summaryrefslogtreecommitdiff
path: root/kernel
AgeCommit message (Collapse)AuthorFilesLines
2021-05-12sched/fair: Fix clearing of has_idle_cores flag in select_idle_cpu()Gautham R. Shenoy1-1/+1
In commit: 9fe1f127b913 ("sched/fair: Merge select_idle_core/cpu()") in select_idle_cpu(), we check if an idle core is present in the LLC of the target CPU via the flag "has_idle_cores". We look for the idle core in select_idle_cores(). If select_idle_cores() isn't able to find an idle core/CPU, we need to unset the has_idle_cores flag in the LLC of the target to prevent other CPUs from going down this route. However, the current code is unsetting it in the LLC of the current CPU instead of the target CPU. This patch fixes this issue. Fixes: 9fe1f127b913 ("sched/fair: Merge select_idle_core/cpu()") Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Link: https://lore.kernel.org/r/1620746169-13996-1-git-send-email-ego@linux.vnet.ibm.com
2021-05-12Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpfDavid S. Miller7-45/+174
Daniel Borkmann says: ==================== pull-request: bpf 2021-05-11 The following pull-request contains BPF updates for your *net* tree. We've added 13 non-merge commits during the last 8 day(s) which contain a total of 21 files changed, 817 insertions(+), 382 deletions(-). The main changes are: 1) Fix multiple ringbuf bugs in particular to prevent writable mmap of read-only pages, from Andrii Nakryiko & Thadeu Lima de Souza Cascardo. 2) Fix verifier alu32 known-const subregister bound tracking for bitwise operations and/or/xor, from Daniel Borkmann. 3) Reject trampoline attachment for functions with variable arguments, and also add a deny list of other forbidden functions, from Jiri Olsa. 4) Fix nested bpf_bprintf_prepare() calls used by various helpers by switching to per-CPU buffers, from Florent Revest. 5) Fix kernel compilation with BTF debug info on ppc64 due to pahole missing TCP-CC functions like cubictcp_init, from Martin KaFai Lau. 6) Add a kconfig entry to provide an option to disallow unprivileged BPF by default, from Daniel Borkmann. 7) Fix libbpf compilation for older libelf when GELF_ST_VISIBILITY() macro is not available, from Arnaldo Carvalho de Melo. 8) Migrate test_tc_redirect to test_progs framework as prep work for upcoming skb_change_head() fix & selftest, from Jussi Maki. 9) Fix a libbpf segfault in add_dummy_ksym_var() if BTF is not present, from Ian Rogers. 10) Fix tx_only micro-benchmark in xdpsock BPF sample with proper frame size, from Magnus Karlsson. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
2021-05-12bpf: Fix nested bpf_bprintf_prepare with more per-cpu buffersFlorent Revest1-13/+14
The bpf_seq_printf, bpf_trace_printk and bpf_snprintf helpers share one per-cpu buffer that they use to store temporary data (arguments to bprintf). They "get" that buffer with try_get_fmt_tmp_buf and "put" it by the end of their scope with bpf_bprintf_cleanup. If one of these helpers gets called within the scope of one of these helpers, for example: a first bpf program gets called, uses bpf_trace_printk which calls raw_spin_lock_irqsave which is traced by another bpf program that calls bpf_snprintf, then the second "get" fails. Essentially, these helpers are not re-entrant. They would return -EBUSY and print a warning message once. This patch triples the number of bprintf buffers to allow three levels of nesting. This is very similar to what was done for tracepoints in "9594dc3c7e7 bpf: fix nested bpf tracepoints with per-cpu data" Fixes: d9c9e4db186a ("bpf: Factorize bpf_trace_printk and bpf_seq_printf") Reported-by: syzbot+63122d0bc347f18c1884@syzkaller.appspotmail.com Signed-off-by: Florent Revest <revest@chromium.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210511081054.2125874-1-revest@chromium.org
2021-05-12bpf: Add deny list of btf ids check for tracing programsJiri Olsa1-0/+14
The recursion check in __bpf_prog_enter and __bpf_prog_exit leaves some (not inlined) functions unprotected: In __bpf_prog_enter: - migrate_disable is called before prog->active is checked In __bpf_prog_exit: - migrate_enable,rcu_read_unlock_strict are called after prog->active is decreased When attaching trampoline to them we get panic like: traps: PANIC: double fault, error_code: 0x0 double fault: 0000 [#1] SMP PTI RIP: 0010:__bpf_prog_enter+0x4/0x50 ... Call Trace: <IRQ> bpf_trampoline_6442466513_0+0x18/0x1000 migrate_disable+0x5/0x50 __bpf_prog_enter+0x9/0x50 bpf_trampoline_6442466513_0+0x18/0x1000 migrate_disable+0x5/0x50 __bpf_prog_enter+0x9/0x50 bpf_trampoline_6442466513_0+0x18/0x1000 migrate_disable+0x5/0x50 __bpf_prog_enter+0x9/0x50 bpf_trampoline_6442466513_0+0x18/0x1000 migrate_disable+0x5/0x50 ... Fixing this by adding deny list of btf ids for tracing programs and checking btf id during program verification. Adding above functions to this list. Suggested-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210429114712.43783-1-jolsa@kernel.org
2021-05-11bpf: Add kconfig knob for disabling unpriv bpf by defaultDaniel Borkmann3-6/+36
Add a kconfig knob which allows for unprivileged bpf to be disabled by default. If set, the knob sets /proc/sys/kernel/unprivileged_bpf_disabled to value of 2. This still allows a transition of 2 -> {0,1} through an admin. Similarly, this also still keeps 1 -> {1} behavior intact, so that once set to permanently disabled, it cannot be undone aside from a reboot. We've also added extra2 with max of 2 for the procfs handler, so that an admin still has a chance to toggle between 0 <-> 2. Either way, as an additional alternative, applications can make use of CAP_BPF that we added a while ago. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/74ec548079189e4e4dffaeb42b8987bb3c852eee.1620765074.git.daniel@iogearbox.net
2021-05-11bpf, kconfig: Add consolidated menu entry for bpf with core optionsDaniel Borkmann1-0/+78
Right now, all core BPF related options are scattered in different Kconfig locations mainly due to historic reasons. Moving forward, lets add a proper subsystem entry under ... General setup ---> BPF subsystem ---> ... in order to have all knobs in a single location and thus ease BPF related configuration. Networking related bits such as sockmap are out of scope for the general setup and therefore better suited to remain in net/Kconfig. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/f23f58765a4d59244ebd8037da7b6a6b2fb58446.1620765074.git.daniel@iogearbox.net
2021-05-11alarmtimer: Check RTC features instead of opsAlexandre Belloni1-1/+1
RTC drivers used to leave .set_alarm() NULL in order to signal the RTC device doesn't support alarms. The drivers are now clearing the RTC_FEATURE_ALARM bit for that purpose in order to keep the rtc_class_ops structure const. So now, .set_alarm() is set unconditionally and this possibly causes the alarmtimer code to select an RTC device that doesn't support alarms. Test RTC_FEATURE_ALARM instead of relying on ops->set_alarm to determine whether alarms are available. Fixes: 7ae41220ef58 ("rtc: introduce features bitfield") Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20210511014516.563031-1-alexandre.belloni@bootlin.com
2021-05-11bpf: Prevent writable memory-mapping of read-only ringbuf pagesAndrii Nakryiko1-13/+8
Only the very first page of BPF ringbuf that contains consumer position counter is supposed to be mapped as writeable by user-space. Producer position is read-only and can be modified only by the kernel code. BPF ringbuf data pages are read-only as well and are not meant to be modified by user-code to maintain integrity of per-record headers. This patch allows to map only consumer position page as writeable and everything else is restricted to be read-only. remap_vmalloc_range() internally adds VM_DONTEXPAND, so all the established memory mappings can't be extended, which prevents any future violations through mremap()'ing. Fixes: 457f44363a88 ("bpf: Implement BPF ring buffer and verifier support for it") Reported-by: Ryota Shiga (Flatt Security) Reported-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-05-11bpf, ringbuf: Deny reserve of buffers larger than ringbufThadeu Lima de Souza Cascardo1-0/+3
A BPF program might try to reserve a buffer larger than the ringbuf size. If the consumer pointer is way ahead of the producer, that would be successfully reserved, allowing the BPF program to read or write out of the ringbuf allocated area. Reported-by: Ryota Shiga (Flatt Security) Fixes: 457f44363a88 ("bpf: Implement BPF ring buffer and verifier support for it") Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-05-11bpf: Fix alu32 const subreg bound tracking on bitwise operationsDaniel Borkmann1-13/+9
Fix a bug in the verifier's scalar32_min_max_*() functions which leads to incorrect tracking of 32 bit bounds for the simulation of and/or/xor bitops. When both the src & dst subreg is a known constant, then the assumption is that scalar_min_max_*() will take care to update bounds correctly. However, this is not the case, for example, consider a register R2 which has a tnum of 0xffffffff00000000, meaning, lower 32 bits are known constant and in this case of value 0x00000001. R2 is then and'ed with a register R3 which is a 64 bit known constant, here, 0x100000002. What can be seen in line '10:' is that 32 bit bounds reach an invalid state where {u,s}32_min_value > {u,s}32_max_value. The reason is scalar32_min_max_*() delegates 32 bit bounds updates to scalar_min_max_*(), however, that really only takes place when both the 64 bit src & dst register is a known constant. Given scalar32_min_max_*() is intended to be designed as closely as possible to scalar_min_max_*(), update the 32 bit bounds in this situation through __mark_reg32_known() which will set all {u,s}32_{min,max}_value to the correct constant, which is 0x00000000 after the fix (given 0x00000001 & 0x00000002 in 32 bit space). This is possible given var32_off already holds the final value as dst_reg->var_off is updated before calling scalar32_min_max_*(). Before fix, invalid tracking of R2: [...] 9: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=-9223372036854775807 (0x8000000000000001),smax_value=9223372032559808513 (0x7fffffff00000001),umin_value=1,umax_value=0xffffffff00000001,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_min_value=1,u32_max_value=1) R3_w=inv4294967298 R10=fp0 9: (5f) r2 &= r3 10: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=0,smax_value=4294967296 (0x100000000),umin_value=0,umax_value=0x100000000,var_off=(0x0; 0x100000000),s32_min_value=1,s32_max_value=0,u32_min_value=1,u32_max_value=0) R3_w=inv4294967298 R10=fp0 [...] After fix, correct tracking of R2: [...] 9: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=-9223372036854775807 (0x8000000000000001),smax_value=9223372032559808513 (0x7fffffff00000001),umin_value=1,umax_value=0xffffffff00000001,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_min_value=1,u32_max_value=1) R3_w=inv4294967298 R10=fp0 9: (5f) r2 &= r3 10: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=0,smax_value=4294967296 (0x100000000),umin_value=0,umax_value=0x100000000,var_off=(0x0; 0x100000000),s32_min_value=0,s32_max_value=0,u32_min_value=0,u32_max_value=0) R3_w=inv4294967298 R10=fp0 [...] Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking") Fixes: 2921c90d4718 ("bpf: Fix a verifier failure with xor") Reported-by: Manfred Paul (@_manfp) Reported-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-05-11cgroup: inline cgroup_task_freeze()Roman Gushchin1-1/+2
After the introduction of the cgroup.kill there is only one call site of cgroup_task_freeze() left: cgroup_exit(). cgroup_task_freeze() is currently taking rcu_read_lock() to read task's cgroup flags, but because it's always called with css_set_lock locked, the rcu protection is excessive. Simplify the code by inlining cgroup_task_freeze(). v2: fix build Signed-off-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2021-05-11rcu: Don't penalize priority boosting when there is nothing to boostPaul E. McKenney1-3/+14
RCU priority boosting cannot do anything unless there is at least one task blocking the current RCU grace period that was preempted within the RCU read-side critical section that it still resides in. However, the current rcu_torture_boost_failed() code will count this as an RCU priority-boosting failure if there were no CPUs blocking the current grace period. This situation can happen (for example) if the last CPU blocking the current grace period was subjected to vCPU preemption, which is always a risk for rcutorture guest OSes. This commit therefore causes rcu_torture_boost_failed() to refrain from reporting failure unless there is at least one task blocking the current RCU grace period that was preempted within the RCU read-side critical section that it still resides in. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcu: Point to documentation of ordering guaranteesPaul E. McKenney2-2/+21
Add comments to synchronize_rcu() and friends that point to Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcu: Make rcu_gp_cleanup() be noinline for tracingPaul E. McKenney1-1/+1
Although there are trace events for RCU grace periods, these are only enabled in CONFIG_RCU_TRACE=y kernels. This commit therefore marks rcu_gp_cleanup() noinline in order to provide a function that can be traced that is invoked near the end of each grace period. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcu: Restrict RCU_STRICT_GRACE_PERIOD to at most four CPUsPaul E. McKenney1-1/+1
Kernels built with CONFIG_RCU_STRICT_GRACE_PERIOD=y can experience significant lock contention due to RCU's resulting focus on ending grace periods as soon as possible. This is OK, but only if there are not very many CPUs. This commit therefore puts this Kconfig option off-limits to systems with more than four CPUs. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcu: Make show_rcu_gp_kthreads() dump rcu_node structures blocking GPPaul E. McKenney1-2/+3
Currently, show_rcu_gp_kthreads() only dumps rcu_node structures that have outdated ideas of the current grace-period number. This commit also dumps those that are in any way blocking the current grace period. This helps diagnose RCU priority boosting failures. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcu: Make RCU priority boosting work on single-CPU rcu_node structuresPaul E. McKenney3-24/+9
When any CPU comes online, it checks to see if an RCU-boost kthread has already been created for that CPU's leaf rcu_node structure, and if not, it creates one. Unfortunately, it also verifies that this leaf rcu_node structure actually has at least one online CPU, and if not, it declines to create the kthread. Although this behavior makes sense during early boot, especially on systems that claim far more CPUs than they actually have, it makes no sense for the first CPU to come online for a given rcu_node structure. There is no point in checking because we know there is a CPU on its way in. The problem is that timing differences can cause this incoming CPU to not yet be reflected in the various bit masks even at rcutree_online_cpu() time, and there is no chance at rcutree_prepare_cpu() time. Plus it would be better to create the RCU-boost kthread at rcutree_prepare_cpu() to handle the case where the CPU is involved in an RCU priority inversion very shortly after it comes online. This commit therefore moves the checking to rcu_prepare_kthreads(), which is called only at early boot, when the check is appropriate. In addition, it makes rcutree_prepare_cpu() invoke rcu_spawn_one_boost_kthread(), which no longer does any checking for online CPUs. With this change, RCU priority boosting tests now pass for short rcutorture runs, even with single-CPU leaf rcu_node structures. Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Scott Wood <swood@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcu: Add quiescent states and boost states to show_rcu_gp_kthreads() outputPaul E. McKenney3-3/+11
This commit adds each rcu_node structure's ->qsmask and "bBEG" output indicating whether: (1) There is a boost kthread, (2) A reader needs to be (or is in the process of being) boosted, (3) A reader is blocking an expedited grace period, and (4) A reader is blocking a normal grace period. This helps diagnose RCU priority boosting failures. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcu: Reject RCU_LOCKDEP_WARN() false positivesPaul E. McKenney1-1/+1
If another lockdep report runs concurrently with an RCU lockdep report from RCU_LOCKDEP_WARN(), the following sequence of events can occur: 1. debug_lockdep_rcu_enabled() sees that lockdep is enabled when called from (say) synchronize_rcu(). 2. Lockdep is disabled by a concurrent lockdep report. 3. debug_lockdep_rcu_enabled() evaluates its lockdep-expression argument, for example, lock_is_held(&rcu_bh_lock_map). 4. Because lockdep is now disabled, lock_is_held() plays it safe and returns the constant 1. 5. But in this case, the constant 1 is not safe, because invoking synchronize_rcu() under rcu_read_lock_bh() is disallowed. 6. debug_lockdep_rcu_enabled() wrongly invokes lockdep_rcu_suspicious(), resulting in a false-positive splat. This commit therefore changes RCU_LOCKDEP_WARN() to check debug_lockdep_rcu_enabled() after checking the lockdep expression, so that any "safe" returns from lock_is_held() are rejected by debug_lockdep_rcu_enabled(). This requires memory ordering, which is supplied by READ_ONCE(debug_locks). The resulting volatile accesses prevent the compiler from reordering and the fact that only one variable is being accessed prevents the underlying hardware from reordering. The combination works for IA64, which can reorder reads to the same location, but this is defeated by the volatile accesses, which compile to load instructions that provide ordering. Reported-by: syzbot+dde0cc33951735441301@syzkaller.appspotmail.com Reported-by: Matthew Wilcox <willy@infradead.org> Reported-by: syzbot+88e4f02896967fe1ab0d@syzkaller.appspotmail.com Reported-by: Thomas Gleixner <tglx@linutronix.de> Suggested-by: Boqun Feng <boqun.feng@gmail.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11lockdep: Explicitly flag likely false-positive reportPaul E. McKenney1-2/+4
The reason that lockdep_rcu_suspicious() prints the value of debug_locks is because a value of zero indicates a likely false positive. This can work, but is a bit obtuse. This commit therefore explicitly calls out the possibility of a false positive. Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcu: Add ->gp_max to show_rcu_gp_kthreads() outputPaul E. McKenney1-1/+2
This commit adds ->gp_max to show_rcu_gp_kthreads() output in order to better diagnose RCU priority boosting failures. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcu: Add ->rt_priority and ->gp_start to show_rcu_gp_kthreads() outputPaul E. McKenney1-3/+5
This commit adds ->rt_priority and ->gp_start to show_rcu_gp_kthreads() output in order to better diagnose RCU priority boosting failures. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcu: Invoke rcu_spawn_core_kthreads() from rcu_spawn_gp_kthread()Paul E. McKenney1-1/+1
Currently, rcu_spawn_core_kthreads() is invoked via an early_initcall(), which works, except that rcu_spawn_gp_kthread() is also invoked via an early_initcall() and rcu_spawn_core_kthreads() relies on adjustments to kthread_prio that are carried out by rcu_spawn_gp_kthread(). There is no guaranttee of ordering among early_initcall() handlers, and thus no guarantee that kthread_prio will be properly checked and range-limited at the time that rcu_spawn_core_kthreads() needs it. In most cases, this bug is harmless. After all, the only reason that rcu_spawn_gp_kthread() adjusts the value of kthread_prio is if the user specified a nonsensical value for this boot parameter, which experience indicates is rare. Nevertheless, a bug is a bug. This commit therefore causes the rcu_spawn_core_kthreads() function to be invoked directly from rcu_spawn_gp_kthread() after any needed adjustments to kthread_prio have been carried out. Fixes: 48d07c04b4cc ("rcu: Enable elimination of Tree-RCU softirq processing") Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcu: Improve tree.c comments and add code cleanupsZhouyi Zhou1-12/+12
This commit cleans up some comments and code in kernel/rcu/tree.c. Signed-off-by: Zhouyi Zhou <zhouzhouyi@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcu: Remove the unused rcu_irq_exit_preempt() functionPaul E. McKenney1-22/+0
Commit 9ee01e0f69a9 ("x86/entry: Clean up idtentry_enter/exit() leftovers") left the rcu_irq_exit_preempt() in place in order to avoid conflicts with the -rcu tree. Now that this change has long since hit mainline, this commit removes the no-longer-used rcu_irq_exit_preempt() function. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11bpf: verifier: Allocate idmap scratch in verifier envLorenz Bauer1-31/+15
func_states_equal makes a very short lived allocation for idmap, probably because it's too large to fit on the stack. However the function is called quite often, leading to a lot of alloc / free churn. Replace the temporary allocation with dedicated scratch space in struct bpf_verifier_env. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Edward Cree <ecree.xilinx@gmail.com> Link: https://lore.kernel.org/bpf/20210429134656.122225-4-lmb@cloudflare.com
2021-05-11bpf: verifier: Use copy_array for jmp_historyLorenz Bauer1-8/+5
Eliminate a couple needless kfree / kmalloc cycles by using copy_array for jmp_history. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210429134656.122225-3-lmb@cloudflare.com
2021-05-11bpf: verifier: Improve function state reallocationLorenz Bauer1-96/+101
Resizing and copying stack and reference tracking state currently does a lot of kfree / kmalloc when the size of the tracked set changes. The logic in copy_*_state and realloc_*_state is also hard to follow. Refactor this into two core functions. copy_array copies from a source into a destination. It avoids reallocation by taking the allocated size of the destination into account via ksize(). The function is essentially krealloc_array, with the difference that the contents of dst are not preserved. realloc_array changes the size of an array and zeroes newly allocated items. Contrary to krealloc both functions don't free the destination if the size is zero. Instead we rely on free_func_state to clean up. realloc_stack_state is renamed to grow_stack_state to better convey that it never shrinks the stack state. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210429134656.122225-2-lmb@cloudflare.com
2021-05-11rcutorture: Move mem_dump_obj() tests into separate functionPaul E. McKenney1-39/+42
To make the purpose of the code more apparent, this commit moves the tests of mem_dump_obj() to a new rcu_torture_mem_dump_obj() function and calls it from rcu_torture_cleanup(). Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcutorture: Don't count CPU-stalled time against priority boostingPaul E. McKenney2-5/+18
It will frequently be the case that rcu_torture_boost() will get a ->start_gp_poll() cookie that needs almost all of the current grace period plus an additional grace period to elapse before ->poll_gp_state() will return true. It is quite possible that the current grace period will have (say) two seconds of stall by a CPU failing to pass through a quiescent state, followed by 300 milliseconds of delay due to a preempted reader. The next grace period might suffer only one second of stall by a CPU, followed by another 300 milliseconds of delay due to a preempted reader. This is an example of RCU priority boosting doing its job, but the full elapsed time of 3.6 seconds exceeds the 3.5-second limit. In addition, there is no CPU stall in force at the 3.5-second mark, so this would nevertheless currently be counted as an RCU priority boosting failure. This commit therefore avoids this sort of false positive by resetting the gp_state_time timestamp any time that the current grace period is being blocked by a CPU. This results in extremely frequent calls to the ->check_boost_failed() function, so this commit provides a lockless fastpath that is selected by supplying a NULL CPU-number pointer. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcutorture: Forgive RCU boost failures when CPUs don't pass through QSPaul E. McKenney3-26/+79
Currently, rcu_torture_boost() runs CPU-bound at real-time priority to force RCU priority inversions. It then checks that grace periods progress during this CPU-bound time. If grace periods fail to progress, it reports and RCU priority boosting failure. However, it is possible (and sometimes does happen) that the grace period fails to progress due to a CPU failing to pass through a quiescent state for an extended time period (3.5 seconds by default). This can happen due to vCPU preemption, long-running interrupts, and much else besides. There is nothing that RCU priority boosting can do about these situations, and so they should not be counted as RCU priority boosting failures. This commit therefore checks for CPUs (as opposed to preempted tasks) holding up a grace period, and flags the resulting RCU priority boosting failures, but does not splat nor count them as errors. It does rate-limit them to avoid flooding the console log. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcutorture: Make rcu_torture_boost_failed() check for GP endPaul E. McKenney1-0/+6
It is possible that a delayed grace period that rcu_torture_boost() was polling for ended while rcu_torture_boost_failed() was printing the failure splat. It would be good to know when this happens. This commit therefore has rcu_torture_boost_failed() recheck the grace period after printing the splat, and printing a message indicating whether or not the grace period has ended. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcutorture: Consolidate rcu_torture_boost() timing and statisticsPaul E. McKenney1-10/+4
This commit consolidates two loops in rcu_torture_boost(), one of which counts the number of boost-test episodes and the other of which computes the start time of the next episode, into one loop that does both with but a single acquisition of boost_mutex. This means that the count of the number of boost-test episodes is incremented after an episode completes rather than before it starts, but it also avoids the over-counting that was possible previously. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcutorture: Delay-based false positives for RCU priority boosting testsPaul E. McKenney1-2/+6
If an rcu_torture_boost() kthread determines that its grace period has not yet ended, it invokes rcu_torture_boost_failed() which checks whether enough time has elapsed for this to be considered a failure of RCU priority boosting, and, if so, flags the error. Unfortunately, that kthread might be preempted for some seconds between the time that it checks the grace period and the time that it checks the time. This delay can result in a false positive, featuring a complaint that a particular grace period has not ended, followed by a diagnostic dump featuring a much later grace period. This commit avoids these false positives by rechecking for the end of the grace period after the time check. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcutorture: Judge RCU priority boosting on grace periods, not callbacksPaul E. McKenney1-60/+51
Currently, rcutorture's testing of RCU priority boosting insists not only that grace periods complete, but also that callbacks be invoked. Although this is in fact what the user would want, ensuring that there is sufficient CPU bandwidth devoted to callback execution is in fact the user's responsibility. One could argue that rcutorture can take on that responsibility, which is true in theory. But in practice, ensuring sufficient CPU bandwidth to ksoftirqd, any rcuc kthreads, and any rcuo kthreads is not particularly consistent with rcutorture's main job, that of stress-testing RCU. In addition, if the system administrator (say) makes very poor choices when pinning rcuo kthreads and then runs rcutorture, there really isn't much rcutorture can do. Besides, RCU priority boosting only boosts lagging readers, not all the machinery required to invoke callbacks in a timely fashion. This commit therefore switches rcutorture's evaluation of RCU priority boosting from callback execution to grace-period completion by using the new start_poll_synchronize_rcu() and poll_state_synchronize_rcu() functions. When rcutorture is built in (as in when there is no innocent workload to inconvenience), the ksoftirqd ktheads are boosted to real-time priority 2 in order to allow timeouts to work properly in the face of rcutorture's testing of RCU priority boosting. Indeed, it is not as easy as it looks to create a reliable test of RCU priority boosting without destroying the rest of the kernel! Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcutorture: Abstract read-lock-held checksPaul E. McKenney1-10/+19
This commit adds a (*readlock_held)() function pointer to the rcu_torture_ops structure in order to make the rcu_torture_one_read() function's rcu_dereference_check() lockdep expression more appropriate for a given run. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11refscale: Add acqrel, lock, and lock-irqPaul E. McKenney1-2/+107
This commit adds scale_type of acqrel, lock, and lock-irq to test acquisition and release. Note that the refscale.nreaders=1 module parameter is required if you wish to test uncontended locking. In contrast, acqrel uses a per-CPU variable, so should be just fine with large values of the refscale.nreaders=1 module parameter. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcu-tasks: Add block comment laying out RCU Rude designPaul E. McKenney1-2/+7
This commit adds a block comment that gives a high-level overview of how RCU Rude grace periods progress. It also gives an overview of the memory ordering. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcu-tasks: Add block comment laying out RCU Tasks designPaul E. McKenney1-0/+40
This commit adds a block comment that gives a high-level overview of how RCU tasks grace periods progress. It also adds a note about how exiting tasks are handled, plus it gives an overview of the memory ordering. Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11srcu: Fix broken node geometry after early ssp initFrederic Weisbecker3-1/+20
An srcu_struct structure that is initialized before rcu_init_geometry() will have its srcu_node hierarchy based on CONFIG_NR_CPUS. Once rcu_init_geometry() is called, this hierarchy is compressed as needed for the actual maximum number of CPUs for this system. Later on, that srcu_struct structure is confused, sometimes referring to its initial CONFIG_NR_CPUS-based hierarchy, and sometimes instead to the new num_possible_cpus() hierarchy. For example, each of its ->mynode fields continues to reference the original leaf rcu_node structures, some of which might no longer exist. On the other hand, srcu_for_each_node_breadth_first() traverses to the new node hierarchy. There are at least two bad possible outcomes to this: 1) a) A callback enqueued early on an srcu_data structure (call it *sdp) is recorded pending on sdp->mynode->srcu_data_have_cbs in srcu_funnel_gp_start() with sdp->mynode pointing to a deep leaf (say 3 levels). b) The grace period ends after rcu_init_geometry() shrinks the nodes level to a single one. srcu_gp_end() walks through the new srcu_node hierarchy without ever reaching the old leaves so the callback is never executed. This is easily reproduced on an 8 CPUs machine with CONFIG_NR_CPUS >= 32 and "rcupdate.rcu_self_test=1". The srcu_barrier() after early tests verification never completes and the boot hangs: [ 5413.141029] INFO: task swapper/0:1 blocked for more than 4915 seconds. [ 5413.147564] Not tainted 5.12.0-rc4+ #28 [ 5413.151927] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 5413.159753] task:swapper/0 state:D stack: 0 pid: 1 ppid: 0 flags:0x00004000 [ 5413.168099] Call Trace: [ 5413.170555] __schedule+0x36c/0x930 [ 5413.174057] ? wait_for_completion+0x88/0x110 [ 5413.178423] schedule+0x46/0xf0 [ 5413.181575] schedule_timeout+0x284/0x380 [ 5413.185591] ? wait_for_completion+0x88/0x110 [ 5413.189957] ? mark_held_locks+0x61/0x80 [ 5413.193882] ? mark_held_locks+0x61/0x80 [ 5413.197809] ? _raw_spin_unlock_irq+0x24/0x50 [ 5413.202173] ? wait_for_completion+0x88/0x110 [ 5413.206535] wait_for_completion+0xb4/0x110 [ 5413.210724] ? srcu_torture_stats_print+0x110/0x110 [ 5413.215610] srcu_barrier+0x187/0x200 [ 5413.219277] ? rcu_tasks_verify_self_tests+0x50/0x50 [ 5413.224244] ? rdinit_setup+0x2b/0x2b [ 5413.227907] rcu_verify_early_boot_tests+0x2d/0x40 [ 5413.232700] do_one_initcall+0x63/0x310 [ 5413.236541] ? rdinit_setup+0x2b/0x2b [ 5413.240207] ? rcu_read_lock_sched_held+0x52/0x80 [ 5413.244912] kernel_init_freeable+0x253/0x28f [ 5413.249273] ? rest_init+0x250/0x250 [ 5413.252846] kernel_init+0xa/0x110 [ 5413.256257] ret_from_fork+0x22/0x30 2) An srcu_struct structure that is initialized before rcu_init_geometry() and used afterward will always have stale rdp->mynode references, resulting in callbacks to be missed in srcu_gp_end(), just like in the previous scenario. This commit therefore causes init_srcu_struct_nodes to initialize the geometry, if needed. This ensures that the srcu_node hierarchy is properly built and distributed from the get-go. Suggested-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Neeraj Upadhyay <neeraju@codeaurora.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Uladzislau Rezki <urezki@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11srcu: Initialize SRCU after timersFrederic Weisbecker4-8/+5
Once srcu_init() is called, the SRCU core will make use of delayed workqueues, which rely on timers. However init_timers() is called several steps after rcu_init(). This means that a call_srcu() after rcu_init() but before init_timers() would find itself within a dangerously uninitialized timer core. This commit therefore creates a separate call to srcu_init() after init_timer() completes, which ensures that we stay in early SRCU mode until timers are safe(r). Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Uladzislau Rezki <urezki@gmail.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Neeraj Upadhyay <neeraju@codeaurora.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Joel Fernandes <joel@joelfernandes.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11srcu: Remove superfluous ssp initialization for early callbacksFrederic Weisbecker1-1/+0
Pre-srcu_init() invocations of call_srcu() initialize the srcu_struct structure in question, so there is no need to check this initialization in srcu_init() when initiating grace periods for srcu_struct structures that had early call_srcu() invocations. This commit therefore drops the calls to check_init_srcu_struct() in srcu_init(). Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Neeraj Upadhyay <neeraju@codeaurora.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Uladzislau Rezki <urezki@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11srcu: Remove superfluous sdp->srcu_lock_count zero fillingFrederic Weisbecker1-10/+2
Because alloc_percpu() zeroes out the allocated memory, there is no need to zero-fill newly allocated per-CPU memory. This commit therefore removes the loop zeroing the ->srcu_lock_count and ->srcu_unlock_count arrays from init_srcu_struct_nodes(). This is the only use of that function's is_static parameter, which this commit also removes. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Neeraj Upadhyay <neeraju@codeaurora.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Uladzislau Rezki <urezki@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11timer: Revert "timer: Add timer_curr_running()"Frederic Weisbecker1-14/+0
This reverts commit dcd42591ebb8a25895b551a5297ea9c24414ba54. The only user was RCU/nocb. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Neeraj Upadhyay <neeraju@codeaurora.org> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11rcu/nocb: Use the rcuog CPU's ->nocb_timerFrederic Weisbecker2-64/+77
Currently each CPU has its own ->nocb_timer queued when the nocb_gp wakeup must be deferred. This approach has many drawbacks, compared to a solution based on a single timer per NOCB group: * There are a lot of timers to maintain. * The per-rdp ->nocb_lock must be held to queue and cancel the timer and this lock can already be heavily contended. * One timer firing doesn't cancel the other timers in the same group: - These other timers can thus cause spurious wakeups - Each rdp that queued a timer must lock both ->nocb_lock and then ->nocb_gp_lock upon exit from the kernel to idle/user/guest mode. * We can't cancel all of them if we detect an unflushed bypass in nocb_gp_wait(). In fact currently we only ever cancel the ->nocb_timer of the leader group. * The leader group's nocb_timer is cancelled without locking ->nocb_lock in nocb_gp_wait(). This currently appears to be safe but is an accident waiting to happen. * Since the timer acquires ->nocb_lock, it requires extra care in the NOCB (de-)offloading process, requiring that it be either enabled or disabled and then flushed. This commit instead uses the rcuog kthread's CPU's ->nocb_timer instead. It is protected by nocb_gp_lock, which is _way_ less contended and remains so even after this change. As a matter of fact, the nocb_timer almost never fires and the deferred wakeup is mostly carried out upon idle/user/guest entry. Now the early check performed at this point in do_nocb_deferred_wakeup() is done on rdp_gp->nocb_defer_wakeup, which is of course racy. However, this raciness is harmless because we only need the guarantee that the timer is queued if we were the last one to queue it. Any other situation (another CPU has queued it and we either see it or not) is fine. This solves all the issues listed above. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Neeraj Upadhyay <neeraju@codeaurora.org> Cc: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11kvfree_rcu: Refactor kfree_rcu_monitor()Uladzislau Rezki (Sony)1-58/+26
Currently we have three functions which depend on each other. Two of them are quite tiny and the last one where the most work is done. All of them are related to queuing RCU batches to reclaim objects after a GP. 1. kfree_rcu_monitor(). It consist of few lines. It acquires a spin-lock and calls kfree_rcu_drain_unlock(). 2. kfree_rcu_drain_unlock(). It also consists of few lines of code. It calls queue_kfree_rcu_work() to queue the batch. If this fails, it rearms the monitor work to try again later. 3. queue_kfree_rcu_work(). This provides the bulk of the functionality, attempting to start a new batch to free objects after a GP. Since there are no external users of functions [2] and [3], both can eliminated by moving all logic directly into [1], which both shrinks and simplifies the code. Also replace comments which start with "/*" to "//" format to make it unified across the file. Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11kvfree_rcu: Fix comments according to current codeUladzislau Rezki (Sony)1-6/+9
The kvfree_rcu() function now defers allocations in the common case due to the fact that there is no lockless access to the memory-allocator caches/pools. In addition, in CONFIG_PREEMPT_NONE=y and in CONFIG_PREEMPT_VOLUNTARY=y kernels, there is no reliable way to determine if spinlocks are held. As a result, allocation is deferred in the common case, and the two-argument form of kvfree_rcu() thus uses the "channel 3" queue through all the rcu_head structures. This channel is called referred to as the emergency case in comments, and these comments are now obsolete. This commit therefore updates these comments to reflect the new common-case nature of such emergencies. Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11kvfree_rcu: Use kfree_rcu_monitor() instead of open-coded variantUladzislau Rezki (Sony)1-7/+1
Replace an open-coded version of the kfree_rcu_monitor() function body with a call to that function. Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11kvfree_rcu: Update "monitor_todo" once a batch is startedUladzislau Rezki (Sony)1-2/+1
Before attempting to start a new batch the "monitor_todo" variable is set to "false" and set back to "true" when a previous RCU batch is still in progress. This is at best confusing. Thus change this variable to "false" only when a new batch has been successfully queued, otherwise, just leave it be. Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-05-11kvfree_rcu: Add a bulk-list check when a scheduler is runUladzislau Rezki (Sony)1-1/+2
The rcu_scheduler_active flag is set to RCU_SCHEDULER_RUNNING once the scheduler is up and running. That signal is used in order to check and queue a "monitor work" to reclaim freed objects (if there are any) during early boot. This flag is used by kvfree_rcu() to determine when work can safely be queued, at which point memory passed to earlier invocations of kvfree_rcu() can be processed. However, only "krcp->head" is checked for objects that need to be released, and there are now two more, namely, "krcp->bkvhead[0]" and "krcp->bkvhead[1]". Therefore, check these two additional channels. Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>