Age | Commit message (Collapse) | Author | Files | Lines |
|
exported perf symbols are GPL only, mark eBPF helper functions
used in tracing as GPL only as well.
Suggested-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Fix safety checks for bpf_perf_event_read():
- only non-inherited events can be added to perf_event_array map
(do this check statically at map insertion time)
- dynamically check that event is local and !pmu->count
Otherwise buggy bpf program can cause kernel splat.
Also fix error path after perf_event_attrs()
and remove redundant 'extern'.
Fixes: 35578d798400 ("bpf: Implement function bpf_perf_event_read() that get the selected hardware PMU conuter")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Wang Nan <wangnan0@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This helper is used to send raw data from eBPF program into
special PERF_TYPE_SOFTWARE/PERF_COUNT_SW_BPF_OUTPUT perf_event.
User space needs to perf_event_open() it (either for one or all cpus) and
store FD into perf_event_array (similar to bpf_perf_event_read() helper)
before eBPF program can send data into it.
Today the programs triggered by kprobe collect the data and either store
it into the maps or print it via bpf_trace_printk() where latter is the debug
facility and not suitable to stream the data. This new helper replaces
such bpf_trace_printk() usage and allows programs to have dedicated
channel into user space for post-processing of the raw data collected.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
%s specifier makes bpf program and kernel debugging easier.
To make sure that trace_printk won't crash the unsafe string
is copied into stack and unsafe pointer is substituted.
The following C program:
#include <linux/fs.h>
int foo(struct pt_regs *ctx, struct filename *filename)
{
void *name = 0;
bpf_probe_read(&name, sizeof(name), &filename->name);
bpf_trace_printk("executed %s\n", name);
return 0;
}
when attached to kprobe do_execve()
will produce output in /sys/kernel/debug/tracing/trace_pipe :
make-13492 [002] d..1 3250.997277: : executed /bin/sh
sh-13493 [004] d..1 3250.998716: : executed /usr/bin/gcc
gcc-13494 [002] d..1 3250.999822: : executed /usr/lib/gcc/x86_64-linux-gnu/4.7/cc1
gcc-13495 [002] d..1 3251.006731: : executed /usr/bin/as
gcc-13496 [002] d..1 3251.011831: : executed /usr/lib/gcc/x86_64-linux-gnu/4.7/collect2
collect2-13497 [000] d..1 3251.012941: : executed /usr/bin/ld
Suggested-by: Brendan Gregg <brendan.d.gregg@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
PMU conuter
According to the perf_event_map_fd and index, the function
bpf_perf_event_read() can convert the corresponding map
value to the pointer to struct perf_event and return the
Hardware PMU counter value.
Signed-off-by: Kaixu Xia <xiakaixu@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
It's useful to do per-cpu histograms.
Suggested-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
bpf_trace_printk() is a helper function used to debug eBPF programs.
Let socket and TC programs use it as well.
Note, it's DEBUG ONLY helper. If it's used in the program,
the kernel will print warning banner to make sure users don't use
it in production.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
eBPF programs attached to kprobes need to filter based on
current->pid, uid and other fields, so introduce helper functions:
u64 bpf_get_current_pid_tgid(void)
Return: current->tgid << 32 | current->pid
u64 bpf_get_current_uid_gid(void)
Return: current_gid << 32 | current_uid
bpf_get_current_comm(char *buf, int size_of_buf)
stores current->comm into buf
They can be used from the programs attached to TC as well to classify packets
based on current task fields.
Update tracex2 example to print histogram of write syscalls for each process
instead of aggregated for all.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
As this is already exported from tracing side via commit d9847d310ab4
("tracing: Allow BPF programs to call bpf_ktime_get_ns()"), we might
as well want to move it to the core, so also networking users can make
use of it, e.g. to measure diffs for certain flows from ingress/egress.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Alexei Starovoitov <ast@plumgrid.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
introduce bpf_tail_call(ctx, &jmp_table, index) helper function
which can be used from BPF programs like:
int bpf_prog(struct pt_regs *ctx)
{
...
bpf_tail_call(ctx, &jmp_table, index);
...
}
that is roughly equivalent to:
int bpf_prog(struct pt_regs *ctx)
{
...
if (jmp_table[index])
return (*jmp_table[index])(ctx);
...
}
The important detail that it's not a normal call, but a tail call.
The kernel stack is precious, so this helper reuses the current
stack frame and jumps into another BPF program without adding
extra call frame.
It's trivially done in interpreter and a bit trickier in JITs.
In case of x64 JIT the bigger part of generated assembler prologue
is common for all programs, so it is simply skipped while jumping.
Other JITs can do similar prologue-skipping optimization or
do stack unwind before jumping into the next program.
bpf_tail_call() arguments:
ctx - context pointer
jmp_table - one of BPF_MAP_TYPE_PROG_ARRAY maps used as the jump table
index - index in the jump table
Since all BPF programs are idenitified by file descriptor, user space
need to populate the jmp_table with FDs of other BPF programs.
If jmp_table[index] is empty the bpf_tail_call() doesn't jump anywhere
and program execution continues as normal.
New BPF_MAP_TYPE_PROG_ARRAY map type is introduced so that user space can
populate this jmp_table array with FDs of other bpf programs.
Programs can share the same jmp_table array or use multiple jmp_tables.
The chain of tail calls can form unpredictable dynamic loops therefore
tail_call_cnt is used to limit the number of calls and currently is set to 32.
Use cases:
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
==========
- simplify complex programs by splitting them into a sequence of small programs
- dispatch routine
For tracing and future seccomp the program may be triggered on all system
calls, but processing of syscall arguments will be different. It's more
efficient to implement them as:
int syscall_entry(struct seccomp_data *ctx)
{
bpf_tail_call(ctx, &syscall_jmp_table, ctx->nr /* syscall number */);
... default: process unknown syscall ...
}
int sys_write_event(struct seccomp_data *ctx) {...}
int sys_read_event(struct seccomp_data *ctx) {...}
syscall_jmp_table[__NR_write] = sys_write_event;
syscall_jmp_table[__NR_read] = sys_read_event;
For networking the program may call into different parsers depending on
packet format, like:
int packet_parser(struct __sk_buff *skb)
{
... parse L2, L3 here ...
__u8 ipproto = load_byte(skb, ... offsetof(struct iphdr, protocol));
bpf_tail_call(skb, &ipproto_jmp_table, ipproto);
... default: process unknown protocol ...
}
int parse_tcp(struct __sk_buff *skb) {...}
int parse_udp(struct __sk_buff *skb) {...}
ipproto_jmp_table[IPPROTO_TCP] = parse_tcp;
ipproto_jmp_table[IPPROTO_UDP] = parse_udp;
- for TC use case, bpf_tail_call() allows to implement reclassify-like logic
- bpf_map_update_elem/delete calls into BPF_MAP_TYPE_PROG_ARRAY jump table
are atomic, so user space can build chains of BPF programs on the fly
Implementation details:
=======================
- high performance of bpf_tail_call() is the goal.
It could have been implemented without JIT changes as a wrapper on top of
BPF_PROG_RUN() macro, but with two downsides:
. all programs would have to pay performance penalty for this feature and
tail call itself would be slower, since mandatory stack unwind, return,
stack allocate would be done for every tailcall.
. tailcall would be limited to programs running preempt_disabled, since
generic 'void *ctx' doesn't have room for 'tail_call_cnt' and it would
need to be either global per_cpu variable accessed by helper and by wrapper
or global variable protected by locks.
In this implementation x64 JIT bypasses stack unwind and jumps into the
callee program after prologue.
- bpf_prog_array_compatible() ensures that prog_type of callee and caller
are the same and JITed/non-JITed flag is the same, since calling JITed
program from non-JITed is invalid, since stack frames are different.
Similarly calling kprobe type program from socket type program is invalid.
- jump table is implemented as BPF_MAP_TYPE_PROG_ARRAY to reuse 'map'
abstraction, its user space API and all of verifier logic.
It's in the existing arraymap.c file, since several functions are
shared with regular array map.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Debugging of BPF programs needs some form of printk from the
program, so let programs call limited trace_printk() with %d %u
%x %p modifiers only.
Similar to kernel modules, during program load verifier checks
whether program is calling bpf_trace_printk() and if so, kernel
allocates trace_printk buffers and emits big 'this is debug
only' banner.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1427312966-8434-6-git-send-email-ast@plumgrid.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
bpf_ktime_get_ns() is used by programs to compute time delta
between events or as a timestamp
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1427312966-8434-5-git-send-email-ast@plumgrid.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
BPF programs, attached to kprobes, provide a safe way to execute
user-defined BPF byte-code programs without being able to crash or
hang the kernel in any way. The BPF engine makes sure that such
programs have a finite execution time and that they cannot break
out of their sandbox.
The user interface is to attach to a kprobe via the perf syscall:
struct perf_event_attr attr = {
.type = PERF_TYPE_TRACEPOINT,
.config = event_id,
...
};
event_fd = perf_event_open(&attr,...);
ioctl(event_fd, PERF_EVENT_IOC_SET_BPF, prog_fd);
'prog_fd' is a file descriptor associated with BPF program
previously loaded.
'event_id' is an ID of the kprobe created.
Closing 'event_fd':
close(event_fd);
... automatically detaches BPF program from it.
BPF programs can call in-kernel helper functions to:
- lookup/update/delete elements in maps
- probe_read - wraper of probe_kernel_read() used to access any
kernel data structures
BPF programs receive 'struct pt_regs *' as an input ('struct pt_regs' is
architecture dependent) and return 0 to ignore the event and 1 to store
kprobe event into the ring buffer.
Note, kprobes are a fundamentally _not_ a stable kernel ABI,
so BPF programs attached to kprobes must be recompiled for
every kernel version and user must supply correct LINUX_VERSION_CODE
in attr.kern_version during bpf_prog_load() call.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1427312966-8434-4-git-send-email-ast@plumgrid.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|