INT, however, it does not need to handle encodings and bit offsets. Do not implement printing, since the kernel does not know how to format floating-point values. Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210226202256.116518-7-iii@linux.ibm.com
2021-03-05kernel: provide create_io_thread() helperJens Axboe1-0/+30
Provide a generic helper for setting up an io_uring worker. Returns a task_struct so that the caller can do whatever setup is needed, then call wake_up_new_task() to kick it into gear. Add a kernel_clone_args member, io_thread, which tells copy_process() to mark the task with PF_IO_WORKER. Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-03-04bpf: Account for BPF_FETCH in insn_has_def32()Ilya Leoshkevich1-31/+39
insn_has_def32() returns false for 32-bit BPF_FETCH insns. This makes adjust_insn_aux_data() incorrectly set zext_dst, as can be seen in [1]. This happens because insn_no_def() does not know about the BPF_FETCH variants of BPF_STX. Fix in two steps. First, replace insn_no_def() with insn_def_regno(), which returns the register an insn defines. Normally insn_no_def() calls are followed by insn->dst_reg uses; replace those with the insn_def_regno() return value. Second, adjust the BPF_STX special case in is_reg64() to deal with queries made from opt_subreg_zext_lo32_rnd_hi32(), where the state information is no longer available. Add a comment, since the purpose of this special case is not clear at first glance. [1] https://lore.kernel.org/bpf/20210223150845.1857620-1-jackmanb@google.com/ Fixes: 5ffa25502b5a ("bpf: Add instructions for atomic_[cmp]xchg") Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Brendan Jackman <jackmanb@google.com> Link: https://lore.kernel.org/bpf/20210301154019.129110-1-iii@linux.ibm.com
2021-03-04tracing: Skip selftests if tracing is disabledSteven Rostedt (VMware)1-0/+6
If tracing is disabled for some reason (traceoff_on_warning, command line, etc), the ftrace selftests are guaranteed to fail, as their results are defined by trace data in the ring buffers. If the ring buffers are turned off, the tests will fail, due to lack of data. Because tracing being disabled is for a specific reason (warning, user decided to, etc), it does not make sense to enable tracing to run the self tests, as the test output may corrupt the reason for the tracing to be disabled. Instead, simply skip the self tests and report that they are being skipped due to tracing being disabled. Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-03-04tracing: Fix memory leak in __create_synth_event()Vamshi K Sthambamkadi1-1/+3
kmemleak report: unreferenced object 0xc5a6f708 (size 8): comm "ftracetest", pid 1209, jiffies 4294911500 (age 6.816s) hex dump (first 8 bytes): 00 c1 3d 60 14 83 1f 8a ..=`.... backtrace: [<f0aa4ac4>] __kmalloc_track_caller+0x2a6/0x460 [<7d3d60a6>] kstrndup+0x37/0x70 [<45a0e739>] argv_split+0x1c/0x120 [<c17982f8>] __create_synth_event+0x192/0xb00 [<0708b8a3>] create_synth_event+0xbb/0x150 [<3d1941e1>] create_dyn_event+0x5c/0xb0 [<5cf8b9e3>] trace_parse_run_command+0xa7/0x140 [<04deb2ef>] dyn_event_write+0x10/0x20 [<8779ac95>] vfs_write+0xa9/0x3c0 [<ed93722a>] ksys_write+0x89/0xc0 [<b9ca0507>] __ia32_sys_write+0x15/0x20 [<7ce02d85>] __do_fast_syscall_32+0x45/0x80 [<cb0ecb35>] do_fast_syscall_32+0x29/0x60 [<2467454a>] do_SYSENTER_32+0x15/0x20 [<9beaa61d>] entry_SYSENTER_32+0xa9/0xfc unreferenced object 0xc5a6f078 (size 8): comm "ftracetest", pid 1209, jiffies 4294911500 (age 6.816s) hex dump (first 8 bytes): 08 f7 a6 c5 00 00 00 00 ........ backtrace: [<bbac096a>] __kmalloc+0x2b6/0x470 [<aa2624b4>] argv_split+0x82/0x120 [<c17982f8>] __create_synth_event+0x192/0xb00 [<0708b8a3>] create_synth_event+0xbb/0x150 [<3d1941e1>] create_dyn_event+0x5c/0xb0 [<5cf8b9e3>] trace_parse_run_command+0xa7/0x140 [<04deb2ef>] dyn_event_write+0x10/0x20 [<8779ac95>] vfs_write+0xa9/0x3c0 [<ed93722a>] ksys_write+0x89/0xc0 [<b9ca0507>] __ia32_sys_write+0x15/0x20 [<7ce02d85>] __do_fast_syscall_32+0x45/0x80 [<cb0ecb35>] do_fast_syscall_32+0x29/0x60 [<2467454a>] do_SYSENTER_32+0x15/0x20 [<9beaa61d>] entry_SYSENTER_32+0xa9/0xfc In __create_synth_event(), while iterating field/type arguments, the argv_split() will return array of atleast 2 elements even when zero arguments(argc=0) are passed. for e.g. when there is double delimiter or string ends with delimiter To fix call argv_free() even when argc=0. Link: https://lkml.kernel.org/r/20210304094521.GA1826@cosmos Signed-off-by: Vamshi K Sthambamkadi <vamshi.k.sthambamkadi@gmail.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-03-04ring-buffer: Add a little more information and a WARN when time stamp going ↵Steven Rostedt (VMware)1-3/+7
backwards is detected When the CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS is enabled, and the time stamps are detected as not being valid, it reports information about the write stamp, but does not show the before_stamp which is still useful information. Also, it should give a warning once, such that tests detect this happening. Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-03-04ring-buffer: Force before_stamp and write_stamp to be different on discardSteven Rostedt (VMware)1-0/+11
Part of the logic of the new time stamp code depends on the before_stamp and the write_stamp to be different if the write_stamp does not match the last event on the buffer, as it will be used to calculate the delta of the next event written on the buffer. The discard logic depends on this, as the next event to come in needs to inject a full timestamp as it can not rely on the last event timestamp in the buffer because it is unknown due to events after it being discarded. But by changing the write_stamp back to the time before it, it forces the next event to use a full time stamp, instead of relying on it. The issue came when a full time stamp was used for the event, and rb_time_delta() returns zero in that case. The update to the write_stamp (which subtracts delta) made it not change. Then when the event is removed from the buffer, because the before_stamp and write_stamp still match, the next event written would calculate its delta from the write_stamp, but that would be wrong as the write_stamp is of the time of the event that was discarded. In the case that the delta change being made to write_stamp is zero, set the before_stamp to zero as well, and this will force the next event to inject a full timestamp and not use the current write_stamp. Cc: stable@vger.kernel.org Fixes: a389d86f7fd09 ("ring-buffer: Have nested events still record running time stamp") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-03-04tracing: Fix help text of TRACEPOINT_BENCHMARK in KconfigRolf Eike Beer1-1/+1
It's "cond_resched()" not "cond_sched()". Link: https://lkml.kernel.org/r/1863065.aFVDpXsuPd@devpool47 Signed-off-by: Rolf Eike Beer <eb@emlix.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-03-04tracing: Remove duplicate declaration from trace.hYordan Karadzhov (VMware)1-1/+0
A declaration of function "int trace_empty(struct trace_iterator *iter)" shows up twice in the header file kernel/trace/trace.h Link: https://lkml.kernel.org/r/20210304092348.208033-1-y.karadz@gmail.com Signed-off-by: Yordan Karadzhov (VMware) <y.karadz@gmail.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2021-02-28Merge tag 'block-5.12-2021-02-27' of git://git.kernel.dk/linux-blockLinus Torvalds1-7/+13
Pull more block updates from Jens Axboe: "A few stragglers (and one due to me missing it originally), and fixes for changes in this merge window mostly. In particular: - blktrace cleanups (Chaitanya, Greg) - Kill dead blk_pm_* functions (Bart) - Fixes for the bio alloc changes (Christoph) - Fix for the partition changes (Christoph, Ming) - Fix for turning off iopoll with polled IO inflight (Jeffle) - nbd disconnect fix (Josef) - loop fsync error fix (Mauricio) - kyber update depth fix (Yang) - max_sectors alignment fix (Mikulas) - Add bio_max_segs helper (Matthew)" * tag 'block-5.12-2021-02-27' of git://git.kernel.dk/linux-block: (21 commits) block: Add bio_max_segs blktrace: fix documentation for blk_fill_rw() block: memory allocations in bounce_clone_bio must not fail block: remove the gfp_mask argument to bounce_clone_bio block: fix bounce_clone_bio for passthrough bios block-crypto-fallback: use a bio_set for splitting bios block: fix logging on capacity change blk-settings: align max_sectors on "logical_block_size" boundary block: reopen the device in blkdev_reread_part block: don't skip empty device in in disk_uevent blktrace: remove debugfs file dentries from struct blk_trace nbd: handle device refs for DESTROY_ON_DISCONNECT properly kyber: introduce kyber_depth_updated() loop: fix I/O error on fsync() in detached loop devices block: fix potential IO hang when turning off io_poll block: get rid of the trace rq insert wrapper blktrace: fix blk_rq_merge documentation blktrace: fix blk_rq_issue documentation blktrace: add blk_fill_rwbs documentation comment block: remove superfluous param in blk_fill_rwbs() ...
2021-02-27Merge tag 'io_uring-worker.v3-2021-02-25' of git://git.kernel.dk/linux-blockLinus Torvalds2-3/+3
Pull io_uring thread rewrite from Jens Axboe: "This converts the io-wq workers to be forked off the tasks in question instead of being kernel threads that assume various bits of the original task identity. This kills > 400 lines of code from io_uring/io-wq, and it's the worst part of the code. We've had several bugs in this area, and the worry is always that we could be missing some pieces for file types doing unusual things (recent /dev/tty example comes to mind, userfaultfd reads installing file descriptors is another fun one... - both of which need special handling, and I bet it's not the last weird oddity we'll find). With these identical workers, we can have full confidence that we're never missing anything. That, in itself, is a huge win. Outside of that, it's also more efficient since we're not wasting space and code on tracking state, or switching between different states. I'm sure we're going to find little things to patch up after this series, but testing has been pretty thorough, from the usual regression suite to production. Any issue that may crop up should be manageable. There's also a nice series of further reductions we can do on top of this, but I wanted to get the meat of it out sooner rather than later. The general worry here isn't that it's fundamentally broken. Most of the little issues we've found over the last week have been related to just changes in how thread startup/exit is done, since that's the main difference between using kthreads and these kinds of threads. In fact, if all goes according to plan, I want to get this into the 5.10 and 5.11 stable branches as well. That said, the changes outside of io_uring/io-wq are: - arch setup, simple one-liner to each arch copy_thread() implementation. - Removal of net and proc restrictions for io_uring, they are no longer needed or useful" * tag 'io_uring-worker.v3-2021-02-25' of git://git.kernel.dk/linux-block: (30 commits) io-wq: remove now unused IO_WQ_BIT_ERROR io_uring: fix SQPOLL thread handling over exec io-wq: improve manager/worker handling over exec io_uring: ensure SQPOLL startup is triggered before error shutdown io-wq: make buffered file write hashed work map per-ctx io-wq: fix race around io_worker grabbing io-wq: fix races around manager/worker creation and task exit io_uring: ensure io-wq context is always destroyed for tasks arch: ensure parisc/powerpc handle PF_IO_WORKER in copy_thread() io_uring: cleanup ->user usage io-wq: remove nr_process accounting io_uring: flag new native workers with IORING_FEAT_NATIVE_WORKERS net: remove cmsg restriction from io_uring based send/recvmsg calls Revert "proc: don't allow async path resolution of /proc/self components" Revert "proc: don't allow async path resolution of /proc/thread-self components" io_uring: move SQPOLL thread io-wq forked worker io-wq: make io_wq_fork_thread() available to other users io-wq: only remove worker from free_list, if it was there io_uring: remove io_identity io_uring: remove any grabbing of context ...
2021-02-27Merge branch 'work.misc' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull misc vfs updates from Al Viro: "Assorted stuff pile - no common topic here" * 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: whack-a-mole: don't open-code iminor/imajor 9p: fix misuse of sscanf() in v9fs_stat2inode() audit_alloc_mark(): don't open-code ERR_CAST() fs/inode.c: make inode_init_always() initialize i_ino to 0 vfs: don't unnecessarily clone write access for writable fds
2021-02-27Merge branch 'stable/for-linus-5.12' of ↵Linus Torvalds1-116/+194
git://git.kernel.org/pub/scm/linux/kernel/git/konrad/swiotlb Pull swiotlb updates from Konrad Rzeszutek Wilk: "Two memory encryption related patches (SWIOTLB is enabled by default for AMD-SEV): - Add support for alignment so that NVME can properly work - Keep track of requested DMA buffers length, as underlaying hardware devices can trip SWIOTLB to bounce too much and crash the kernel And a tiny fix to use proper APIs in drivers" * 'stable/for-linus-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/swiotlb: swiotlb: Validate bounce size in the sync/unmap path nvme-pci: set min_align_mask swiotlb: respect min_align_mask swiotlb: don't modify orig_addr in swiotlb_tbl_sync_single swiotlb: refactor swiotlb_tbl_map_single swiotlb: clean up swiotlb_tbl_unmap_single swiotlb: factor out a nr_slots helper swiotlb: factor out an io_tlb_offset helper swiotlb: add a IO_TLB_SIZE define driver core: add a min_align_mask field to struct device_dma_parameters sdhci: stop poking into swiotlb internals
2021-02-27bpf: Add arraymap support for bpf_for_each_map_elem() helperYonghong Song1-0/+40
This patch added support for arraymap and percpu arraymap. Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210226204928.3885192-1-yhs@fb.com
2021-02-27bpf: Add hashtab support for bpf_for_each_map_elem() helperYonghong Song2-0/+92
This patch added support for hashmap, percpu hashmap, lru hashmap and percpu lru hashmap. Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210226204927.3885020-1-yhs@fb.com
2021-02-27bpf: Add bpf_for_each_map_elem() helperYonghong Song4-13/+215
The bpf_for_each_map_elem() helper is introduced which iterates all map elements with a callback function. The helper signature looks like long bpf_for_each_map_elem(map, callback_fn, callback_ctx, flags) and for each map element, the callback_fn will be called. For example, like hashmap, the callback signature may look like long callback_fn(map, key, val, callback_ctx) There are two known use cases for this. One is from upstream ([1]) where a for_each_map_elem helper may help implement a timeout mechanism in a more generic way. Another is from our internal discussion for a firewall use case where a map contains all the rules. The packet data can be compared to all these rules to decide allow or deny the packet. For array maps, users can already use a bounded loop to traverse elements. Using this helper can avoid using bounded loop. For other type of maps (e.g., hash maps) where bounded loop is hard or impossible to use, this helper provides a convenient way to operate on all elements. For callback_fn, besides map and map element, a callback_ctx, allocated on caller stack, is also passed to the callback function. This callback_ctx argument can provide additional input and allow to write to caller stack for output. If the callback_fn returns 0, the helper will iterate through next element if available. If the callback_fn returns 1, the helper will stop iterating and returns to the bpf program. Other return values are not used for now. Currently, this helper is only available with jit. It is possible to make it work with interpreter with so effort but I leave it as the future work. [1]: https://lore.kernel.org/bpf/20210122205415.113822-1-xiyou.wangcong@gmail.com/ Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210226204925.3884923-1-yhs@fb.com
2021-02-27bpf: Change return value of verifier function add_subprog()Yonghong Song1-2/+2
Currently, verifier function add_subprog() returns 0 for success and negative value for failure. Change the return value to be the subprog number for success. This functionality will be used in the next patch to save a call to find_subprog(). Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210226204924.3884848-1-yhs@fb.com
2021-02-27bpf: Refactor check_func_call() to allow callback functionYonghong Song1-17/+43
Later proposed bpf_for_each_map_elem() helper has callback function as one of its arguments. This patch refactored check_func_call() to permit callback function which sets callee state. Different callback functions may have different callee states. There is no functionality change for this patch. Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210226204923.3884627-1-yhs@fb.com
2021-02-27bpf: Factor out verbose_invalid_scalar()Yonghong Song1-11/+19
Factor out the function verbose_invalid_scalar() to verbose print if a scalar is not in a tnum range. There is no functionality change and the function will be used by later patch which introduced bpf_for_each_map_elem(). Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210226204922.3884375-1-yhs@fb.com