summaryrefslogtreecommitdiff
path: root/kernel/rcutree.c
AgeCommit message (Collapse)AuthorFilesLines
2011-07-13rcu: Prevent RCU callbacks from executing before scheduler initializedPaul E. McKenney1-1/+25
Under some rare but real combinations of configuration parameters, RCU callbacks are posted during early boot that use kernel facilities that are not yet initialized. Therefore, when these callbacks are invoked, hard hangs and crashes ensue. This commit therefore prevents RCU callbacks from being invoked until after the scheduler is fully up and running, as in after multiple tasks have been spawned. It might well turn out that a better approach is to identify the specific RCU callbacks that are causing this problem, but that discussion will wait until such time as someone really needs an RCU callback to be invoked (as opposed to merely registered) during early boot. Reported-by: julie Sullivan <kernelmail.jms@gmail.com> Reported-by: RKK <kulkarni.ravi4@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Tested-by: julie Sullivan <kernelmail.jms@gmail.com> Tested-by: RKK <kulkarni.ravi4@gmail.com>
2011-06-17rcu: Move RCU_BOOST #ifdefs to header filePaul E. McKenney1-382/+1
The commit "use softirq instead of kthreads except when RCU_BOOST=y" just applied #ifdef in place. This commit is a cleanup that moves the newly #ifdef'ed code to the header file kernel/rcutree_plugin.h. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-06-16rcu: use softirq instead of kthreads except when RCU_BOOST=yPaul E. McKenney1-15/+44
This patch #ifdefs RCU kthreads out of the kernel unless RCU_BOOST=y, thus eliminating context-switch overhead if RCU priority boosting has not been configured. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-06-15rcu: Use softirq to address performance regressionShaohua Li1-4/+19
Commit a26ac2455ffcf3(rcu: move TREE_RCU from softirq to kthread) introduced performance regression. In an AIM7 test, this commit degraded performance by about 40%. The commit runs rcu callbacks in a kthread instead of softirq. We observed high rate of context switch which is caused by this. Out test system has 64 CPUs and HZ is 1000, so we saw more than 64k context switch per second which is caused by RCU's per-CPU kthread. A trace showed that most of the time the RCU per-CPU kthread doesn't actually handle any callbacks, but instead just does a very small amount of work handling grace periods. This means that RCU's per-CPU kthreads are making the scheduler do quite a bit of work in order to allow a very small amount of RCU-related processing to be done. Alex Shi's analysis determined that this slowdown is due to lock contention within the scheduler. Unfortunately, as Peter Zijlstra points out, the scheduler's real-time semantics require global action, which means that this contention is inherent in real-time scheduling. (Yes, perhaps someone will come up with a workaround -- otherwise, -rt is not going to do well on large SMP systems -- but this patch will work around this issue in the meantime. And "the meantime" might well be forever.) This patch therefore re-introduces softirq processing to RCU, but only for core RCU work. RCU callbacks are still executed in kthread context, so that only a small amount of RCU work runs in softirq context in the common case. This should minimize ksoftirqd execution, allowing us to skip boosting of ksoftirqd for CONFIG_RCU_BOOST=y kernels. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Tested-by: "Alex,Shi" <alex.shi@intel.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-06-15rcu: Simplify curing of load woesPaul E. McKenney1-44/+21
Make the functions creating the kthreads wake them up. Leverage the fact that the per-node and boost kthreads can run anywhere, thus dispensing with the need to wake them up once the incoming CPU has gone fully online. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Daniel J Blueman <daniel.blueman@gmail.com>
2011-05-31rcu: Cure load woesPeter Zijlstra1-8/+46
Commit cc3ce5176d83 (rcu: Start RCU kthreads in TASK_INTERRUPTIBLE state) fudges a sleeping task' state, resulting in the scheduler seeing a TASK_UNINTERRUPTIBLE task going to sleep, but a TASK_INTERRUPTIBLE task waking up. The result is unbalanced load calculation. The problem that patch tried to address is that the RCU threads could stay in UNINTERRUPTIBLE state for quite a while and triggering the hung task detector due to on-demand wake-ups. Cure the problem differently by always giving the tasks at least one wake-up once the CPU is fully up and running, this will kick them out of the initial UNINTERRUPTIBLE state and into the regular INTERRUPTIBLE wait state. [ The alternative would be teaching kthread_create() to start threads as INTERRUPTIBLE but that needs a tad more thought. ] Reported-by: Damien Wyart <damien.wyart@free.fr> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Paul E. McKenney <paul.mckenney@linaro.org> Link: http://lkml.kernel.org/r/1306755291.1200.2872.camel@twins Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-05-28rcu: Start RCU kthreads in TASK_INTERRUPTIBLE statePaul E. McKenney1-0/+2
Upon creation, kthreads are in TASK_UNINTERRUPTIBLE state, which can result in softlockup warnings. Because some of RCU's kthreads can legitimately be idle indefinitely, start them in TASK_INTERRUPTIBLE state in order to avoid those warnings. Suggested-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-05-28rcu: Remove waitqueue usage for cpu, node, and boost kthreadsPeter Zijlstra1-17/+6
It is not necessary to use waitqueues for the RCU kthreads because we always know exactly which thread is to be awakened. In addition, wake_up() only issues an actual wakeup when there is a thread waiting on the queue, which was why there was an extra explicit wake_up_process() to get the RCU kthreads started. Eliminating the waitqueues (and wake_up()) in favor of wake_up_process() eliminates the need for the initial wake_up_process() and also shrinks the data structure size a bit. The wakeup logic is placed in a new rcu_wait() macro. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-05-28rcu: Avoid acquiring rcu_node locks in timer functionsPaul E. McKenney1-8/+5
This commit switches manipulations of the rcu_node ->wakemask field to atomic operations, which allows rcu_cpu_kthread_timer() to avoid acquiring the rcu_node lock. This should avoid the following lockdep splat reported by Valdis Kletnieks: [ 12.872150] usb 1-4: new high speed USB device number 3 using ehci_hcd [ 12.986667] usb 1-4: New USB device found, idVendor=413c, idProduct=2513 [ 12.986679] usb 1-4: New USB device strings: Mfr=0, Product=0, SerialNumber=0 [ 12.987691] hub 1-4:1.0: USB hub found [ 12.987877] hub 1-4:1.0: 3 ports detected [ 12.996372] input: PS/2 Generic Mouse as /devices/platform/i8042/serio1/input/input10 [ 13.071471] udevadm used greatest stack depth: 3984 bytes left [ 13.172129] [ 13.172130] ======================================================= [ 13.172425] [ INFO: possible circular locking dependency detected ] [ 13.172650] 2.6.39-rc6-mmotm0506 #1 [ 13.172773] ------------------------------------------------------- [ 13.172997] blkid/267 is trying to acquire lock: [ 13.173009] (&p->pi_lock){-.-.-.}, at: [<ffffffff81032d8f>] try_to_wake_up+0x29/0x1aa [ 13.173009] [ 13.173009] but task is already holding lock: [ 13.173009] (rcu_node_level_0){..-...}, at: [<ffffffff810901cc>] rcu_cpu_kthread_timer+0x27/0x58 [ 13.173009] [ 13.173009] which lock already depends on the new lock. [ 13.173009] [ 13.173009] [ 13.173009] the existing dependency chain (in reverse order) is: [ 13.173009] [ 13.173009] -> #2 (rcu_node_level_0){..-...}: [ 13.173009] [<ffffffff810679b9>] check_prevs_add+0x8b/0x104 [ 13.173009] [<ffffffff81067da1>] validate_chain+0x36f/0x3ab [ 13.173009] [<ffffffff8106846b>] __lock_acquire+0x369/0x3e2 [ 13.173009] [<ffffffff81068a0f>] lock_acquire+0xfc/0x14c [ 13.173009] [<ffffffff815697f1>] _raw_spin_lock+0x36/0x45 [ 13.173009] [<ffffffff81090794>] rcu_read_unlock_special+0x8c/0x1d5 [ 13.173009] [<ffffffff8109092c>] __rcu_read_unlock+0x4f/0xd7 [ 13.173009] [<ffffffff81027bd3>] rcu_read_unlock+0x21/0x23 [ 13.173009] [<ffffffff8102cc34>] cpuacct_charge+0x6c/0x75 [ 13.173009] [<ffffffff81030cc6>] update_curr+0x101/0x12e [ 13.173009] [<ffffffff810311d0>] check_preempt_wakeup+0xf7/0x23b [ 13.173009] [<ffffffff8102acb3>] check_preempt_curr+0x2b/0x68 [ 13.173009] [<ffffffff81031d40>] ttwu_do_wakeup+0x76/0x128 [ 13.173009] [<ffffffff81031e49>] ttwu_do_activate.constprop.63+0x57/0x5c [ 13.173009] [<ffffffff81031e96>] scheduler_ipi+0x48/0x5d [ 13.173009] [<ffffffff810177d5>] smp_reschedule_interrupt+0x16/0x18 [ 13.173009] [<ffffffff815710f3>] reschedule_interrupt+0x13/0x20 [ 13.173009] [<ffffffff810b66d1>] rcu_read_unlock+0x21/0x23 [ 13.173009] [<ffffffff810b739c>] find_get_page+0xa9/0xb9 [ 13.173009] [<ffffffff810b8b48>] filemap_fault+0x6a/0x34d [ 13.173009] [<ffffffff810d1a25>] __do_fault+0x54/0x3e6 [ 13.173009] [<ffffffff810d447a>] handle_pte_fault+0x12c/0x1ed [ 13.173009] [<ffffffff810d48f7>] handle_mm_fault+0x1cd/0x1e0 [ 13.173009] [<ffffffff8156cfee>] do_page_fault+0x42d/0x5de [ 13.173009] [<ffffffff8156a75f>] page_fault+0x1f/0x30 [ 13.173009] [ 13.173009] -> #1 (&rq->lock){-.-.-.}: [ 13.173009] [<ffffffff810679b9>] check_prevs_add+0x8b/0x104 [ 13.173009] [<ffffffff81067da1>] validate_chain+0x36f/0x3ab [ 13.173009] [<ffffffff8106846b>] __lock_acquire+0x369/0x3e2 [ 13.173009] [<ffffffff81068a0f>] lock_acquire+0xfc/0x14c [ 13.173009] [<ffffffff815697f1>] _raw_spin_lock+0x36/0x45 [ 13.173009] [<ffffffff81027e19>] __task_rq_lock+0x8b/0xd3 [ 13.173009] [<ffffffff81032f7f>] wake_up_new_task+0x41/0x108 [ 13.173009] [<ffffffff810376c3>] do_fork+0x265/0x33f [ 13.173009] [<ffffffff81007d02>] kernel_thread+0x6b/0x6d [ 13.173009] [<ffffffff8153a9dd>] rest_init+0x21/0xd2 [ 13.173009] [<ffffffff81b1db4f>] start_kernel+0x3bb/0x3c6 [ 13.173009] [<ffffffff81b1d29f>] x86_64_start_reservations+0xaf/0xb3 [ 13.173009] [<ffffffff81b1d393>] x86_64_start_kernel+0xf0/0xf7 [ 13.173009] [ 13.173009] -> #0 (&p->pi_lock){-.-.-.}: [ 13.173009] [<ffffffff81067788>] check_prev_add+0x68/0x20e [ 13.173009] [<ffffffff810679b9>] check_prevs_add+0x8b/0x104 [ 13.173009] [<ffffffff81067da1>] validate_chain+0x36f/0x3ab [ 13.173009] [<ffffffff8106846b>] __lock_acquire+0x369/0x3e2 [ 13.173009] [<ffffffff81068a0f>] lock_acquire+0xfc/0x14c [ 13.173009] [<ffffffff815698ea>] _raw_spin_lock_irqsave+0x44/0x57 [ 13.173009] [<ffffffff81032d8f>] try_to_wake_up+0x29/0x1aa [ 13.173009] [<ffffffff81032f3c>] wake_up_process+0x10/0x12 [ 13.173009] [<ffffffff810901e9>] rcu_cpu_kthread_timer+0x44/0x58 [ 13.173009] [<ffffffff81045286>] call_timer_fn+0xac/0x1e9 [ 13.173009] [<ffffffff8104556d>] run_timer_softirq+0x1aa/0x1f2 [ 13.173009] [<ffffffff8103e487>] __do_softirq+0x109/0x26a [ 13.173009] [<ffffffff8157144c>] call_softirq+0x1c/0x30 [ 13.173009] [<ffffffff81003207>] do_softirq+0x44/0xf1 [ 13.173009] [<ffffffff8103e8b9>] irq_exit+0x58/0xc8 [ 13.173009] [<ffffffff81017f5a>] smp_apic_timer_interrupt+0x79/0x87 [ 13.173009] [<ffffffff81570fd3>] apic_timer_interrupt+0x13/0x20 [ 13.173009] [<ffffffff810bd51a>] get_page_from_freelist+0x2aa/0x310 [ 13.173009] [<ffffffff810bdf03>] __alloc_pages_nodemask+0x178/0x243 [ 13.173009] [<ffffffff8101fe2f>] pte_alloc_one+0x1e/0x3a [ 13.173009] [<ffffffff810d27fe>] __pte_alloc+0x22/0x14b [ 13.173009] [<ffffffff810d48a8>] handle_mm_fault+0x17e/0x1e0 [ 13.173009] [<ffffffff8156cfee>] do_page_fault+0x42d/0x5de [ 13.173009] [<ffffffff8156a75f>] page_fault+0x1f/0x30 [ 13.173009] [ 13.173009] other info that might help us debug this: [ 13.173009] [ 13.173009] Chain exists of: [ 13.173009] &p->pi_lock --> &rq->lock --> rcu_node_level_0 [ 13.173009] [ 13.173009] Possible unsafe locking scenario: [ 13.173009] [ 13.173009] CPU0 CPU1 [ 13.173009] ---- ---- [ 13.173009] lock(rcu_node_level_0); [ 13.173009] lock(&rq->lock); [ 13.173009] lock(rcu_node_level_0); [ 13.173009] lock(&p->pi_lock); [ 13.173009] [ 13.173009] *** DEADLOCK *** [ 13.173009] [ 13.173009] 3 locks held by blkid/267: [ 13.173009] #0: (&mm->mmap_sem){++++++}, at: [<ffffffff8156cdb4>] do_page_fault+0x1f3/0x5de [ 13.173009] #1: (&yield_timer){+.-...}, at: [<ffffffff810451da>] call_timer_fn+0x0/0x1e9 [ 13.173009] #2: (rcu_node_level_0){..-...}, at: [<ffffffff810901cc>] rcu_cpu_kthread_timer+0x27/0x58 [ 13.173009] [ 13.173009] stack backtrace: [ 13.173009] Pid: 267, comm: blkid Not tainted 2.6.39-rc6-mmotm0506 #1 [ 13.173009] Call Trace: [ 13.173009] <IRQ> [<ffffffff8154a529>] print_circular_bug+0xc8/0xd9 [ 13.173009] [<ffffffff81067788>] check_prev_add+0x68/0x20e [ 13.173009] [<ffffffff8100c861>] ? save_stack_trace+0x28/0x46 [ 13.173009] [<ffffffff810679b9>] check_prevs_add+0x8b/0x104 [ 13.173009] [<ffffffff81067da1>] validate_chain+0x36f/0x3ab [ 13.173009] [<ffffffff8106846b>] __lock_acquire+0x369/0x3e2 [ 13.173009] [<ffffffff81032d8f>] ? try_to_wake_up+0x29/0x1aa [ 13.173009] [<ffffffff81068a0f>] lock_acquire+0xfc/0x14c [ 13.173009] [<ffffffff81032d8f>] ? try_to_wake_up+0x29/0x1aa [ 13.173009] [<ffffffff810901a5>] ? rcu_check_quiescent_state+0x82/0x82 [ 13.173009] [<ffffffff815698ea>] _raw_spin_lock_irqsave+0x44/0x57 [ 13.173009] [<ffffffff81032d8f>] ? try_to_wake_up+0x29/0x1aa [ 13.173009] [<ffffffff81032d8f>] try_to_wake_up+0x29/0x1aa [ 13.173009] [<ffffffff810901a5>] ? rcu_check_quiescent_state+0x82/0x82 [ 13.173009] [<ffffffff81032f3c>] wake_up_process+0x10/0x12 [ 13.173009] [<ffffffff810901e9>] rcu_cpu_kthread_timer+0x44/0x58 [ 13.173009] [<ffffffff810901a5>] ? rcu_check_quiescent_state+0x82/0x82 [ 13.173009] [<ffffffff81045286>] call_timer_fn+0xac/0x1e9 [ 13.173009] [<ffffffff810451da>] ? del_timer+0x75/0x75 [ 13.173009] [<ffffffff810901a5>] ? rcu_check_quiescent_state+0x82/0x82 [ 13.173009] [<ffffffff8104556d>] run_timer_softirq+0x1aa/0x1f2 [ 13.173009] [<ffffffff8103e487>] __do_softirq+0x109/0x26a [ 13.173009] [<ffffffff8106365f>] ? tick_dev_program_event+0x37/0xf6 [ 13.173009] [<ffffffff810a0e4a>] ? time_hardirqs_off+0x1b/0x2f [ 13.173009] [<ffffffff8157144c>] call_softirq+0x1c/0x30 [ 13.173009] [<ffffffff81003207>] do_softirq+0x44/0xf1 [ 13.173009] [<ffffffff8103e8b9>] irq_exit+0x58/0xc8 [ 13.173009] [<ffffffff81017f5a>] smp_apic_timer_interrupt+0x79/0x87 [ 13.173009] [<ffffffff81570fd3>] apic_timer_interrupt+0x13/0x20 [ 13.173009] <EOI> [<ffffffff810bd384>] ? get_page_from_freelist+0x114/0x310 [ 13.173009] [<ffffffff810bd51a>] ? get_page_from_freelist+0x2aa/0x310 [ 13.173009] [<ffffffff812220e7>] ? clear_page_c+0x7/0x10 [ 13.173009] [<ffffffff810bd1ef>] ? prep_new_page+0x14c/0x1cd [ 13.173009] [<ffffffff810bd51a>] get_page_from_freelist+0x2aa/0x310 [ 13.173009] [<ffffffff810bdf03>] __alloc_pages_nodemask+0x178/0x243 [ 13.173009] [<ffffffff810d46b9>] ? __pmd_alloc+0x87/0x99 [ 13.173009] [<ffffffff8101fe2f>] pte_alloc_one+0x1e/0x3a [ 13.173009] [<ffffffff810d46b9>] ? __pmd_alloc+0x87/0x99 [ 13.173009] [<ffffffff810d27fe>] __pte_alloc+0x22/0x14b [ 13.173009] [<ffffffff810d48a8>] handle_mm_fault+0x17e/0x1e0 [ 13.173009] [<ffffffff8156cfee>] do_page_fault+0x42d/0x5de [ 13.173009] [<ffffffff810d915f>] ? sys_brk+0x32/0x10c [ 13.173009] [<ffffffff810a0e4a>] ? time_hardirqs_off+0x1b/0x2f [ 13.173009] [<ffffffff81065c4f>] ? trace_hardirqs_off_caller+0x3f/0x9c [ 13.173009] [<ffffffff812235dd>] ? trace_hardirqs_off_thunk+0x3a/0x3c [ 13.173009] [<ffffffff8156a75f>] page_fault+0x1f/0x30 [ 14.010075] usb 5-1: new full speed USB device number 2 using uhci_hcd Reported-by: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-05-28Merge branch 'rcu/urgent' of ↵Ingo Molnar1-74/+56
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-2.6-rcu into core/urgent
2011-05-26rcu: Decrease memory-barrier usage based on semi-formal proofPaul E. McKenney1-61/+50
(Note: this was reverted, and is now being re-applied in pieces, with this being the fifth and final piece. See below for the reason that it is now felt to be safe to re-apply this.) Commit d09b62d fixed grace-period synchronization, but left some smp_mb() invocations in rcu_process_callbacks() that are no longer needed, but sheer paranoia prevented them from being removed. This commit removes them and provides a proof of correctness in their absence. It also adds a memory barrier to rcu_report_qs_rsp() immediately before the update to rsp->completed in order to handle the theoretical possibility that the compiler or CPU might move massive quantities of code into a lock-based critical section. This also proves that the sheer paranoia was not entirely unjustified, at least from a theoretical point of view. In addition, the old dyntick-idle synchronization depended on the fact that grace periods were many milliseconds in duration, so that it could be assumed that no dyntick-idle CPU could reorder a memory reference across an entire grace period. Unfortunately for this design, the addition of expedited grace periods breaks this assumption, which has the unfortunate side-effect of requiring atomic operations in the functions that track dyntick-idle state for RCU. (There is some hope that the algorithms used in user-level RCU might be applied here, but some work is required to handle the NMIs that user-space applications can happily ignore. For the short term, better safe than sorry.) This proof assumes that neither compiler nor CPU will allow a lock acquisition and release to be reordered, as doing so can result in deadlock. The proof is as follows: 1. A given CPU declares a quiescent state under the protection of its leaf rcu_node's lock. 2. If there is more than one level of rcu_node hierarchy, the last CPU to declare a quiescent state will also acquire the ->lock of the next rcu_node up in the hierarchy, but only after releasing the lower level's lock. The acquisition of this lock clearly cannot occur prior to the acquisition of the leaf node's lock. 3. Step 2 repeats until we reach the root rcu_node structure. Please note again that only one lock is held at a time through this process. The acquisition of the root rcu_node's ->lock must occur after the release of that of the leaf rcu_node. 4. At this point, we set the ->completed field in the rcu_state structure in rcu_report_qs_rsp(). However, if the rcu_node hierarchy contains only one rcu_node, then in theory the code preceding the quiescent state could leak into the critical section. We therefore precede the update of ->completed with a memory barrier. All CPUs will therefore agree that any updates preceding any report of a quiescent state will have happened before the update of ->completed. 5. Regardless of whether a new grace period is needed, rcu_start_gp() will propagate the new value of ->completed to all of the leaf rcu_node structures, under the protection of each rcu_node's ->lock. If a new grace period is needed immediately, this propagation will occur in the same critical section that ->completed was set in, but courtesy of the memory barrier in #4 above, is still seen to follow any pre-quiescent-state activity. 6. When a given CPU invokes __rcu_process_gp_end(), it becomes aware of the end of the old grace period and therefore makes any RCU callbacks that were waiting on that grace period eligible for invocation. If this CPU is the same one that detected the end of the grace period, and if there is but a single rcu_node in the hierarchy, we will still be in the single critical section. In this case, the memory barrier in step #4 guarantees that all callbacks will be seen to execute after each CPU's quiescent state. On the other hand, if this is a different CPU, it will acquire the leaf rcu_node's ->lock, and will again be serialized after each CPU's quiescent state for the old grace period. On the strength of this proof, this commit therefore removes the memory barriers from rcu_process_callbacks() and adds one to rcu_report_qs_rsp(). The effect is to reduce the number of memory barriers by one and to reduce the frequency of execution from about once per scheduling tick per CPU to once per grace period. This was reverted do to hangs found during testing by Yinghai Lu and Ingo Molnar. Frederic Weisbecker supplied Yinghai with tracing that located the underlying problem, and Frederic also provided the fix. The underlying problem was that the HARDIRQ_ENTER() macro from lib/locking-selftest.c invoked irq_enter(), which in turn invokes rcu_irq_enter(), but HARDIRQ_EXIT() invoked __irq_exit(), which does not invoke rcu_irq_exit(). This situation resulted in calls to rcu_irq_enter() that were not balanced by the required calls to rcu_irq_exit(). Therefore, after these locking selftests completed, RCU's dyntick-idle nesting count was a large number (for example, 72), which caused RCU to to conclude that the affected CPU was not in dyntick-idle mode when in fact it was. RCU would therefore incorrectly wait for this dyntick-idle CPU, resulting in hangs. In contrast, with Frederic's patch, which replaces the irq_enter() in HARDIRQ_ENTER() with an __irq_enter(), these tests don't ever call either rcu_irq_enter() or rcu_irq_exit(), which works because the CPU running the test is already marked as not being in dyntick-idle mode. This means that the rcu_irq_enter() and rcu_irq_exit() calls and RCU then has no problem working out which CPUs are in dyntick-idle mode and which are not. The reason that the imbalance was not noticed before the barrier patch was applied is that the old implementation of rcu_enter_nohz() ignored the nesting depth. This could still result in delays, but much shorter ones. Whenever there was a delay, RCU would IPI the CPU with the unbalanced nesting level, which would eventually result in rcu_enter_nohz() being called, which in turn would force RCU to see that the CPU was in dyntick-idle mode. The reason that very few people noticed the problem is that the mismatched irq_enter() vs. __irq_exit() occured only when the kernel was built with CONFIG_DEBUG_LOCKING_API_SELFTESTS. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-26rcu: Make rcu_enter_nohz() pay attention to nestingPaul E. McKenney1-2/+2
The old version of rcu_enter_nohz() forced RCU into nohz mode even if the nesting count was non-zero. This change causes rcu_enter_nohz() to hold off for non-zero nesting counts. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-05-26rcu: Don't do reschedule unless in irqPaul E. McKenney1-2/+3
Condition the set_need_resched() in rcu_irq_exit() on in_irq(). This should be a no-op, because rcu_irq_exit() should only be called from irq. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-05-26rcu: Remove old memory barriers from rcu_process_callbacks()Paul E. McKenney1-14/+0
Second step of partitioning of commit e59fb3120b. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-05-26rcu: Add memory barriersPaul E. McKenney1-0/+6
Add the memory barriers added by e59fb3120b. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-05-20sanitize <linux/prefetch.h> usageLinus Torvalds1-0/+1
Commit e66eed651fd1 ("list: remove prefetching from regular list iterators") removed the include of prefetch.h from list.h, which uncovered several cases that had apparently relied on that rather obscure header file dependency. So this fixes things up a bit, using grep -L linux/prefetch.h $(git grep -l '[^a-z_]prefetchw*(' -- '*.[ch]') grep -L 'prefetchw*(' $(git grep -l 'linux/prefetch.h' -- '*.[ch]') to guide us in finding files that either need <linux/prefetch.h> inclusion, or have it despite not needing it. There are more of them around (mostly network drivers), but this gets many core ones. Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-20Revert "rcu: Decrease memory-barrier usage based on semi-formal proof"Paul E. McKenney1-56/+74
This reverts commit e59fb3120becfb36b22ddb8bd27d065d3cdca499. This reversion was due to (extreme) boot-time slowdowns on SPARC seen by Yinghai Lu and on x86 by Ingo . This is a non-trivial reversion due to intervening commits. Conflicts: Documentation/RCU/trace.txt kernel/rcutree.c Signed-off-by: Ingo Molnar <mingo@elte.hu>
2011-05-08rcu: permit rcu_read_unlock() to be called while holding runqueue locksPaul E. McKenney1-31/+13
Avoid calling into the scheduler while holding core RCU locks. This allows rcu_read_unlock() to be called while holding the runqueue locks, but only as long as there was no chance of the RCU read-side critical section having been preempted. (Otherwise, if RCU priority boosting is enabled, rcu_read_unlock() might call into the scheduler in order to unboost itself, which might allows self-deadlock on the runqueue locks within the scheduler.) Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-05-06rcu: provide rcu_virt_note_context_switch() function.Gleb Natapov1-0/+1
Provide rcu_virt_note_context_switch() for vitalization use to note quiescent state during guest entry. Signed-off-by: Gleb Natapov <gleb@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-05-06rcu: get rid of signed overflow in check_cpu_stall()Paul E. McKenney1-5/+8
Signed integer overflow is undefined by the C standard, so move calculations to unsigned. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-05-06rcu: prevent call_rcu() from diving into rcu core if irqs disabledPaul E. McKenney1-1/+8
This commit marks a first step towards making call_rcu() have real-time behavior. If irqs are disabled, don't dive into the RCU core. Later on, this new early exit will wake up the per-CPU kthread, which first must be modified to handle the cases involving callback storms. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-06rcu: further lower priority in rcu_yield()Paul E. McKenney1-0/+1
Although rcu_yield() dropped from real-time to normal priority, there is always the possibility that the competing tasks have been niced. So nice to 19 in rcu_yield() to help ensure that other tasks have a better chance of running. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-06rcu: introduce kfree_rcu()Lai Jiangshan1-1/+1
Many rcu callbacks functions just call kfree() on the base structure. These functions are trivial, but their size adds up, and furthermore when they are used in a kernel module, that module must invoke the high-latency rcu_barrier() function at module-unload time. The kfree_rcu() function introduced by this commit addresses this issue. Rather than encoding a function address in the embedded rcu_head structure, kfree_rcu() instead encodes the offset of the rcu_head structure within the base structure. Because the functions are not allowed in the low-order 4096 bytes of kernel virtual memory, offsets up to 4095 bytes can be accommodated. If the offset is larger than 4095 bytes, a compile-time error will be generated in __kfree_rcu(). If this error is triggered, you can either fall back to use of call_rcu() or rearrange the structure to position the rcu_head structure into the first 4096 bytes. Note that the allowable offset might decrease in the future, for example, to allow something like kmem_cache_free_rcu(). The new kfree_rcu() function can replace code as follows: call_rcu(&p->rcu, simple_kfree_callback); where "simple_kfree_callback()" might be defined as follows: void simple_kfree_callback(struct rcu_head *p) { struct foo *q = container_of(p, struct foo, rcu); kfree(q); } with the following: kfree_rcu(&p->rcu, rcu); Note that the "rcu" is the name of a field in the structure being freed. The reason for using this rather than passing in a pointer to the base structure is that the above approach allows better type checking. This commit is based on earlier work by Lai Jiangshan and Manfred Spraul: Lai's V1 patch: http://lkml.org/lkml/2008/9/18/1 Manfred's patch: http://lkml.org/lkml/2009/1/2/115 Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Manfred Spraul <manfred@colorfullife.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: David Howells <dhowells@redhat.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-06rcu: fix spellingPaul E. McKenney1-5/+5
The "preemptible" spelling is preferable. May as well fix it. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-06rcu: Switch to this_cpu() primitivesPaul E. McKenney1-7/+3
This removes a couple of lines from invoke_rcu_cpu_kthread(), improving readability. Reported-by: Christoph Lameter <cl@linux.com> Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-06rcu: Add forward-progress diagnostic for per-CPU kthreadsPaul E. McKenney1-0/+2
Increment a per-CPU counter on each pass through rcu_cpu_kthread()'s service loop, and add it to the rcudata trace output. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-06rcu: add grace-period age and more kthread state to tracingPaul E. McKenney1-0/+10
This commit adds the age in jiffies of the current grace period along with the duration in jiffies of the longest grace period since boot to the rcu/rcugp debugfs file. It also adds an additional "O" state to kthread tracing to differentiate between the kthread waiting due to having nothing to do on the one hand and waiting due to being on the wrong CPU on the other hand. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-05-06rcu: make rcutorture version numbers available through debugfsPaul E. McKenney1-0/+37
It is not possible to accurately correlate rcutorture output with that of debugfs. This patch therefore adds a debugfs file that prints out the rcutorture version number, permitting easy correlation. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-06rcu: add tracing for RCU's kthread run states.Paul E. McKenney1-1/+10
Add tracing to help debugging situations when RCU's kthreads are not running but are supposed to be. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-06rcu: put per-CPU kthread at non-RT priority during CPU hotplug operationsPaul E. McKenney1-0/+26
If you are doing CPU hotplug operations, it is best not to have CPU-bound realtime tasks running CPU-bound on the outgoing CPU. So this commit makes per-CPU kthreads run at non-realtime priority during that time. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-06rcu: Force per-rcu_node kthreads off of the outgoing CPUPaul E. McKenney1-5/+19
The scheduler has had some heartburn in the past when too many real-time kthreads were affinitied to the outgoing CPU. So, this commit lightens the load by forcing the per-rcu_node and the boost kthreads off of the outgoing CPU. Note that RCU's per-CPU kthread remains on the outgoing CPU until the bitter end, as it must in order to preserve correctness. Also avoid disabling hardirqs across calls to set_cpus_allowed_ptr(), given that this function can block. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2011-05-06rcu: priority boosting for TREE_PREEMPT_RCUPaul E. McKenney1-38/+77
Add priority boosting for TREE_PREEMPT_RCU, similar to that for TINY_PREEMPT_RCU. This is enabled by the default-off RCU_BOOST kernel parameter. The priority to which to boost preempted RCU readers is controlled by the RCU_BOOST_PRIO kernel parameter (defaulting to real-time priority 1) and the time to wait before boosting the readers who are blocking a given grace period is controlled by the RCU_BOOST_DELAY kernel parameter (defaulting to 500 milliseconds). Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-06rcu: move TREE_RCU from softirq to kthreadPaul E. McKenney1-4/+336
If RCU priority boosting is to be meaningful, callback invocation must be boosted in addition to preempted RCU readers. Otherwise, in presence of CPU real-time threads, the grace period ends, but the callbacks don't get invoked. If the callbacks don't get invoked, the associated memory doesn't get freed, so the system is still subject to OOM. But it is not reasonable to priority-boost RCU_SOFTIRQ, so this commit moves the callback invocations to a kthread, which can be boosted easily. Also add comments and properly synchronized all accesses to rcu_cpu_kthread_task, as suggested by Lai Jiangshan. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-06rcu: merge TREE_PREEPT_RCU blocked_tasks[] listsPaul E. McKenney1-4/+1
Combine the current TREE_PREEMPT_RCU ->blocked_tasks[] lists in the rcu_node structure into a single ->blkd_tasks list with ->gp_tasks and ->exp_tasks tail pointers. This is in preparation for RCU priority boosting, which will add a third dimension to the combinatorial explosion in the ->blocked_tasks[] case, but simply a third pointer in the new ->blkd_tasks case. Also update documentation to reflect blocked_tasks[] merge Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-06rcu: Decrease memory-barrier usage based on semi-formal proofPaul E. McKenney1-74/+56
Commit d09b62d fixed grace-period synchronization, but left some smp_mb() invocations in rcu_process_callbacks() that are no longer needed, but sheer paranoia prevented them from being removed. This commit removes them and provides a proof of correctness in their absence. It also adds a memory barrier to rcu_report_qs_rsp() immediately before the update to rsp->completed in order to handle the theoretical possibility that the compiler or CPU might move massive quantities of code into a lock-based critical section. This also proves that the sheer paranoia was not entirely unjustified, at least from a theoretical point of view. In addition, the old dyntick-idle synchronization depended on the fact that grace periods were many milliseconds in duration, so that it could be assumed that no dyntick-idle CPU could reorder a memory reference across an entire grace period. Unfortunately for this design, the addition of expedited grace periods breaks this assumption, which has the unfortunate side-effect of requiring atomic operations in the functions that track dyntick-idle state for RCU. (There is some hope that the algorithms used in user-level RCU might be applied here, but some work is required to handle the NMIs that user-space applications can happily ignore. For the short term, better safe than sorry.) This proof assumes that neither compiler nor CPU will allow a lock acquisition and release to be reordered, as doing so can result in deadlock. The proof is as follows: 1. A given CPU declares a quiescent state under the protection of its leaf rcu_node's lock. 2. If there is more than one level of rcu_node hierarchy, the last CPU to declare a quiescent state will also acquire the ->lock of the next rcu_node up in the hierarchy, but only after releasing the lower level's lock. The acquisition of this lock clearly cannot occur prior to the acquisition of the leaf node's lock. 3. Step 2 repeats until we reach the root rcu_node structure. Please note again that only one lock is held at a time through this process. The acquisition of the root rcu_node's ->lock must occur after the release of that of the leaf rcu_node. 4. At this point, we set the ->completed field in the rcu_state structure in rcu_report_qs_rsp(). However, if the rcu_node hierarchy contains only one rcu_node, then in theory the code preceding the quiescent state could leak into the critical section. We therefore precede the update of ->completed with a memory barrier. All CPUs will therefore agree that any updates preceding any report of a quiescent state will have happened before the update of ->completed. 5. Regardless of whether a new grace period is needed, rcu_start_gp() will propagate the new value of ->completed to all of the leaf rcu_node structures, under the protection of each rcu_node's ->lock. If a new grace period is needed immediately, this propagation will occur in the same critical section that ->completed was set in, but courtesy of the memory barrier in #4 above, is still seen to follow any pre-quiescent-state activity. 6. When a given CPU invokes __rcu_process_gp_end(), it becomes aware of the end of the old grace period and therefore makes any RCU callbacks that were waiting on that grace period eligible for invocation. If this CPU is the same one that detected the end of the grace period, and if there is but a single rcu_node in the hierarchy, we will still be in the single critical section. In this case, the memory barrier in step #4 guarantees that all callbacks will be seen to execute after each CPU's quiescent state. On the other hand, if this is a different CPU, it will acquire the leaf rcu_node's ->lock, and will again be serialized after each CPU's quiescent state for the old grace period. On the strength of this proof, this commit therefore removes the memory barriers from rcu_process_callbacks() and adds one to rcu_report_qs_rsp(). The effect is to reduce the number of memory barriers by one and to reduce the frequency of execution from about once per scheduling tick per CPU to once per grace period. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-05-06rcu: Remove conditional compilation for RCU CPU stall warningsPaul E. McKenney1-25/+1
The RCU CPU stall warnings can now be controlled using the rcu_cpu_stall_suppress boot-time parameter or via the same parameter from sysfs. There is therefore no longer any reason to have kernel config parameters for this feature. This commit therefore removes the RCU_CPU_STALL_DETECTOR and RCU_CPU_STALL_DETECTOR_RUNNABLE kernel config parameters. The RCU_CPU_STALL_TIMEOUT parameter remains to allow the timeout to be tuned and the RCU_CPU_STALL_VERBOSE parameter remains to allow task-stall information to be suppressed if desired. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2011-01-08Merge branch 'for-2.6.38' of ↵Linus Torvalds1-2/+2
git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu * 'for-2.6.38' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (30 commits) gameport: use this_cpu_read instead of lookup x86: udelay: Use this_cpu_read to avoid address calculation x86: Use this_cpu_inc_return for nmi counter x86: Replace uses of current_cpu_data with this_cpu ops x86: Use this_cpu_ops to optimize code vmstat: User per cpu atomics to avoid interrupt disable / enable irq_work: Use per cpu atomics instead of regular atomics cpuops: Use cmpxchg for xchg to avoid lock semantics x86: this_cpu_cmpxchg and this_cpu_xchg operations percpu: Generic this_cpu_cmpxchg() and this_cpu_xchg support percpu,x86: relocate this_cpu_add_return() and friends connector: Use this_cpu operations xen: Use this_cpu_inc_return taskstats: Use this_cpu_ops random: Use this_cpu_inc_return fs: Use this_cpu_inc_return in buffer.c highmem: Use this_cpu_xx_return() operations vmstat: Use this_cpu_inc_return for vm statistics x86: Support for this_cpu_add, sub, dec, inc_return percpu: Generic support for this_cpu_add, sub, dec, inc_return ... Fixed up conflicts: in arch/x86/kernel/{apic/nmi.c, apic/x2apic_uv_x.c, process.c} as per Tejun.
2010-12-17rcu: reduce __call_rcu()-induced contention on rcu_node structuresPaul E. McKenney1-17/+21
When the current __call_rcu() function was written, the expedited APIs did not exist. The __call_rcu() implementation therefore went to great lengths to detect the end of old grace periods and to start new ones, all in the name of reducing grace-period latency. Now the expedited APIs do exist, and the usage of __call_rcu() has increased considerably. This commit therefore causes __call_rcu() to avoid worrying about grace periods unless there are a large number of RCU callbacks stacked up on the current CPU. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-12-17rcu: limit rcu_node leaf-level fanoutPaul E. McKenney1-1/+2
Some recent benchmarks have indicated possible lock contention on the leaf-level rcu_node locks. This commit therefore limits the number of CPUs per leaf-level rcu_node structure to 16, in other words, there can be at most 16 rcu_data structures fanning into a given rcu_node structure. Prior to this, the limit was 32 on 32-bit systems and 64 on 64-bit systems. Note that the fanout of non-leaf rcu_node structures is unchanged. The organization of accesses to the rcu_node tree is such that references to non-leaf rcu_node structures are much less frequent than to the leaf structures. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-12-17rcu: fine-tune grace-period begin/end checksPaul E. McKenney1-9/+18
Use the CPU's bit in rnp->qsmask to determine whether or not the CPU should try to report a quiescent state. Handle overflow in the check for rdp->gpnum having fallen behind. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-12-17rcu: Keep gpnum and completed fields synchronizedFrederic Weisbecker1-0/+9
When a CPU that was in an extended quiescent state wakes up and catches up with grace periods that remote CPUs completed on its behalf, we update the completed field but not the gpnum that keeps a stale value of a backward grace period ID. Later, note_new_gpnum() will interpret the shift between the local CPU and the node grace period ID as some new grace period to handle and will then start to hunt quiescent state. But if every grace periods have already been completed, this interpretation becomes broken. And we'll be stuck in clusters of spurious softirqs because rcu_report_qs_rdp() will make this broken state run into infinite loop. The solution, as suggested by Lai Jiangshan, is to ensure that the gpnum and completed fields are well synchronized when we catch up with completed grace periods on their behalf by other cpus. This way we won't start noting spurious new grace periods. Suggested-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Steven Rostedt <rostedt@goodmis.org Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-12-17rcu: Stop chasing QS if another CPU did it for usFrederic Weisbecker1-0/+8
When a CPU is idle and others CPUs handled its extended quiescent state to complete grace periods on its behalf, it will catch up with completed grace periods numbers when it wakes up. But at this point there might be no more grace period to complete, but still the woken CPU always keeps its stale qs_pending value and will then continue to chase quiescent states even if its not needed anymore. This results in clusters of spurious softirqs until a new real grace period is started. Because if we continue to chase quiescent states but we have completed every grace periods, rcu_report_qs_rdp() is puzzled and makes that state run into infinite loops. As suggested by Lai Jiangshan, just reset qs_pending if someone completed every grace periods on our behalf. Suggested-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-12-17core: Replace __get_cpu_var with __this_cpu_read if not used for an address.Christoph Lameter1-2/+2
__get_cpu_var() can be replaced with this_cpu_read and will then use a single read instruction with implied address calculation to access the correct per cpu instance. However, the address of a per cpu variable passed to __this_cpu_read() cannot be determined (since it's an implied address conversion through segment prefixes). Therefore apply this only to uses of __get_cpu_var where the address of the variable is not used. Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Hugh Dickins <hughd@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Acked-by: H. Peter Anvin <hpa@zytor.com> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2010-11-30rcu: update documentation/comments for Lai's adoption patchPaul E. McKenney1-4/+6
Lai's RCU-callback immediate-adoption patch changes the RCU tracing output, so update tracing.txt. Also update a few comments to clarify the synchronization design. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-11-30rcu,cleanup: simplify the code when cpu is dyingLai Jiangshan1-60/+21
When we handle the CPU_DYING notifier, the whole system is stopped except for the current CPU. We therefore need no synchronization with the other CPUs. This allows us to move any orphaned RCU callbacks directly to the list of any online CPU without needing to run them through the global orphan lists. These global orphan lists can therefore be dispensed with. This commit makes thes changes, though currently victimizes CPU 0 @@@. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-10-07rcu: using ACCESS_ONCE() to observe the jiffies_stall/rnp->qsmask valueDongdong Deng1-2/+2
Using ACCESS_ONCE() to observe the jiffies_stall/rnp->qsmask value due to the caller didn't hold the root_rcu/rnp node's lock. Although use without ACCESS_ONCE() is safe due to the value loaded being used but once, the ACCESS_ONCE() is a good documentation aid -- the variables are being loaded without the services of a lock. Signed-off-by: Dongdong Deng <dongdong.deng@windriver.com> CC: Dipankar Sarma <dipankar@in.ibm.com> CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-09-23rcu: Add tracing data to support queueing modelsPaul E. McKenney1-0/+3
The current tracing data is not sufficient to deduce the average time that a callback spends waiting for a grace period to end. Add three per-CPU counters recording the number of callbacks invoked (ci), the number of callbacks orphaned (co), and the number of callbacks adopted (ca). Given the existing callback queue length (ql), the average wait time in absence of CPU hotplug operations is ql/ci. The units of wait time will be in terms of the duration over which ci was measured. In the presence of CPU hotplug operations, there is room for argument, but ql/(ci-co+ca) won't steer you too far wrong. Also fixes a typo called out by Lucas De Marchi <lucas.de.marchi@gmail.com>. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-08-20rcu: permit suppressing current grace period's CPU stall warningsPaul E. McKenney1-0/+20
When using a kernel debugger, a long sojourn in the debugger can get you lots of RCU CPU stall warnings once you resume. This might not be helpful, especially if you are using the system console. This patch therefore allows RCU CPU stall warnings to be suppressed, but only for the duration of the current set of grace periods. This differs from Jason's original patch in that it adds support for tiny RCU and preemptible RCU, and uses a slightly different method for suppressing the RCU CPU stall warning messages. Signed-off-by: Jason Wessel <jason.wessel@windriver.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Jason Wessel <jason.wessel@windriver.com>
2010-08-20rcu: refer RCU CPU stall-warning victims to stallwarn.txtPaul E. McKenney1-2/+10
There is some documentation on RCU CPU stall warnings contained in Documentation/RCU/stallwarn.txt, but it will not be apparent to someone who runs into such a warning while under time pressure. This commit therefore adds comments preceding the printk()s pointing out the location of this documentation. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-08-20rcu: Allow RCU CPU stall warnings to be off at boot, but manually enablablePaul E. McKenney1-1/+1
Currently, if RCU CPU stall warnings are enabled, they are enabled immediately upon boot. They can be manually disabled via /sys (and also re-enabled via /sys), and are automatically disabled upon panic. However, some users need RCU CPU stalls to be disabled at boot time, but to be enabled without rebuilding/rebooting. For example, someone running a real-time application in production might not want the additional latency of RCU CPU stall detection in normal operation, but might need to enable it at any point for fault isolation purposes. This commit therefore provides a new CONFIG_RCU_CPU_STALL_DETECTOR_RUNNABLE kernel configuration parameter that maintains the current behavior (enable at boot) by default, but allows a kernel to be configured with RCU CPU stall detection built into the kernel, but disabled at boot time. Requested-by: Clark Williams <williams@redhat.com> Requested-by: John Kacur <jkacur@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>