summaryrefslogtreecommitdiff
path: root/kernel/sched
AgeCommit message (Collapse)AuthorFilesLines
2021-12-14wait: add wake_up_pollfree()Eric Biggers1-0/+7
commit 42288cb44c4b5fff7653bc392b583a2b8bd6a8c0 upstream. Several ->poll() implementations are special in that they use a waitqueue whose lifetime is the current task, rather than the struct file as is normally the case. This is okay for blocking polls, since a blocking poll occurs within one task; however, non-blocking polls require another solution. This solution is for the queue to be cleared before it is freed, using 'wake_up_poll(wq, EPOLLHUP | POLLFREE);'. However, that has a bug: wake_up_poll() calls __wake_up() with nr_exclusive=1. Therefore, if there are multiple "exclusive" waiters, and the wakeup function for the first one returns a positive value, only that one will be called. That's *not* what's needed for POLLFREE; POLLFREE is special in that it really needs to wake up everyone. Considering the three non-blocking poll systems: - io_uring poll doesn't handle POLLFREE at all, so it is broken anyway. - aio poll is unaffected, since it doesn't support exclusive waits. However, that's fragile, as someone could add this feature later. - epoll doesn't appear to be broken by this, since its wakeup function returns 0 when it sees POLLFREE. But this is fragile. Although there is a workaround (see epoll), it's better to define a function which always sends POLLFREE to all waiters. Add such a function. Also make it verify that the queue really becomes empty after all waiters have been woken up. Reported-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20211209010455.42744-2-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-08sched/uclamp: Fix rq->uclamp_max not set on first enqueueQais Yousef1-1/+1
[ Upstream commit 315c4f884800c45cb6bd8c90422fad554a8b9588 ] Commit d81ae8aac85c ("sched/uclamp: Fix initialization of struct uclamp_rq") introduced a bug where uclamp_max of the rq is not reset to match the woken up task's uclamp_max when the rq is idle. The code was relying on rq->uclamp_max initialized to zero, so on first enqueue static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, enum uclamp_id clamp_id) { ... if (uc_se->value > READ_ONCE(uc_rq->value)) WRITE_ONCE(uc_rq->value, uc_se->value); } was actually resetting it. But since commit d81ae8aac85c changed the default to 1024, this no longer works. And since rq->uclamp_flags is also initialized to 0, neither above code path nor uclamp_idle_reset() update the rq->uclamp_max on first wake up from idle. This is only visible from first wake up(s) until the first dequeue to idle after enabling the static key. And it only matters if the uclamp_max of this task is < 1024 since only then its uclamp_max will be effectively ignored. Fix it by properly initializing rq->uclamp_flags = UCLAMP_FLAG_IDLE to ensure uclamp_idle_reset() is called which then will update the rq uclamp_max value as expected. Fixes: d81ae8aac85c ("sched/uclamp: Fix initialization of struct uclamp_rq") Signed-off-by: Qais Yousef <qais.yousef@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <Valentin.Schneider@arm.com> Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lkml.kernel.org/r/20211202112033.1705279-1-qais.yousef@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-12-08preempt/dynamic: Fix setup_preempt_mode() return valueAndrew Halaney1-2/+2
[ Upstream commit 9ed20bafc85806ca6c97c9128cec46c3ef80ae86 ] __setup() callbacks expect 1 for success and 0 for failure. Correct the usage here to reflect that. Fixes: 826bfeb37bb4 ("preempt/dynamic: Support dynamic preempt with preempt= boot option") Reported-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Andrew Halaney <ahalaney@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20211203233203.133581-1-ahalaney@redhat.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-12-01sched/scs: Reset task stack state in bringup_cpu()Mark Rutland1-4/+0
[ Upstream commit dce1ca0525bfdc8a69a9343bc714fbc19a2f04b3 ] To hot unplug a CPU, the idle task on that CPU calls a few layers of C code before finally leaving the kernel. When KASAN is in use, poisoned shadow is left around for each of the active stack frames, and when shadow call stacks are in use. When shadow call stacks (SCS) are in use the task's saved SCS SP is left pointing at an arbitrary point within the task's shadow call stack. When a CPU is offlined than onlined back into the kernel, this stale state can adversely affect execution. Stale KASAN shadow can alias new stackframes and result in bogus KASAN warnings. A stale SCS SP is effectively a memory leak, and prevents a portion of the shadow call stack being used. Across a number of hotplug cycles the idle task's entire shadow call stack can become unusable. We previously fixed the KASAN issue in commit: e1b77c92981a5222 ("sched/kasan: remove stale KASAN poison after hotplug") ... by removing any stale KASAN stack poison immediately prior to onlining a CPU. Subsequently in commit: f1a0a376ca0c4ef1 ("sched/core: Initialize the idle task with preemption disabled") ... the refactoring left the KASAN and SCS cleanup in one-time idle thread initialization code rather than something invoked prior to each CPU being onlined, breaking both as above. We fixed SCS (but not KASAN) in commit: 63acd42c0d4942f7 ("sched/scs: Reset the shadow stack when idle_task_exit") ... but as this runs in the context of the idle task being offlined it's potentially fragile. To fix these consistently and more robustly, reset the SCS SP and KASAN shadow of a CPU's idle task immediately before we online that CPU in bringup_cpu(). This ensures the idle task always has a consistent state when it is running, and removes the need to so so when exiting an idle task. Whenever any thread is created, dup_task_struct() will give the task a stack which is free of KASAN shadow, and initialize the task's SCS SP, so there's no need to specially initialize either for idle thread within init_idle(), as this was only necessary to handle hotplug cycles. I've tested this on arm64 with: * gcc 11.1.0, defconfig +KASAN_INLINE, KASAN_STACK * clang 12.0.0, defconfig +KASAN_INLINE, KASAN_STACK, SHADOW_CALL_STACK ... offlining and onlining CPUS with: | while true; do | for C in /sys/devices/system/cpu/cpu*/online; do | echo 0 > $C; | echo 1 > $C; | done | done Fixes: f1a0a376ca0c4ef1 ("sched/core: Initialize the idle task with preemption disabled") Reported-by: Qian Cai <quic_qiancai@quicinc.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Tested-by: Qian Cai <quic_qiancai@quicinc.com> Link: https://lore.kernel.org/lkml/20211115113310.35693-1-mark.rutland@arm.com/ Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-25sched/fair: Prevent dead task groups from regaining cfs_rq'sMathias Krause5-16/+49
[ Upstream commit b027789e5e50494c2325cc70c8642e7fd6059479 ] Kevin is reporting crashes which point to a use-after-free of a cfs_rq in update_blocked_averages(). Initial debugging revealed that we've live cfs_rq's (on_list=1) in an about to be kfree()'d task group in free_fair_sched_group(). However, it was unclear how that can happen. His kernel config happened to lead to a layout of struct sched_entity that put the 'my_q' member directly into the middle of the object which makes it incidentally overlap with SLUB's freelist pointer. That, in combination with SLAB_FREELIST_HARDENED's freelist pointer mangling, leads to a reliable access violation in form of a #GP which made the UAF fail fast. Michal seems to have run into the same issue[1]. He already correctly diagnosed that commit a7b359fc6a37 ("sched/fair: Correctly insert cfs_rq's to list on unthrottle") is causing the preconditions for the UAF to happen by re-adding cfs_rq's also to task groups that have no more running tasks, i.e. also to dead ones. His analysis, however, misses the real root cause and it cannot be seen from the crash backtrace only, as the real offender is tg_unthrottle_up() getting called via sched_cfs_period_timer() via the timer interrupt at an inconvenient time. When unregister_fair_sched_group() unlinks all cfs_rq's from the dying task group, it doesn't protect itself from getting interrupted. If the timer interrupt triggers while we iterate over all CPUs or after unregister_fair_sched_group() has finished but prior to unlinking the task group, sched_cfs_period_timer() will execute and walk the list of task groups, trying to unthrottle cfs_rq's, i.e. re-add them to the dying task group. These will later -- in free_fair_sched_group() -- be kfree()'ed while still being linked, leading to the fireworks Kevin and Michal are seeing. To fix this race, ensure the dying task group gets unlinked first. However, simply switching the order of unregistering and unlinking the task group isn't sufficient, as concurrent RCU walkers might still see it, as can be seen below: CPU1: CPU2: : timer IRQ: : do_sched_cfs_period_timer(): : : : distribute_cfs_runtime(): : rcu_read_lock(); : : : unthrottle_cfs_rq(): sched_offline_group(): : : walk_tg_tree_from(…,tg_unthrottle_up,…): list_del_rcu(&tg->list); : (1) : list_for_each_entry_rcu(child, &parent->children, siblings) : : (2) list_del_rcu(&tg->siblings); : : tg_unthrottle_up(): unregister_fair_sched_group(): struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; : : list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); : : : : if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running) (3) : list_add_leaf_cfs_rq(cfs_rq); : : : : : : : : : : (4) : rcu_read_unlock(); CPU 2 walks the task group list in parallel to sched_offline_group(), specifically, it'll read the soon to be unlinked task group entry at (1). Unlinking it on CPU 1 at (2) therefore won't prevent CPU 2 from still passing it on to tg_unthrottle_up(). CPU 1 now tries to unlink all cfs_rq's via list_del_leaf_cfs_rq() in unregister_fair_sched_group(). Meanwhile CPU 2 will re-add some of these at (3), which is the cause of the UAF later on. To prevent this additional race from happening, we need to wait until walk_tg_tree_from() has finished traversing the task groups, i.e. after the RCU read critical section ends in (4). Afterwards we're safe to call unregister_fair_sched_group(), as each new walk won't see the dying task group any more. On top of that, we need to wait yet another RCU grace period after unregister_fair_sched_group() to ensure print_cfs_stats(), which might run concurrently, always sees valid objects, i.e. not already free'd ones. This patch survives Michal's reproducer[2] for 8h+ now, which used to trigger within minutes before. [1] https://lore.kernel.org/lkml/20211011172236.11223-1-mkoutny@suse.com/ [2] https://lore.kernel.org/lkml/20211102160228.GA57072@blackbody.suse.cz/ Fixes: a7b359fc6a37 ("sched/fair: Correctly insert cfs_rq's to list on unthrottle") [peterz: shuffle code around a bit] Reported-by: Kevin Tanguy <kevin.tanguy@corp.ovh.com> Signed-off-by: Mathias Krause <minipli@grsecurity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-25sched/core: Mitigate race cpus_share_cache()/update_top_cache_domain()Vincent Donnefort1-0/+3
[ Upstream commit 42dc938a590c96eeb429e1830123fef2366d9c80 ] Nothing protects the access to the per_cpu variable sd_llc_id. When testing the same CPU (i.e. this_cpu == that_cpu), a race condition exists with update_top_cache_domain(). One scenario being: CPU1 CPU2 ================================================================== per_cpu(sd_llc_id, CPUX) => 0 partition_sched_domains_locked() detach_destroy_domains() cpus_share_cache(CPUX, CPUX) update_top_cache_domain(CPUX) per_cpu(sd_llc_id, CPUX) => 0 per_cpu(sd_llc_id, CPUX) = CPUX per_cpu(sd_llc_id, CPUX) => CPUX return false ttwu_queue_cond() wouldn't catch smp_processor_id() == cpu and the result is a warning triggered from ttwu_queue_wakelist(). Avoid a such race in cpus_share_cache() by always returning true when this_cpu == that_cpu. Fixes: 518cd6234178 ("sched: Only queue remote wakeups when crossing cache boundaries") Reported-by: Jing-Ting Wu <jing-ting.wu@mediatek.com> Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20211104175120.857087-1-vincent.donnefort@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-18kernel/sched: Fix sched_fork() access an invalid sched_task_groupZhang Qiao1-21/+22
[ Upstream commit 4ef0c5c6b5ba1f38f0ea1cedad0cad722f00c14a ] There is a small race between copy_process() and sched_fork() where child->sched_task_group point to an already freed pointer. parent doing fork() | someone moving the parent | to another cgroup -------------------------------+------------------------------- copy_process() + dup_task_struct()<1> parent move to another cgroup, and free the old cgroup. <2> + sched_fork() + __set_task_cpu()<3> + task_fork_fair() + sched_slice()<4> In the worst case, this bug can lead to "use-after-free" and cause panic as shown above: (1) parent copy its sched_task_group to child at <1>; (2) someone move the parent to another cgroup and free the old cgroup at <2>; (3) the sched_task_group and cfs_rq that belong to the old cgroup will be accessed at <3> and <4>, which cause a panic: [] BUG: unable to handle kernel NULL pointer dereference at 0000000000000000 [] PGD 8000001fa0a86067 P4D 8000001fa0a86067 PUD 2029955067 PMD 0 [] Oops: 0000 [#1] SMP PTI [] CPU: 7 PID: 648398 Comm: ebizzy Kdump: loaded Tainted: G OE --------- - - 4.18.0.x86_64+ #1 [] RIP: 0010:sched_slice+0x84/0xc0 [] Call Trace: [] task_fork_fair+0x81/0x120 [] sched_fork+0x132/0x240 [] copy_process.part.5+0x675/0x20e0 [] ? __handle_mm_fault+0x63f/0x690 [] _do_fork+0xcd/0x3b0 [] do_syscall_64+0x5d/0x1d0 [] entry_SYSCALL_64_after_hwframe+0x65/0xca [] RIP: 0033:0x7f04418cd7e1 Between cgroup_can_fork() and cgroup_post_fork(), the cgroup membership and thus sched_task_group can't change. So update child's sched_task_group at sched_post_fork() and move task_fork() and __set_task_cpu() (where accees the sched_task_group) from sched_fork() to sched_post_fork(). Fixes: 8323f26ce342 ("sched: Fix race in task_group") Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lkml.kernel.org/r/20210915064030.2231-1-zhangqiao22@huawei.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-10-19sched/scs: Reset the shadow stack when idle_task_exitWoody Lin1-0/+1
Commit f1a0a376ca0c ("sched/core: Initialize the idle task with preemption disabled") removed the init_idle() call from idle_thread_get(). This was the sole call-path on hotplug that resets the Shadow Call Stack (scs) Stack Pointer (sp). Not resetting the scs-sp leads to scs overflow after enough hotplug cycles. Therefore add an explicit scs_task_reset() to the hotplug code to make sure the scs-sp does get reset on hotplug. Fixes: f1a0a376ca0c ("sched/core: Initialize the idle task with preemption disabled") Signed-off-by: Woody Lin <woodylin@google.com> [peterz: Changelog] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lore.kernel.org/r/20211012083521.973587-1-woodylin@google.com
2021-10-01sched/fair: Null terminate buffer when updating tunable_scalingMel Gorman1-1/+7
This patch null-terminates the temporary buffer in sched_scaling_write() so kstrtouint() does not return failure and checks the value is valid. Before: $ cat /sys/kernel/debug/sched/tunable_scaling 1 $ echo 0 > /sys/kernel/debug/sched/tunable_scaling -bash: echo: write error: Invalid argument $ cat /sys/kernel/debug/sched/tunable_scaling 1 After: $ cat /sys/kernel/debug/sched/tunable_scaling 1 $ echo 0 > /sys/kernel/debug/sched/tunable_scaling $ cat /sys/kernel/debug/sched/tunable_scaling 0 $ echo 3 > /sys/kernel/debug/sched/tunable_scaling -bash: echo: write error: Invalid argument Fixes: 8a99b6833c88 ("sched: Move SCHED_DEBUG sysctl to debugfs") Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20210927114635.GH3959@techsingularity.net
2021-10-01sched/fair: Add ancestors of unthrottled undecayed cfs_rqMichal Koutný1-1/+5
Since commit a7b359fc6a37 ("sched/fair: Correctly insert cfs_rq's to list on unthrottle") we add cfs_rqs with no runnable tasks but not fully decayed into the load (leaf) list. We may ignore adding some ancestors and therefore breaking tmp_alone_branch invariant. This broke LTP test cfs_bandwidth01 and it was partially fixed in commit fdaba61ef8a2 ("sched/fair: Ensure that the CFS parent is added after unthrottling"). I noticed the named test still fails even with the fix (but with low probability, 1 in ~1000 executions of the test). The reason is when bailing out of unthrottle_cfs_rq early, we may miss adding ancestors of the unthrottled cfs_rq, thus, not joining tmp_alone_branch properly. Fix this by adding ancestors if we notice the unthrottled cfs_rq was added to the load list. Fixes: a7b359fc6a37 ("sched/fair: Correctly insert cfs_rq's to list on unthrottle") Signed-off-by: Michal Koutný <mkoutny@suse.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Odin Ugedal <odin@uged.al> Link: https://lore.kernel.org/r/20210917153037.11176-1-mkoutny@suse.com
2021-09-12Merge tag 'sched_urgent_for_v5.15_rc1' of ↵Linus Torvalds2-5/+5
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Borislav Petkov: - Make sure the idle timer expires in hardirq context, on PREEMPT_RT - Make sure the run-queue balance callback is invoked only on the outgoing CPU * tag 'sched_urgent_for_v5.15_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched: Prevent balance_push() on remote runqueues sched/idle: Make the idle timer expire in hard interrupt context
2021-09-09sched: Prevent balance_push() on remote runqueuesThomas Gleixner1-3/+3
sched_setscheduler() and rt_mutex_setprio() invoke the run-queue balance callback after changing priorities or the scheduling class of a task. The run-queue for which the callback is invoked can be local or remote. That's not a problem for the regular rq::push_work which is serialized with a busy flag in the run-queue struct, but for the balance_push() work which is only valid to be invoked on the outgoing CPU that's wrong. It not only triggers the debug warning, but also leaves the per CPU variable push_work unprotected, which can result in double enqueues on the stop machine list. Remove the warning and validate that the function is invoked on the outgoing CPU. Fixes: ae7927023243 ("sched: Optimize finish_lock_switch()") Reported-by: Sebastian Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/87zgt1hdw7.ffs@tglx
2021-09-09sched/idle: Make the idle timer expire in hard interrupt contextSebastian Andrzej Siewior1-2/+2
The intel powerclamp driver will setup a per-CPU worker with RT priority. The worker will then invoke play_idle() in which it remains in the idle poll loop until it is stopped by the timer it started earlier. That timer needs to expire in hard interrupt context on PREEMPT_RT. Otherwise the timer will expire in ksoftirqd as a SOFT timer but that task won't be scheduled on the CPU because its priority is lower than the priority of the worker which is in the idle loop. Always expire the idle timer in hard interrupt context. Reported-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210906113034.jgfxrjdvxnjqgtmc@linutronix.de
2021-08-31Merge tag 'pm-5.15-rc1' of ↵Linus Torvalds1-5/+11
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management updates from Rafael Wysocki: "These address some PCI device power management issues, add new hardware support to the RAPL power capping driver, add HWP guaranteed performance change notification support to the intel_pstate driver, replace deprecated CPU-hotplug functions in a few places, update CPU PM notifiers to use raw spinlocks, update the PM domains framework (new DT property support, Kconfig fix), do a couple of cleanups in code related to system sleep, and improve the energy model and the schedutil cpufreq governor. Specifics: - Address 3 PCI device power management issues (Rafael Wysocki). - Add Power Limit4 support for Alder Lake to the Intel RAPL power capping driver (Sumeet Pawnikar). - Add HWP guaranteed performance change notification support to the intel_pstate driver (Srinivas Pandruvada). - Replace deprecated CPU-hotplug functions in code related to power management (Sebastian Andrzej Siewior). - Update CPU PM notifiers to use raw spinlocks (Valentin Schneider). - Add support for 'required-opps' DT property to the generic power domains (genpd) framework and use this property for I2C on ARM64 sc7180 (Rajendra Nayak). - Fix Kconfig issue related to genpd (Geert Uytterhoeven). - Increase energy calculation precision in the Energy Model (Lukasz Luba). - Fix kobject deletion in the exit code of the schedutil cpufreq governor (Kevin Hao). - Unmark some functions as kernel-doc in the PM core to avoid false-positive documentation build warnings (Randy Dunlap). - Check RTC features instead of ops in suspend_test Alexandre Belloni)" * tag 'pm-5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: PM: domains: Fix domain attach for CONFIG_PM_OPP=n powercap: Add Power Limit4 support for Alder Lake SoC cpufreq: intel_pstate: Process HWP Guaranteed change notification thermal: intel: Allow processing of HWP interrupt notifier: Remove atomic_notifier_call_chain_robust() PM: cpu: Make notifier chain use a raw_spinlock_t PM: sleep: unmark 'state' functions as kernel-doc arm64: dts: sc7180: Add required-opps for i2c PM: domains: Add support for 'required-opps' to set default perf state opp: Don't print an error if required-opps is missing cpufreq: schedutil: Use kobject release() method to free sugov_tunables PM: EM: Increase energy calculation precision PM: sleep: check RTC features instead of ops in suspend_test PM: sleep: s2idle: Replace deprecated CPU-hotplug functions cpufreq: Replace deprecated CPU-hotplug functions powercap: intel_rapl: Replace deprecated CPU-hotplug functions PCI: PM: Enable PME if it can be signaled from D3cold PCI: PM: Avoid forcing PCI_D0 for wakeup reasons inconsistently PCI: Use pci_update_current_state() in pci_enable_device_flags()
2021-08-31Merge tag 'locking-core-2021-08-30' of ↵Linus Torvalds1-17/+92
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull locking and atomics updates from Thomas Gleixner: "The regular pile: - A few improvements to the mutex code - Documentation updates for atomics to clarify the difference between cmpxchg() and try_cmpxchg() and to explain the forward progress expectations. - Simplification of the atomics fallback generator - The addition of arch_atomic_long*() variants and generic arch_*() bitops based on them. - Add the missing might_sleep() invocations to the down*() operations of semaphores. The PREEMPT_RT locking core: - Scheduler updates to support the state preserving mechanism for 'sleeping' spin- and rwlocks on RT. This mechanism is carefully preserving the state of the task when blocking on a 'sleeping' spin- or rwlock and takes regular wake-ups targeted at the same task into account. The preserved or updated (via a regular wakeup) state is restored when the lock has been acquired. - Restructuring of the rtmutex code so it can be utilized and extended for the RT specific lock variants. - Restructuring of the ww_mutex code to allow sharing of the ww_mutex specific functionality for rtmutex based ww_mutexes. - Header file disentangling to allow substitution of the regular lock implementations with the PREEMPT_RT variants without creating an unmaintainable #ifdef mess. - Shared base code for the PREEMPT_RT specific rw_semaphore and rwlock implementations. Contrary to the regular rw_semaphores and rwlocks the PREEMPT_RT implementation is writer unfair because it is infeasible to do priority inheritance on multiple readers. Experience over the years has shown that real-time workloads are not the typical workloads which are sensitive to writer starvation. The alternative solution would be to allow only a single reader which has been tried and discarded as it is a major bottleneck especially for mmap_sem. Aside of that many of the writer starvation critical usage sites have been converted to a writer side mutex/spinlock and RCU read side protections in the past decade so that the issue is less prominent than it used to be. - The actual rtmutex based lock substitutions for PREEMPT_RT enabled kernels which affect mutex, ww_mutex, rw_semaphore, spinlock_t and rwlock_t. The spin/rw_lock*() functions disable migration across the critical section to preserve the existing semantics vs per-CPU variables. - Rework of the futex REQUEUE_PI mechanism to handle the case of early wake-ups which interleave with a re-queue operation to prevent the situation that a task would be blocked on both the rtmutex associated to the outer futex and the rtmutex based hash bucket spinlock. While this situation cannot happen on !RT enabled kernels the changes make the underlying concurrency problems easier to understand in general. As a result the difference between !RT and RT kernels is reduced to the handling of waiting for the critical section. !RT kernels simply spin-wait as before and RT kernels utilize rcu_wait(). - The substitution of local_lock for PREEMPT_RT with a spinlock which protects the critical section while staying preemptible. The CPU locality is established by disabling migration. The underlying concepts of this code have been in use in PREEMPT_RT for way more than a decade. The code has been refactored several times over the years and this final incarnation has been optimized once again to be as non-intrusive as possible, i.e. the RT specific parts are mostly isolated. It has been extensively tested in the 5.14-rt patch series and it has been verified that !RT kernels are not affected by these changes" * tag 'locking-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (92 commits) locking/rtmutex: Return success on deadlock for ww_mutex waiters locking/rtmutex: Prevent spurious EDEADLK return caused by ww_mutexes locking/rtmutex: Dequeue waiter on ww_mutex deadlock locking/rtmutex: Dont dereference waiter lockless locking/semaphore: Add might_sleep() to down_*() family locking/ww_mutex: Initialize waiter.ww_ctx properly static_call: Update API documentation locking/local_lock: Add PREEMPT_RT support locking/spinlock/rt: Prepare for RT local_lock locking/rtmutex: Add adaptive spinwait mechanism locking/rtmutex: Implement equal priority lock stealing preempt: Adjust PREEMPT_LOCK_OFFSET for RT locking/rtmutex: Prevent lockdep false positive with PI futexes futex: Prevent requeue_pi() lock nesting issue on RT futex: Simplify handle_early_requeue_pi_wakeup() futex: Reorder sanity checks in futex_requeue() futex: Clarify comment in futex_requeue() futex: Restructure futex_requeue() futex: Correct the number of requeued waiters for PI futex: Remove bogus condition for requeue PI ...
2021-08-30Merge tag 'sched-core-2021-08-30' of ↵Linus Torvalds6-129/+631
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: - The biggest change in this cycle is scheduler support for asymmetric scheduling affinity, to support the execution of legacy 32-bit tasks on AArch32 systems that also have 64-bit-only CPUs. Architectures can fill in this functionality by defining their own task_cpu_possible_mask(p). When this is done, the scheduler will make sure the task will only be scheduled on CPUs that support it. (The actual arm64 specific changes are not part of this tree.) For other architectures there will be no change in functionality. - Add cgroup SCHED_IDLE support - Increase node-distance flexibility & delay determining it until a CPU is brought online. (This enables platforms where node distance isn't final until the CPU is only.) - Deadline scheduler enhancements & fixes - Misc fixes & cleanups. * tag 'sched-core-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits) eventfd: Make signal recursion protection a task bit sched/fair: Mark tg_is_idle() an inline in the !CONFIG_FAIR_GROUP_SCHED case sched: Introduce dl_task_check_affinity() to check proposed affinity sched: Allow task CPU affinity to be restricted on asymmetric systems sched: Split the guts of sched_setaffinity() into a helper function sched: Introduce task_struct::user_cpus_ptr to track requested affinity sched: Reject CPU affinity changes based on task_cpu_possible_mask() cpuset: Cleanup cpuset_cpus_allowed_fallback() use in select_fallback_rq() cpuset: Honour task_cpu_possible_mask() in guarantee_online_cpus() cpuset: Don't use the cpu_possible_mask as a last resort for cgroup v1 sched: Introduce task_cpu_possible_mask() to limit fallback rq selection sched: Cgroup SCHED_IDLE support sched/topology: Skip updating masks for non-online nodes sched: Replace deprecated CPU-hotplug functions. sched: Skip priority checks with SCHED_FLAG_KEEP_PARAMS sched: Fix UCLAMP_FLAG_IDLE setting sched/deadline: Fix missing clock update in migrate_task_rq_dl() sched/fair: Avoid a second scan of target in select_idle_cpu sched/fair: Use prev instead of new target as recent_used_cpu sched: Don't report SCHED_FLAG_SUGOV in sched_getattr() ...
2021-08-30Merge branch 'core-rcu.2021.08.28a' of ↵Linus Torvalds1-0/+11
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu Pull RCU updates from Paul McKenney: "RCU changes for this cycle were: - Documentation updates - Miscellaneous fixes - Offloaded-callbacks updates - Updates to the nolibc library - Tasks-RCU updates - In-kernel torture-test updates - Torture-test scripting, perhaps most notably the pinning of torture-test guest OSes so as to force differences in memory latency. For example, in a two-socket system, a four-CPU guest OS will have one pair of its CPUs pinned to threads in a single core on one socket and the other pair pinned to threads in a single core on the other socket. This approach proved able to force race conditions that earlier testing missed. Some of these race conditions are still being tracked down" * 'core-rcu.2021.08.28a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (61 commits) torture: Replace deprecated CPU-hotplug functions. rcu: Replace deprecated CPU-hotplug functions rcu: Print human-readable message for schedule() in RCU reader rcu: Explain why rcu_all_qs() is a stub in preemptible TREE RCU rcu: Use per_cpu_ptr to get the pointer of per_cpu variable rcu: Remove useless "ret" update in rcu_gp_fqs_loop() rcu: Mark accesses in tree_stall.h rcu: Make rcu_gp_init() and rcu_gp_fqs_loop noinline to conserve stack rcu: Mark lockless ->qsmask read in rcu_check_boost_fail() srcutiny: Mark read-side data races rcu: Start timing stall repetitions after warning complete rcu: Do not disable GP stall detection in rcu_cpu_stall_reset() rcu/tree: Handle VM stoppage in stall detection rculist: Unify documentation about missing list_empty_rcu() rcu: Mark accesses to ->rcu_read_lock_nesting rcu: Weaken ->dynticks accesses and updates rcu: Remove special bit at the bottom of the ->dynticks counter rcu: Fix stall-warning deadlock due to non-release of rcu_node ->lock rcu: Fix to include first blocked task in stall warning torture: Make kvm-test-1-run-qemu.sh check for reboot loops ...
2021-08-26sched: Fix get_push_task() vs migrate_disable()Sebastian Andrzej Siewior1-0/+3
push_rt_task() attempts to move the currently running task away if the next runnable task has migration disabled and therefore is pinned on the current CPU. The current task is retrieved via get_push_task() which only checks for nr_cpus_allowed == 1, but does not check whether the task has migration disabled and therefore cannot be moved either. The consequence is a pointless invocation of the migration thread which correctly observes that the task cannot be moved. Return NULL if the task has migration disabled and cannot be moved to another CPU. Fixes: a7c81556ec4d3 ("sched: Fix migrate_disable() vs rt/dl balancing") Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210826133738.yiotqbtdaxzjsnfj@linutronix.de
2021-08-26sched/fair: Mark tg_is_idle() an inline in the !CONFIG_FAIR_GROUP_SCHED caseIngo Molnar1-1/+1
It's not actually used in the !CONFIG_FAIR_GROUP_SCHED case: kernel/sched/fair.c:488:12: warning: ‘tg_is_idle’ defined but not used [-Wunused-function] Keep around a placeholder nevertheless, for API completeness. Mark it inline, so the compiler doesn't think it must be used. Fixes: 304000390f88: ("sched: Cgroup SCHED_IDLE support") Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Josh Don <joshdon@google.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Vincent Guittot <vincent.guittot@linaro.org>
2021-08-23Merge back cpufreq changes for v5.15.Rafael J. Wysocki1-5/+11
2021-08-20sched: Introduce dl_task_check_affinity() to check proposed affinityWill Deacon1-17/+29
In preparation for restricting the affinity of a task during execve() on arm64, introduce a new dl_task_check_affinity() helper function to give an indication as to whether the restricted mask is admissible for a deadline task. Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com> Link: https://lore.kernel.org/r/20210730112443.23245-10-will@kernel.org
2021-08-20sched: Allow task CPU affinity to be restricted on asymmetric systemsWill Deacon2-18/+181
Asymmetric systems may not offer the same level of userspace ISA support across all CPUs, meaning that some applications cannot be executed by some CPUs. As a concrete example, upcoming arm64 big.LITTLE designs do not feature support for 32-bit applications on both clusters. Although userspace can carefully manage the affinity masks for such tasks, one place where it is particularly problematic is execve() because the CPU on which the execve() is occurring may be incompatible with the new application image. In such a situation, it is desirable to restrict the affinity mask of the task and ensure that the new image is entered on a compatible CPU. From userspace's point of view, this looks the same as if the incompatible CPUs have been hotplugged off in the task's affinity mask. Similarly, if a subsequent execve() reverts to a compatible image, then the old affinity is restored if it is still valid. In preparation for restricting the affinity mask for compat tasks on arm64 systems without uniform support for 32-bit applications, introduce {force,relax}_compatible_cpus_allowed_ptr(), which respectively restrict and restore the affinity mask for a task based on the compatible CPUs. Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Reviewed-by: Quentin Perret <qperret@google.com> Link: https://lore.kernel.org/r/20210730112443.23245-9-will@kernel.org
2021-08-20sched: Split the guts of sched_setaffinity() into a helper functionWill Deacon1-48/+57
In preparation for replaying user affinity requests using a saved mask, split sched_setaffinity() up so that the initial task lookup and security checks are only performed when the request is coming directly from userspace. Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <Valentin.Schneider@arm.com> Link: https://lore.kernel.org/r/20210730112443.23245-8-will@kernel.org
2021-08-20sched: Introduce task_struct::user_cpus_ptr to track requested affinityWill Deacon1-0/+20
In preparation for saving and restoring the user-requested CPU affinity mask of a task, add a new cpumask_t pointer to 'struct task_struct'. If the pointer is non-NULL, then the mask is copied across fork() and freed on task exit. Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <Valentin.Schneider@arm.com> Link: https://lore.kernel.org/r/20210730112443.23245-7-will@kernel.org
2021-08-20sched: Reject CPU affinity changes based on task_cpu_possible_mask()Will Deacon1-1/+8
Reject explicit requests to change the affinity mask of a task via set_cpus_allowed_ptr() if the requested mask is not a subset of the mask returned by task_cpu_possible_mask(). This ensures that the 'cpus_mask' for a given task cannot contain CPUs which are incapable of executing it, except in cases where the affinity is forced. Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <Valentin.Schneider@arm.com> Reviewed-by: Quentin Perret <qperret@google.com> Link: https://lore.kernel.org/r/20210730112443.23245-6-will@kernel.org
2021-08-20cpuset: Cleanup cpuset_cpus_allowed_fallback() use in select_fallback_rq()Will Deacon1-2/+1
select_fallback_rq() only needs to recheck for an allowed CPU if the affinity mask of the task has changed since the last check. Return a 'bool' from cpuset_cpus_allowed_fallback() to indicate whether the affinity mask was updated, and use this to elide the allowed check when the mask has been left alone. No functional change. Suggested-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lore.kernel.org/r/20210730112443.23245-5-will@kernel.org
2021-08-20sched: Introduce task_cpu_possible_mask() to limit fallback rq selectionWill Deacon1-6/+3
Asymmetric systems may not offer the same level of userspace ISA support across all CPUs, meaning that some applications cannot be executed by some CPUs. As a concrete example, upcoming arm64 big.LITTLE designs do not feature support for 32-bit applications on both clusters. On such a system, we must take care not to migrate a task to an unsupported CPU when forcefully moving tasks in select_fallback_rq() in response to a CPU hot-unplug operation. Introduce a task_cpu_possible_mask() hook which, given a task argument, allows an architecture to return a cpumask of CPUs that are capable of executing that task. The default implementation returns the cpu_possible_mask, since sane machines do not suffer from per-cpu ISA limitations that affect scheduling. The new mask is used when selecting the fallback runqueue as a last resort before forcing a migration to the first active CPU. Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <Valentin.Schneider@arm.com> Reviewed-by: Quentin Perret <qperret@google.com> Link: https://lore.kernel.org/r/20210730112443.23245-2-will@kernel.org
2021-08-20sched: Cgroup SCHED_IDLE supportJosh Don4-25/+208
This extends SCHED_IDLE to cgroups. Interface: cgroup/cpu.idle. 0: default behavior 1: SCHED_IDLE Extending SCHED_IDLE to cgroups means that we incorporate the existing aspects of SCHED_IDLE; a SCHED_IDLE cgroup will count all of its descendant threads towards the idle_h_nr_running count of all of its ancestor cgroups. Thus, sched_idle_rq() will work properly. Additionally, SCHED_IDLE cgroups are configured with minimum weight. There are two key differences between the per-task and per-cgroup SCHED_IDLE interface: - The cgroup interface allows tasks within a SCHED_IDLE hierarchy to maintain their relative weights. The entity that is "idle" is the cgroup, not the tasks themselves. - Since the idle entity is the cgroup, our SCHED_IDLE wakeup preemption decision is not made by comparing the current task with the woken task, but rather by comparing their matching sched_entity. A typical use-case for this is a user that creates an idle and a non-idle subtree. The non-idle subtree will dominate competition vs the idle subtree, but the idle subtree will still be high priority vs other users on the system. The latter is accomplished via comparing matching sched_entity in the waken preemption path (this could also be improved by making the sched_idle_rq() decision dependent on the perspective of a specific task). For now, we maintain the existing SCHED_IDLE semantics. Future patches may make improvements that extend how we treat SCHED_IDLE entities. The per-task_group idle field is an integer that currently only holds either a 0 or a 1. This is explicitly typed as an integer to allow for further extensions to this API. For example, a negative value may indicate a highly latency-sensitive cgroup that should be preferred for preemption/placement/etc. Signed-off-by: Josh Don <joshdon@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20210730020019.1487127-2-joshdon@google.com
2021-08-20sched/topology: Skip updating masks for non-online nodesValentin Schneider1-0/+65
The scheduler currently expects NUMA node distances to be stable from init onwards, and as a consequence builds the related data structures once-and-for-all at init (see sched_init_numa()). Unfortunately, on some architectures node distance is unreliable for offline nodes and may very well change upon onlining. Skip over offline nodes during sched_init_numa(). Track nodes that have been onlined at least once, and trigger a build of a node's NUMA masks when it is first onlined post-init. Reported-by: Geetika Moolchandani <Geetika.Moolchandani1@ibm.com> Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210818074333.48645-1-srikar@linux.vnet.ibm.com
2021-08-20sched: Fix Core-wide rq->lock for uninitialized CPUsPeter Zijlstra2-27/+118
Eugene tripped over the case where rq_lock(), as called in a for_each_possible_cpu() loop came apart because rq->core hadn't been setup yet. This is a somewhat unusual, but valid case. Rework things such that rq->core is initialized to point at itself. IOW initialize each CPU as a single threaded Core. CPU online will then join the new CPU (thread) to an existing Core where needed. For completeness sake, have CPU offline fully undo the state so as to not presume the topology will match the next time it comes online. Fixes: 9edeaea1bc45 ("sched: Core-wide rq->lock") Reported-by: Eugene Syromiatnikov <esyr@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Josh Don <joshdon@google.com> Tested-by: Eugene Syromiatnikov <esyr@redhat.com> Link: https://lkml.kernel.org/r/YR473ZGeKqMs6kw+@hirez.programming.kicks-ass.net
2021-08-17sched/core: Provide a scheduling point for RT locksThomas Gleixner1-1/+19
RT enabled kernels substitute spin/rwlocks with 'sleeping' variants based on rtmutexes. Blocking on such a lock is similar to preemption versus: - I/O scheduling and worker handling, because these functions might block on another substituted lock, or come from a lock contention within these functions. - RCU considers this like a preemption, because the task might be in a read side critical section. Add a separate scheduling point for this, and hand a new scheduling mode argument to __schedule() which allows, along with separate mode masks, to handle this gracefully from within the scheduler, without proliferating that to other subsystems like RCU. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20210815211302.372319055@linutronix.de
2021-08-17sched/core: Rework the __schedule() preempt argumentThomas Gleixner1-11/+23
PREEMPT_RT needs to hand a special state into __schedule() when a task blocks on a 'sleeping' spin/rwlock. This is required to handle rcu_note_context_switch() correctly without having special casing in the RCU code. From an RCU point of view the blocking on the sleeping spinlock is equivalent to preemption, because the task might be in a read side critical section. schedule_debug() also has a check which would trigger with the !preempt case, but that could be handled differently. To avoid adding another argument and extra checks which cannot be optimized out by the compiler, the following solution has been chosen: - Replace the boolean 'preempt' argument with an unsigned integer 'sched_mode' argument and define constants to hand in: (0 == no preemption, 1 = preemption). - Add two masks to apply on that mode: one for the debug/rcu invocations, and one for the actual scheduling decision. For a non RT kernel these masks are UINT_MAX, i.e. all bits are set, which allows the compiler to optimize the AND operation out, because it is not masking out anything. IOW, it's not different from the boolean. RT enabled kernels will define these masks separately. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20210815211302.315473019@linutronix.de
2021-08-17sched/wakeup: Prepare for RT sleeping spin/rwlocksThomas Gleixner1-0/+33
Waiting for spinlocks and rwlocks on non RT enabled kernels is task::state preserving. Any wakeup which matches the state is valid. RT enabled kernels substitutes them with 'sleeping' spinlocks. This creates an issue vs. task::__state. In order to block on the lock, the task has to overwrite task::__state and a consecutive wakeup issued by the unlocker sets the state back to TASK_RUNNING. As a consequence the task loses the state which was set before the lock acquire and also any regular wakeup targeted at the task while it is blocked on the lock. To handle this gracefully, add a 'saved_state' member to task_struct which is used in the following way: 1) When a task blocks on a 'sleeping' spinlock, the current state is saved in task::saved_state before it is set to TASK_RTLOCK_WAIT. 2) When the task unblocks and after acquiring the lock, it restores the saved state. 3) When a regular wakeup happens for a task while it is blocked then the state change of that wakeup is redirected to operate on task::saved_state. This is also required when the task state is running because the task might have been woken up from the lock wait and has not yet restored the saved state. To make it complete, provide the necessary helpers to save and restore the saved state along with the necessary documentation how the RT lock blocking is supposed to work. For non-RT kernels there is no functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20210815211302.258751046@linutronix.de
2021-08-17sched/wakeup: Split out the wakeup ->__state checkThomas Gleixner1-6/+18
RT kernels have a slightly more complicated handling of wakeups due to 'sleeping' spin/rwlocks. If a task is blocked on such a lock then the original state of the task is preserved over the blocking period, and any regular (non lock related) wakeup has to be targeted at the saved state to ensure that these wakeups are not lost. Once the task acquires the lock it restores the task state from the saved state. To avoid cluttering try_to_wake_up() with that logic, split the wakeup state check out into an inline helper and use it at both places where task::__state is checked against the state argument of try_to_wake_up(). No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20210815211302.088945085@linutronix.de
2021-08-10sched: Replace deprecated CPU-hotplug functions.Sebastian Andrzej Siewior1-2/+2
The functions get_online_cpus() and put_online_cpus() have been deprecated during the CPU hotplug rework. They map directly to cpus_read_lock() and cpus_read_unlock(). Replace deprecated CPU-hotplug functions with the official version. The behavior remains unchanged. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210803141621.780504-33-bigeasy@linutronix.de
2021-08-06rcu: Explain why rcu_all_qs() is a stub in preemptible TREE RCUFrederic Weisbecker1-0/+11
The cond_resched() function reports an RCU quiescent state only in non-preemptible TREE RCU implementation. This commit therefore adds a comment explaining why cond_resched() does nothing in preemptible kernels. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Cc: Neeraj Upadhyay <neeraju@codeaurora.org> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Uladzislau Rezki <urezki@gmail.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-08-06cpufreq: schedutil: Use kobject release() method to free sugov_tunablesKevin Hao1-5/+11
The struct sugov_tunables is protected by the kobject, so we can't free it directly. Otherwise we would get a call trace like this: ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x30 WARNING: CPU: 3 PID: 720 at lib/debugobjects.c:505 debug_print_object+0xb8/0x100 Modules linked in: CPU: 3 PID: 720 Comm: a.sh Tainted: G W 5.14.0-rc1-next-20210715-yocto-standard+ #507 Hardware name: Marvell OcteonTX CN96XX board (DT) pstate: 40400009 (nZcv daif +PAN -UAO -TCO BTYPE=--) pc : debug_print_object+0xb8/0x100 lr : debug_print_object+0xb8/0x100 sp : ffff80001ecaf910 x29: ffff80001ecaf910 x28: ffff00011b10b8d0 x27: ffff800011043d80 x26: ffff00011a8f0000 x25: ffff800013cb3ff0 x24: 0000000000000000 x23: ffff80001142aa68 x22: ffff800011043d80 x21: ffff00010de46f20 x20: ffff800013c0c520 x19: ffff800011d8f5b0 x18: 0000000000000010 x17: 6e6968207473696c x16: 5f72656d6974203a x15: 6570797420746365 x14: 6a626f2029302065 x13: 303378302f307830 x12: 2b6e665f72656d69 x11: ffff8000124b1560 x10: ffff800012331520 x9 : ffff8000100ca6b0 x8 : 000000000017ffe8 x7 : c0000000fffeffff x6 : 0000000000000001 x5 : ffff800011d8c000 x4 : ffff800011d8c740 x3 : 0000000000000000 x2 : ffff0001108301c0 x1 : ab3c90eedf9c0f00 x0 : 0000000000000000 Call trace: debug_print_object+0xb8/0x100 __debug_check_no_obj_freed+0x1c0/0x230 debug_check_no_obj_freed+0x20/0x88 slab_free_freelist_hook+0x154/0x1c8 kfree+0x114/0x5d0 sugov_exit+0xbc/0xc0 cpufreq_exit_governor+0x44/0x90 cpufreq_set_policy+0x268/0x4a8 store_scaling_governor+0xe0/0x128 store+0xc0/0xf0 sysfs_kf_write+0x54/0x80 kernfs_fop_write_iter+0x128/0x1c0 new_sync_write+0xf0/0x190 vfs_write+0x2d4/0x478 ksys_write+0x74/0x100 __arm64_sys_write+0x24/0x30 invoke_syscall.constprop.0+0x54/0xe0 do_el0_svc+0x64/0x158 el0_svc+0x2c/0xb0 el0t_64_sync_handler+0xb0/0xb8 el0t_64_sync+0x198/0x19c irq event stamp: 5518 hardirqs last enabled at (5517): [<ffff8000100cbd7c>] console_unlock+0x554/0x6c8 hardirqs last disabled at (5518): [<ffff800010fc0638>] el1_dbg+0x28/0xa0 softirqs last enabled at (5504): [<ffff8000100106e0>] __do_softirq+0x4d0/0x6c0 softirqs last disabled at (5483): [<ffff800010049548>] irq_exit+0x1b0/0x1b8 So split the original sugov_tunables_free() into two functions, sugov_clear_global_tunables() is just used to clear the global_tunables and the new sugov_tunables_free() is used as kobj_type::release to release the sugov_tunables safely. Fixes: 9bdcb44e391d ("cpufreq: schedutil: New governor based on scheduler utilization data") Cc: 4.7+ <stable@vger.kernel.org> # 4.7+ Signed-off-by: Kevin Hao <haokexin@gmail.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-08-06sched: Skip priority checks with SCHED_FLAG_KEEP_PARAMSQuentin Perret1-6/+13
SCHED_FLAG_KEEP_PARAMS can be passed to sched_setattr to specify that the call must not touch scheduling parameters (nice or priority). This is particularly handy for uclamp when used in conjunction with SCHED_FLAG_KEEP_POLICY as that allows to issue a syscall that only impacts uclamp values. However, sched_setattr always checks whether the priorities and nice values passed in sched_attr are valid first, even if those never get used down the line. This is useless at best since userspace can trivially bypass this check to set the uclamp values by specifying low priorities. However, it is cumbersome to do so as there is no single expression of this that skips both RT and CFS checks at once. As such, userspace needs to query the task policy first with e.g. sched_getattr and then set sched_attr.sched_priority accordingly. This is racy and slower than a single call. As the priority and nice checks are useless when SCHED_FLAG_KEEP_PARAMS is specified, simply inherit them in this case to match the policy inheritance of SCHED_FLAG_KEEP_POLICY. Reported-by: Wei Wang <wvw@google.com> Signed-off-by: Quentin Perret <qperret@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Reviewed-by: Qais Yousef <qais.yousef@arm.com> Link: https://lore.kernel.org/r/20210805102154.590709-3-qperret@google.com
2021-08-06sched: Fix UCLAMP_FLAG_IDLE settingQuentin Perret1-6/+19
The UCLAMP_FLAG_IDLE flag is set on a runqueue when dequeueing the last uclamp active task (that is, when buckets.tasks reaches 0 for all buckets) to maintain the last uclamp.max and prevent blocked util from suddenly becoming visible. However, there is an asymmetry in how the flag is set and cleared which can lead to having the flag set whilst there are active tasks on the rq. Specifically, the flag is cleared in the uclamp_rq_inc() path, which is called at enqueue time, but set in uclamp_rq_dec_id() which is called both when dequeueing a task _and_ in the update_uclamp_active() path. As a result, when both uclamp_rq_{dec,ind}_id() are called from update_uclamp_active(), the flag ends up being set but not cleared, hence leaving the runqueue in a broken state. Fix this by clearing the flag in update_uclamp_active() as well. Fixes: e496187da710 ("sched/uclamp: Enforce last task's UCLAMP_MAX") Reported-by: Rick Yiu <rickyiu@google.com> Signed-off-by: Quentin Perret <qperret@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Qais Yousef <qais.yousef@arm.com> Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20210805102154.590709-2-qperret@google.com
2021-08-06sched/deadline: Fix missing clock update in migrate_task_rq_dl()Dietmar Eggemann1-0/+1
A missing clock update is causing the following warning: rq->clock_update_flags < RQCF_ACT_SKIP WARNING: CPU: 112 PID: 2041 at kernel/sched/sched.h:1453 sub_running_bw.isra.0+0x190/0x1a0 ... CPU: 112 PID: 2041 Comm: sugov:112 Tainted: G W 5.14.0-rc1 #1 Hardware name: WIWYNN Mt.Jade Server System B81.030Z1.0007/Mt.Jade Motherboard, BIOS 1.6.20210526 (SCP: 1.06.20210526) 2021/05/26 ... Call trace: sub_running_bw.isra.0+0x190/0x1a0 migrate_task_rq_dl+0xf8/0x1e0 set_task_cpu+0xa8/0x1f0 try_to_wake_up+0x150/0x3d4 wake_up_q+0x64/0xc0 __up_write+0xd0/0x1c0 up_write+0x4c/0x2b0 cppc_set_perf+0x120/0x2d0 cppc_cpufreq_set_target+0xe0/0x1a4 [cppc_cpufreq] __cpufreq_driver_target+0x74/0x140 sugov_work+0x64/0x80 kthread_worker_fn+0xe0/0x230 kthread+0x138/0x140 ret_from_fork+0x10/0x18 The task causing this is the `cppc_fie` DL task introduced by commit 1eb5dde674f5 ("cpufreq: CPPC: Add support for frequency invariance"). With CONFIG_ACPI_CPPC_CPUFREQ_FIE=y and schedutil cpufreq governor on slow-switching system (like on this Ampere Altra WIWYNN Mt. Jade Arm Server): DL task `curr=sugov:112` lets `p=cppc_fie` migrate and since the latter is in `non_contending` state, migrate_task_rq_dl() calls sub_running_bw()->__sub_running_bw()->cpufreq_update_util()-> rq_clock()->assert_clock_updated() on p. Fix this by updating the clock for a non_contending task in migrate_task_rq_dl() before calling sub_running_bw(). Reported-by: Bruno Goncalves <bgoncalv@redhat.com> Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Daniel Bristot de Oliveira <bristot@kernel.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20210804135925.3734605-1-dietmar.eggemann@arm.com
2021-08-04sched/fair: Avoid a second scan of target in select_idle_cpuMel Gorman1-1/+1
When select_idle_cpu starts scanning for an idle CPU, it starts with a target CPU that has already been checked by select_idle_sibling. This patch starts with the next CPU instead. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210804115857.6253-3-mgorman@techsingularity.net
2021-08-04sched/fair: Use prev instead of new target as recent_used_cpuMel Gorman1-3/+1
After select_idle_sibling, p->recent_used_cpu is set to the new target. However on the next wakeup, prev will be the same as recent_used_cpu unless the load balancer has moved the task since the last wakeup. It still works, but is less efficient than it could be. This patch preserves recent_used_cpu for longer. The impact on SIS efficiency is tiny so the SIS statistic patches were used to track the hit rate for using recent_used_cpu. With perf bench pipe on a 2-socket Cascadelake machine, the hit rate went from 57.14% to 85.32%. For more intensive wakeup loads like hackbench, the hit rate is almost negligible but rose from 0.21% to 6.64%. For scaling loads like tbench, the hit rate goes from almost 0% to 25.42% overall. Broadly speaking, on tbench, the success rate is much higher for lower thread counts and drops to almost 0 as the workload scales to towards saturation. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210804115857.6253-2-mgorman@techsingularity.net
2021-08-04sched: Don't report SCHED_FLAG_SUGOV in sched_getattr()Quentin Perret1-0/+1
SCHED_FLAG_SUGOV is supposed to be a kernel-only flag that userspace cannot interact with. However, sched_getattr() currently reports it in sched_flags if called on a sugov worker even though it is not actually defined in a UAPI header. To avoid this, make sure to clean-up the sched_flags field in sched_getattr() before returning to userspace. Signed-off-by: Quentin Perret <qperret@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210727101103.2729607-3-qperret@google.com
2021-08-04sched/deadline: Fix reset_on_fork reporting of DL tasksQuentin Perret2-3/+6
It is possible for sched_getattr() to incorrectly report the state of the reset_on_fork flag when called on a deadline task. Indeed, if the flag was set on a deadline task using sched_setattr() with flags (SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_KEEP_PARAMS), then p->sched_reset_on_fork will be set, but __setscheduler() will bail out early, which means that the dl_se->flags will not get updated by __setscheduler_params()->__setparam_dl(). Consequently, if sched_getattr() is then called on the task, __getparam_dl() will override kattr.sched_flags with the now out-of-date copy in dl_se->flags and report the stale value to userspace. To fix this, make sure to only copy the flags that are relevant to sched_deadline to and from the dl_se->flags field. Signed-off-by: Quentin Perret <qperret@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210727101103.2729607-2-qperret@google.com
2021-08-04sched: remove redundant on_rq status changeWang Hui1-2/+0
activate_task/deactivate_task will change on_rq status, no need to do it again. Signed-off-by: Wang Hui <john.wanghui@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210721091109.1406043-1-john.wanghui@huawei.com
2021-08-04sched/numa: Fix is_core_idle()Mika Penttilä1-1/+1
Use the loop variable instead of the function argument to test the other SMT siblings for idle. Fixes: ff7db0bf24db ("sched/numa: Prefer using an idle CPU as a migration target instead of comparing tasks") Signed-off-by: Mika Penttilä <mika.penttila@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Pankaj Gupta <pankaj.gupta@ionos.com> Link: https://lkml.kernel.org/r/20210722063946.28951-1-mika.penttila@gmail.com
2021-08-04sched/rt: Fix double enqueue caused by rt_effective_prioPeter Zijlstra1-55/+35
Double enqueues in rt runqueues (list) have been reported while running a simple test that spawns a number of threads doing a short sleep/run pattern while being concurrently setscheduled between rt and fair class. WARNING: CPU: 3 PID: 2825 at kernel/sched/rt.c:1294 enqueue_task_rt+0x355/0x360 CPU: 3 PID: 2825 Comm: setsched__13 RIP: 0010:enqueue_task_rt+0x355/0x360 Call Trace: __sched_setscheduler+0x581/0x9d0 _sched_setscheduler+0x63/0xa0 do_sched_setscheduler+0xa0/0x150 __x64_sys_sched_setscheduler+0x1a/0x30 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xae list_add double add: new=ffff9867cb629b40, prev=ffff9867cb629b40, next=ffff98679fc67ca0. kernel BUG at lib/list_debug.c:31! invalid opcode: 0000 [#1] PREEMPT_RT SMP PTI CPU: 3 PID: 2825 Comm: setsched__13 RIP: 0010:__list_add_valid+0x41/0x50 Call Trace: enqueue_task_rt+0x291/0x360 __sched_setscheduler+0x581/0x9d0 _sched_setscheduler+0x63/0xa0 do_sched_setscheduler+0xa0/0x150 __x64_sys_sched_setscheduler+0x1a/0x30 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xae __sched_setscheduler() uses rt_effective_prio() to handle proper queuing of priority boosted tasks that are setscheduled while being boosted. rt_effective_prio() is however called twice per each __sched_setscheduler() call: first directly by __sched_setscheduler() before dequeuing the task and then by __setscheduler() to actually do the priority change. If the priority of the pi_top_task is concurrently being changed however, it might happen that the two calls return different results. If, for example, the first call returned the same rt priority the task was running at and the second one a fair priority, the task won't be removed by the rt list (on_list still set) and then enqueued in the fair runqueue. When eventually setscheduled back to rt it will be seen as enqueued already and the WARNING/BUG be issued. Fix this by calling rt_effective_prio() only once and then reusing the return value. While at it refactor code as well for clarity. Concurrent priority inheritance handling is still safe and will eventually converge to a new state by following the inheritance chain(s). Fixes: 0782e63bc6fe ("sched: Handle priority boosted tasks proper in setscheduler()") [squashed Peterz changes; added changelog] Reported-by: Mark Simmons <msimmons@redhat.com> Signed-off-by: Juri Lelli <juri.lelli@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210803104501.38333-1-juri.lelli@redhat.com
2021-07-11Merge tag 'sched-urgent-2021-07-11' of ↵Linus Torvalds2-10/+18
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Ingo Molnar: "Three fixes: - Fix load tracking bug/inconsistency - Fix a sporadic CFS bandwidth constraints enforcement bug - Fix a uclamp utilization tracking bug for newly woken tasks" * tag 'sched-urgent-2021-07-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/uclamp: Ignore max aggregation if rq is idle sched/fair: Fix CFS bandwidth hrtimer expiry type sched/fair: Sync load_sum with load_avg after dequeue
2021-07-07Merge tag 'pm-5.14-rc1-2' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull more power management updates from Rafael Wysocki: "These include cpufreq core simplifications and fixes, cpufreq driver updates, cpuidle driver update, a generic power domains (genpd) locking fix and a debug-related simplification of the PM core. Specifics: - Drop the ->stop_cpu() (not really useful) and ->resolve_freq() (unused) cpufreq driver callbacks and modify the users of the former accordingly (Viresh Kumar, Rafael Wysocki). - Add frequency invariance support to the ACPI CPPC cpufreq driver again along with the related fixes and cleanups (Viresh Kumar). - Update the Meditak, qcom and SCMI ARM cpufreq drivers (Fabien Parent, Seiya Wang, Sibi Sankar, Christophe JAILLET). - Rename black/white-lists in the DT cpufreq driver (Viresh Kumar). - Add generic performance domains support to the dvfs DT bindings (Sudeep Holla). - Refine locking in the generic power domains (genpd) support code to avoid lock dependency issues (Stephen Boyd). - Update the MSM and qcom ARM cpuidle drivers (Bartosz Dudziak). - Simplify the PM core debug code by using ktime_us_delta() to compute time interval lengths (Mark-PK Tsai)" * tag 'pm-5.14-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (21 commits) PM: domains: Shrink locking area of the gpd_list_lock PM: sleep: Use ktime_us_delta() in initcall_debug_report() cpufreq: CPPC: Add support for frequency invariance arch_topology: Avoid use-after-free for scale_freq_data cpufreq: CPPC: Pass structure instance by reference cpufreq: CPPC: Fix potential memleak in cppc_cpufreq_cpu_init cpufreq: Remove ->resolve_freq() cpufreq: Reuse cpufreq_driver_resolve_freq() in __cpufreq_driver_target() cpufreq: Remove the ->stop_cpu() driver callback cpufreq: powernv: Migrate to ->exit() callback instead of ->stop_cpu() cpufreq: CPPC: Migrate to ->exit() callback instead of ->stop_cpu() cpufreq: intel_pstate: Combine ->stop_cpu() and ->offline() cpuidle: qcom: Add SPM register data for MSM8226 dt-bindings: arm: msm: Add SAW2 for MSM8226 dt-bindings: cpufreq: update cpu type and clock name for MT8173 SoC clk: mediatek: remove deprecated CLK_INFRA_CA57SEL for MT8173 SoC cpufreq: dt: Rename black/white-lists cpufreq: scmi: Fix an error message cpufreq: mediatek: add support for mt8365 dt-bindings: dvfs: Add support for generic performance domains ...
2021-07-02sched/uclamp: Ignore max aggregation if rq is idleXuewen Yan1-7/+14
When a task wakes up on an idle rq, uclamp_rq_util_with() would max aggregate with rq value. But since there is no task enqueued yet, the values are stale based on the last task that was running. When the new task actually wakes up and enqueued, then the rq uclamp values should reflect that of the newly woken up task effective uclamp values. This is a problem particularly for uclamp_max because it default to 1024. If a task p with uclamp_max = 512 wakes up, then max aggregation would ignore the capping that should apply when this task is enqueued, which is wrong. Fix that by ignoring max aggregation if the rq is idle since in that case the effective uclamp value of the rq will be the ones of the task that will wake up. Fixes: 9d20ad7dfc9a ("sched/uclamp: Add uclamp_util_with()") Signed-off-by: Xuewen Yan <xuewen.yan@unisoc.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> [qias: Changelog] Reviewed-by: Qais Yousef <qais.yousef@arm.com> Link: https://lore.kernel.org/r/20210630141204.8197-1-xuewen.yan94@gmail.com