summaryrefslogtreecommitdiff
path: root/include/uapi/linux/userfaultfd.h
AgeCommit message (Collapse)AuthorFilesLines
2023-12-29userfaultfd: UFFDIO_MOVE uABIAndrea Arcangeli1-1/+28
Implement the uABI of UFFDIO_MOVE ioctl. UFFDIO_COPY performs ~20% better than UFFDIO_MOVE when the application needs pages to be allocated [1]. However, with UFFDIO_MOVE, if pages are available (in userspace) for recycling, as is usually the case in heap compaction algorithms, then we can avoid the page allocation and memcpy (done by UFFDIO_COPY). Also, since the pages are recycled in the userspace, we avoid the need to release (via madvise) the pages back to the kernel [2]. We see over 40% reduction (on a Google pixel 6 device) in the compacting thread's completion time by using UFFDIO_MOVE vs. UFFDIO_COPY. This was measured using a benchmark that emulates a heap compaction implementation using userfaultfd (to allow concurrent accesses by application threads). More details of the usecase are explained in [2]. Furthermore, UFFDIO_MOVE enables moving swapped-out pages without touching them within the same vma. Today, it can only be done by mremap, however it forces splitting the vma. [1] https://lore.kernel.org/all/1425575884-2574-1-git-send-email-aarcange@redhat.com/ [2] https://lore.kernel.org/linux-mm/CA+EESO4uO84SSnBhArH4HvLNhaUQ5nZKNKXqxRCyjniNVjp0Aw@mail.gmail.com/ Update for the ioctl_userfaultfd(2) manpage: UFFDIO_MOVE (Since Linux xxx) Move a continuous memory chunk into the userfault registered range and optionally wake up the blocked thread. The source and destination addresses and the number of bytes to move are specified by the src, dst, and len fields of the uffdio_move structure pointed to by argp: struct uffdio_move { __u64 dst; /* Destination of move */ __u64 src; /* Source of move */ __u64 len; /* Number of bytes to move */ __u64 mode; /* Flags controlling behavior of move */ __s64 move; /* Number of bytes moved, or negated error */ }; The following value may be bitwise ORed in mode to change the behavior of the UFFDIO_MOVE operation: UFFDIO_MOVE_MODE_DONTWAKE Do not wake up the thread that waits for page-fault resolution UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES Allow holes in the source virtual range that is being moved. When not specified, the holes will result in ENOENT error. When specified, the holes will be accounted as successfully moved memory. This is mostly useful to move hugepage aligned virtual regions without knowing if there are transparent hugepages in the regions or not, but preventing the risk of having to split the hugepage during the operation. The move field is used by the kernel to return the number of bytes that was actually moved, or an error (a negated errno- style value). If the value returned in move doesn't match the value that was specified in len, the operation fails with the error EAGAIN. The move field is output-only; it is not read by the UFFDIO_MOVE operation. The operation may fail for various reasons. Usually, remapping of pages that are not exclusive to the given process fail; once KSM might deduplicate pages or fork() COW-shares pages during fork() with child processes, they are no longer exclusive. Further, the kernel might only perform lightweight checks for detecting whether the pages are exclusive, and return -EBUSY in case that check fails. To make the operation more likely to succeed, KSM should be disabled, fork() should be avoided or MADV_DONTFORK should be configured for the source VMA before fork(). This ioctl(2) operation returns 0 on success. In this case, the entire area was moved. On error, -1 is returned and errno is set to indicate the error. Possible errors include: EAGAIN The number of bytes moved (i.e., the value returned in the move field) does not equal the value that was specified in the len field. EINVAL Either dst or len was not a multiple of the system page size, or the range specified by src and len or dst and len was invalid. EINVAL An invalid bit was specified in the mode field. ENOENT The source virtual memory range has unmapped holes and UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES is not set. EEXIST The destination virtual memory range is fully or partially mapped. EBUSY The pages in the source virtual memory range are either pinned or not exclusive to the process. The kernel might only perform lightweight checks for detecting whether the pages are exclusive. To make the operation more likely to succeed, KSM should be disabled, fork() should be avoided or MADV_DONTFORK should be configured for the source virtual memory area before fork(). ENOMEM Allocating memory needed for the operation failed. ESRCH The target process has exited at the time of a UFFDIO_MOVE operation. Link: https://lkml.kernel.org/r/20231206103702.3873743-3-surenb@google.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Brian Geffon <bgeffon@google.com> Cc: Christian Brauner <brauner@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jann Horn <jannh@google.com> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Nicolas Geoffray <ngeoffray@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shuah Khan <shuah@kernel.org> Cc: ZhangPeng <zhangpeng362@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-19userfaultfd: UFFD_FEATURE_WP_ASYNCPeter Xu1-1/+8
Patch series "Implement IOCTL to get and optionally clear info about PTEs", v33. *Motivation* The real motivation for adding PAGEMAP_SCAN IOCTL is to emulate Windows GetWriteWatch() and ResetWriteWatch() syscalls [1]. The GetWriteWatch() retrieves the addresses of the pages that are written to in a region of virtual memory. This syscall is used in Windows applications and games etc. This syscall is being emulated in pretty slow manner in userspace. Our purpose is to enhance the kernel such that we translate it efficiently in a better way. Currently some out of tree hack patches are being used to efficiently emulate it in some kernels. We intend to replace those with these patches. So the whole gaming on Linux can effectively get benefit from this. It means there would be tons of users of this code. CRIU use case [2] was mentioned by Andrei and Danylo: > Use cases for migrating sparse VMAs are binaries sanitized with ASAN, > MSAN or TSAN [3]. All of these sanitizers produce sparse mappings of > shadow memory [4]. Being able to migrate such binaries allows to highly > reduce the amount of work needed to identify and fix post-migration > crashes, which happen constantly. Andrei defines the following uses of this code: * it is more granular and allows us to track changed pages more effectively. The current interface can clear dirty bits for the entire process only. In addition, reading info about pages is a separate operation. It means we must freeze the process to read information about all its pages, reset dirty bits, only then we can start dumping pages. The information about pages becomes more and more outdated, while we are processing pages. The new interface solves both these downsides. First, it allows us to read pte bits and clear the soft-dirty bit atomically. It means that CRIU will not need to freeze processes to pre-dump their memory. Second, it clears soft-dirty bits for a specified region of memory. It means CRIU will have actual info about pages to the moment of dumping them. * The new interface has to be much faster because basic page filtering is happening in the kernel. With the old interface, we have to read pagemap for each page. *Implementation Evolution (Short Summary)* From the definition of GetWriteWatch(), we feel like kernel's soft-dirty feature can be used under the hood with some additions like: * reset soft-dirty flag for only a specific region of memory instead of clearing the flag for the entire process * get and clear soft-dirty flag for a specific region atomically So we decided to use ioctl on pagemap file to read or/and reset soft-dirty flag. But using soft-dirty flag, sometimes we get extra pages which weren't even written. They had become soft-dirty because of VMA merging and VM_SOFTDIRTY flag. This breaks the definition of GetWriteWatch(). We were able to by-pass this short coming by ignoring VM_SOFTDIRTY until David reported that mprotect etc messes up the soft-dirty flag while ignoring VM_SOFTDIRTY [5]. This wasn't happening until [6] got introduced. We discussed if we can revert these patches. But we could not reach to any conclusion. So at this point, I made couple of tries to solve this whole VM_SOFTDIRTY issue by correcting the soft-dirty implementation: * [7] Correct the bug fixed wrongly back in 2014. It had potential to cause regression. We left it behind. * [8] Keep a list of soft-dirty part of a VMA across splits and merges. I got the reply don't increase the size of the VMA by 8 bytes. At this point, we left soft-dirty considering it is too much delicate and userfaultfd [9] seemed like the only way forward. From there onward, we have been basing soft-dirty emulation on userfaultfd wp feature where kernel resolves the faults itself when WP_ASYNC feature is used. It was straight forward to add WP_ASYNC feature in userfautlfd. Now we get only those pages dirty or written-to which are really written in reality. (PS There is another WP_UNPOPULATED userfautfd feature is required which is needed to avoid pre-faulting memory before write-protecting [9].) All the different masks were added on the request of CRIU devs to create interface more generic and better. [1] https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-getwritewatch [2] https://lore.kernel.org/all/20221014134802.1361436-1-mdanylo@google.com [3] https://github.com/google/sanitizers [4] https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm#64-bit [5] https://lore.kernel.org/all/bfcae708-db21-04b4-0bbe-712badd03071@redhat.com [6] https://lore.kernel.org/all/20220725142048.30450-1-peterx@redhat.com/ [7] https://lore.kernel.org/all/20221122115007.2787017-1-usama.anjum@collabora.com [8] https://lore.kernel.org/all/20221220162606.1595355-1-usama.anjum@collabora.com [9] https://lore.kernel.org/all/20230306213925.617814-1-peterx@redhat.com [10] https://lore.kernel.org/all/20230125144529.1630917-1-mdanylo@google.com This patch (of 6): Add a new userfaultfd-wp feature UFFD_FEATURE_WP_ASYNC, that allows userfaultfd wr-protect faults to be resolved by the kernel directly. It can be used like a high accuracy version of soft-dirty, without vma modifications during tracking, and also with ranged support by default rather than for a whole mm when reset the protections due to existence of ioctl(UFFDIO_WRITEPROTECT). Several goals of such a dirty tracking interface: 1. All types of memory should be supported and tracable. This is nature for soft-dirty but should mention when the context is userfaultfd, because it used to only support anon/shmem/hugetlb. The problem is for a dirty tracking purpose these three types may not be enough, and it's legal to track anything e.g. any page cache writes from mmap. 2. Protections can be applied to partial of a memory range, without vma split/merge fuss. The hope is that the tracking itself should not affect any vma layout change. It also helps when reset happens because the reset will not need mmap write lock which can block the tracee. 3. Accuracy needs to be maintained. This means we need pte markers to work on any type of VMA. One could question that, the whole concept of async dirty tracking is not really close to fundamentally what userfaultfd used to be: it's not "a fault to be serviced by userspace" anymore. However, using userfaultfd-wp here as a framework is convenient for us in at least: 1. VM_UFFD_WP vma flag, which has a very good name to suite something like this, so we don't need VM_YET_ANOTHER_SOFT_DIRTY. Just use a new feature bit to identify from a sync version of uffd-wp registration. 2. PTE markers logic can be leveraged across the whole kernel to maintain the uffd-wp bit as long as an arch supports, this also applies to this case where uffd-wp bit will be a hint to dirty information and it will not go lost easily (e.g. when some page cache ptes got zapped). 3. Reuse ioctl(UFFDIO_WRITEPROTECT) interface for either starting or resetting a range of memory, while there's no counterpart in the old soft-dirty world, hence if this is wanted in a new design we'll need a new interface otherwise. We can somehow understand that commonality because uffd-wp was fundamentally a similar idea of write-protecting pages just like soft-dirty. This implementation allows WP_ASYNC to imply WP_UNPOPULATED, because so far WP_ASYNC seems to not usable if without WP_UNPOPULATE. This also gives us chance to modify impl of WP_ASYNC just in case it could be not depending on WP_UNPOPULATED anymore in the future kernels. It's also fine to imply that because both features will rely on PTE_MARKER_UFFD_WP config option, so they'll show up together (or both missing) in an UFFDIO_API probe. vma_can_userfault() now allows any VMA if the userfaultfd registration is only about async uffd-wp. So we can track dirty for all kinds of memory including generic file systems (like XFS, EXT4 or BTRFS). One trick worth mention in do_wp_page() is that we need to manually update vmf->orig_pte here because it can be used later with a pte_same() check - this path always has FAULT_FLAG_ORIG_PTE_VALID set in the flags. The major defect of this approach of dirty tracking is we need to populate the pgtables when tracking starts. Soft-dirty doesn't do it like that. It's unwanted in the case where the range of memory to track is huge and unpopulated (e.g., tracking updates on a 10G file with mmap() on top, without having any page cache installed yet). One way to improve this is to allow pte markers exist for larger than PTE level for PMD+. That will not change the interface if to implemented, so we can leave that for later. Link: https://lkml.kernel.org/r/20230821141518.870589-1-usama.anjum@collabora.com Link: https://lkml.kernel.org/r/20230821141518.870589-2-usama.anjum@collabora.com Signed-off-by: Peter Xu <peterx@redhat.com> Co-developed-by: Muhammad Usama Anjum <usama.anjum@collabora.com> Signed-off-by: Muhammad Usama Anjum <usama.anjum@collabora.com> Cc: Alex Sierra <alex.sierra@amd.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrei Vagin <avagin@gmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Gustavo A. R. Silva <gustavoars@kernel.org> Cc: "Liam R. Howlett" <Liam.Howlett@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Miroslaw <emmir@google.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Nadav Amit <namit@vmware.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Paul Gofman <pgofman@codeweavers.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yang Shi <shy828301@gmail.com> Cc: Yun Zhou <yun.zhou@windriver.com> Cc: Michał Mirosław <mirq-linux@rere.qmqm.pl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18mm: userfaultfd: document and enable new UFFDIO_POISON featureAxel Rasmussen1-3/+6
Update the userfaultfd API to advertise this feature as part of feature flags and supported ioctls (returned upon registration). Add basic documentation describing the new feature. Link: https://lkml.kernel.org/r/20230707215540.2324998-7-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Brian Geffon <bgeffon@google.com> Cc: Christian Brauner <brauner@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Gaosheng Cui <cuigaosheng1@huawei.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Nadav Amit <namit@vmware.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: T.J. Alumbaugh <talumbau@google.com> Cc: Yu Zhao <yuzhao@google.com> Cc: ZhangPeng <zhangpeng362@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18mm: userfaultfd: add new UFFDIO_POISON ioctlAxel Rasmussen1-0/+16
The basic idea here is to "simulate" memory poisoning for VMs. A VM running on some host might encounter a memory error, after which some page(s) are poisoned (i.e., future accesses SIGBUS). They expect that once poisoned, pages can never become "un-poisoned". So, when we live migrate the VM, we need to preserve the poisoned status of these pages. When live migrating, we try to get the guest running on its new host as quickly as possible. So, we start it running before all memory has been copied, and before we're certain which pages should be poisoned or not. So the basic way to use this new feature is: - On the new host, the guest's memory is registered with userfaultfd, in either MISSING or MINOR mode (doesn't really matter for this purpose). - On any first access, we get a userfaultfd event. At this point we can communicate with the old host to find out if the page was poisoned. - If so, we can respond with a UFFDIO_POISON - this places a swap marker so any future accesses will SIGBUS. Because the pte is now "present", future accesses won't generate more userfaultfd events, they'll just SIGBUS directly. UFFDIO_POISON does not handle unmapping previously-present PTEs. This isn't needed, because during live migration we want to intercept all accesses with userfaultfd (not just writes, so WP mode isn't useful for this). So whether minor or missing mode is being used (or both), the PTE won't be present in any case, so handling that case isn't needed. Similarly, UFFDIO_POISON won't replace existing PTE markers. This might be okay to do, but it seems to be safer to just refuse to overwrite any existing entry (like a UFFD_WP PTE marker). Link: https://lkml.kernel.org/r/20230707215540.2324998-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Brian Geffon <bgeffon@google.com> Cc: Christian Brauner <brauner@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Gaosheng Cui <cuigaosheng1@huawei.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: James Houghton <jthoughton@google.com> Cc: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Nadav Amit <namit@vmware.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: T.J. Alumbaugh <talumbau@google.com> Cc: Yu Zhao <yuzhao@google.com> Cc: ZhangPeng <zhangpeng362@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-06mm: userfaultfd: add UFFDIO_CONTINUE_MODE_WP to install WP PTEsAxel Rasmussen1-0/+7
UFFDIO_COPY already has UFFDIO_COPY_MODE_WP, so when installing a new PTE to resolve a missing fault, one can install a write-protected one. This is useful when using UFFDIO_REGISTER_MODE_{MISSING,WP} in combination. This was motivated by testing HugeTLB HGM [1], and in particular its interaction with userfaultfd features. Existing userfaultfd code supports using WP and MINOR modes together (i.e. you can register an area with both enabled), but without this CONTINUE flag the combination is in practice unusable. So, add an analogous UFFDIO_CONTINUE_MODE_WP, which does the same thing as UFFDIO_COPY_MODE_WP, but for *minor* faults. Update the selftest to do some very basic exercising of the new flag. Update Documentation/ to describe how these flags are used (neither the COPY nor the new CONTINUE versions of this mode flag were described there before). [1]: https://patchwork.kernel.org/project/linux-mm/cover/20230218002819.1486479-1-jthoughton@google.com/ Link: https://lkml.kernel.org/r/20230314221250.682452-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Nadav Amit <namit@vmware.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-06mm/uffd: UFFD_FEATURE_WP_UNPOPULATEDPeter Xu1-1/+9
Patch series "mm/uffd: Add feature bit UFFD_FEATURE_WP_UNPOPULATED", v4. The new feature bit makes anonymous memory acts the same as file memory on userfaultfd-wp in that it'll also wr-protect none ptes. It can be useful in two cases: (1) Uffd-wp app that needs to wr-protect none ptes like QEMU snapshot, so pre-fault can be replaced by enabling this flag and speed up protections (2) It helps to implement async uffd-wp mode that Muhammad is working on [1] It's debatable whether this is the most ideal solution because with the new feature bit set, wr-protect none pte needs to pre-populate the pgtables to the last level (PAGE_SIZE). But it seems fine so far to service either purpose above, so we can leave optimizations for later. The series brings pte markers to anonymous memory too. There's some change in the common mm code path in the 1st patch, great to have some eye looking at it, but hopefully they're still relatively straightforward. This patch (of 2): This is a new feature that controls how uffd-wp handles none ptes. When it's set, the kernel will handle anonymous memory the same way as file memory, by allowing the user to wr-protect unpopulated ptes. File memories handles none ptes consistently by allowing wr-protecting of none ptes because of the unawareness of page cache being exist or not. For anonymous it was not as persistent because we used to assume that we don't need protections on none ptes or known zero pages. One use case of such a feature bit was VM live snapshot, where if without wr-protecting empty ptes the snapshot can contain random rubbish in the holes of the anonymous memory, which can cause misbehave of the guest when the guest OS assumes the pages should be all zeros. QEMU worked it around by pre-populate the section with reads to fill in zero page entries before starting the whole snapshot process [1]. Recently there's another need raised on using userfaultfd wr-protect for detecting dirty pages (to replace soft-dirty in some cases) [2]. In that case if without being able to wr-protect none ptes by default, the dirty info can get lost, since we cannot treat every none pte to be dirty (the current design is identify a page dirty based on uffd-wp bit being cleared). In general, we want to be able to wr-protect empty ptes too even for anonymous. This patch implements UFFD_FEATURE_WP_UNPOPULATED so that it'll make uffd-wp handling on none ptes being consistent no matter what the memory type is underneath. It doesn't have any impact on file memories so far because we already have pte markers taking care of that. So it only affects anonymous. The feature bit is by default off, so the old behavior will be maintained. Sometimes it may be wanted because the wr-protect of none ptes will contain overheads not only during UFFDIO_WRITEPROTECT (by applying pte markers to anonymous), but also on creating the pgtables to store the pte markers. So there's potentially less chance of using thp on the first fault for a none pmd or larger than a pmd. The major implementation part is teaching the whole kernel to understand pte markers even for anonymously mapped ranges, meanwhile allowing the UFFDIO_WRITEPROTECT ioctl to apply pte markers for anonymous too when the new feature bit is set. Note that even if the patch subject starts with mm/uffd, there're a few small refactors to major mm path of handling anonymous page faults. But they should be straightforward. With WP_UNPOPUATED, application like QEMU can avoid pre-read faults all the memory before wr-protect during taking a live snapshot. Quotting from Muhammad's test result here [3] based on a simple program [4]: (1) With huge page disabled echo madvise > /sys/kernel/mm/transparent_hugepage/enabled ./uffd_wp_perf Test DEFAULT: 4 Test PRE-READ: 1111453 (pre-fault 1101011) Test MADVISE: 278276 (pre-fault 266378) Test WP-UNPOPULATE: 11712 (2) With Huge page enabled echo always > /sys/kernel/mm/transparent_hugepage/enabled ./uffd_wp_perf Test DEFAULT: 4 Test PRE-READ: 22521 (pre-fault 22348) Test MADVISE: 4909 (pre-fault 4743) Test WP-UNPOPULATE: 14448 There'll be a great perf boost for no-thp case, while for thp enabled with extreme case of all-thp-zero WP_UNPOPULATED can be slower than MADVISE, but that's low possibility in reality, also the overhead was not reduced but postponed until a follow up write on any huge zero thp, so potentially it is faster by making the follow up writes slower. [1] https://lore.kernel.org/all/20210401092226.102804-4-andrey.gruzdev@virtuozzo.com/ [2] https://lore.kernel.org/all/Y+v2HJ8+3i%2FKzDBu@x1n/ [3] https://lore.kernel.org/all/d0eb0a13-16dc-1ac1-653a-78b7273781e3@collabora.com/ [4] https://github.com/xzpeter/clibs/blob/master/uffd-test/uffd-wp-perf.c [peterx@redhat.com: comment changes, oneliner fix to khugepaged] Link: https://lkml.kernel.org/r/ZB2/8jPhD3fpx5U8@x1n Link: https://lkml.kernel.org/r/20230309223711.823547-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20230309223711.823547-2-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Muhammad Usama Anjum <usama.anjum@collabora.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Paul Gofman <pgofman@codeweavers.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-12userfaultfd: add /dev/userfaultfd for fine grained access controlAxel Rasmussen1-0/+4
Historically, it has been shown that intercepting kernel faults with userfaultfd (thereby forcing the kernel to wait for an arbitrary amount of time) can be exploited, or at least can make some kinds of exploits easier. So, in 37cd0575b8 "userfaultfd: add UFFD_USER_MODE_ONLY" we changed things so, in order for kernel faults to be handled by userfaultfd, either the process needs CAP_SYS_PTRACE, or this sysctl must be configured so that any unprivileged user can do it. In a typical implementation of a hypervisor with live migration (take QEMU/KVM as one such example), we do indeed need to be able to handle kernel faults. But, both options above are less than ideal: - Toggling the sysctl increases attack surface by allowing any unprivileged user to do it. - Granting the live migration process CAP_SYS_PTRACE gives it this ability, but *also* the ability to "observe and control the execution of another process [...], and examine and change [its] memory and registers" (from ptrace(2)). This isn't something we need or want to be able to do, so granting this permission violates the "principle of least privilege". This is all a long winded way to say: we want a more fine-grained way to grant access to userfaultfd, without granting other additional permissions at the same time. To achieve this, add a /dev/userfaultfd misc device. This device provides an alternative to the userfaultfd(2) syscall for the creation of new userfaultfds. The idea is, any userfaultfds created this way will be able to handle kernel faults, without the caller having any special capabilities. Access to this mechanism is instead restricted using e.g. standard filesystem permissions. [axelrasmussen@google.com: Handle misc_register() failure properly] Link: https://lkml.kernel.org/r/20220819205201.658693-3-axelrasmussen@google.com Link: https://lkml.kernel.org/r/20220808175614.3885028-3-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Nadav Amit <namit@vmware.com> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dmitry V. Levin <ldv@altlinux.org> Cc: Gleb Fotengauer-Malinovskiy <glebfm@altlinux.org> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Shuah Khan <skhan@linuxfoundation.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zhang Yi <yi.zhang@huawei.com> Cc: Mike Rapoport <rppt@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13mm/uffd: enable write protection for shmem & hugetlbfsPeter Xu1-2/+8
We've had all the necessary changes ready for both shmem and hugetlbfs. Turn on all the shmem/hugetlbfs switches for userfaultfd-wp. We can expand UFFD_API_RANGE_IOCTLS_BASIC with _UFFDIO_WRITEPROTECT too because all existing types now support write protection mode. Since vma_can_userfault() will be used elsewhere, move into userfaultfd_k.h. Link: https://lkml.kernel.org/r/20220405014926.15101-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-03-23userfaultfd: provide unmasked address on page-faultNadav Amit1-1/+7
Userfaultfd is supposed to provide the full address (i.e., unmasked) of the faulting access back to userspace. However, that is not the case for quite some time. Even running "userfaultfd_demo" from the userfaultfd man page provides the wrong output (and contradicts the man page). Notice that "UFFD_EVENT_PAGEFAULT event" shows the masked address (7fc5e30b3000) and not the first read address (0x7fc5e30b300f). Address returned by mmap() = 0x7fc5e30b3000 fault_handler_thread(): poll() returns: nready = 1; POLLIN = 1; POLLERR = 0 UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fc5e30b3000 (uffdio_copy.copy returned 4096) Read address 0x7fc5e30b300f in main(): A Read address 0x7fc5e30b340f in main(): A Read address 0x7fc5e30b380f in main(): A Read address 0x7fc5e30b3c0f in main(): A The exact address is useful for various reasons and specifically for prefetching decisions. If it is known that the memory is populated by certain objects whose size is not page-aligned, then based on the faulting address, the uffd-monitor can decide whether to prefetch and prefault the adjacent page. This bug has been for quite some time in the kernel: since commit 1a29d85eb0f1 ("mm: use vmf->address instead of of vmf->virtual_address") vmf->virtual_address"), which dates back to 2016. A concern has been raised that existing userspace application might rely on the old/wrong behavior in which the address is masked. Therefore, it was suggested to provide the masked address unless the user explicitly asks for the exact address. Add a new userfaultfd feature UFFD_FEATURE_EXACT_ADDRESS to direct userfaultfd to provide the exact address. Add a new "real_address" field to vmf to hold the unmasked address. Provide the address to userspace accordingly. Initialize real_address in various code-paths to be consistent with address, even when it is not used, to be on the safe side. [namit@vmware.com: initialize real_address on all code paths, per Jan] Link: https://lkml.kernel.org/r/20220226022655.350562-1-namit@vmware.com [akpm@linux-foundation.org: fix typo in comment, per Jan] Link: https://lkml.kernel.org/r/20220218041003.3508-1-namit@vmware.com Signed-off-by: Nadav Amit <namit@vmware.com> Acked-by: Peter Xu <peterx@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01userfaultfd/shmem: advertise shmem minor fault supportAxel Rasmussen1-1/+6
Now that the feature is fully implemented (the faulting path hooks exist so userspace is notified, and the ioctl to resolve such faults is available), advertise this as a supported feature. Link: https://lkml.kernel.org/r/20210503180737.2487560-6-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Peter Xu <peterx@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Brian Geffon <bgeffon@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Joe Perches <joe@perches.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Wang Qing <wangqing@vivo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-25userfaultfd: uapi: fix UFFDIO_CONTINUE ioctl request definitionGleb Fotengauer-Malinovskiy1-2/+2
This ioctl request reads from uffdio_continue structure written by userspace which justifies _IOC_WRITE flag. It also writes back to that structure which justifies _IOC_READ flag. See NOTEs in include/uapi/asm-generic/ioctl.h for more information. Fixes: f619147104c8 ("userfaultfd: add UFFDIO_CONTINUE ioctl") Signed-off-by: Gleb Fotengauer-Malinovskiy <glebfm@altlinux.org> Acked-by: Peter Xu <peterx@redhat.com> Reviewed-by: Axel Rasmussen <axelrasmussen@google.com> Reviewed-by: Dmitry V. Levin <ldv@altlinux.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05userfaultfd: add UFFDIO_CONTINUE ioctlAxel Rasmussen1-2/+19
This ioctl is how userspace ought to resolve "minor" userfaults. The idea is, userspace is notified that a minor fault has occurred. It might change the contents of the page using its second non-UFFD mapping, or not. Then, it calls UFFDIO_CONTINUE to tell the kernel "I have ensured the page contents are correct, carry on setting up the mapping". Note that it doesn't make much sense to use UFFDIO_{COPY,ZEROPAGE} for MINOR registered VMAs. ZEROPAGE maps the VMA to the zero page; but in the minor fault case, we already have some pre-existing underlying page. Likewise, UFFDIO_COPY isn't useful if we have a second non-UFFD mapping. We'd just use memcpy() or similar instead. It turns out hugetlb_mcopy_atomic_pte() already does very close to what we want, if an existing page is provided via `struct page **pagep`. We already special-case the behavior a bit for the UFFDIO_ZEROPAGE case, so just extend that design: add an enum for the three modes of operation, and make the small adjustments needed for the MCOPY_ATOMIC_CONTINUE case. (Basically, look up the existing page, and avoid adding the existing page to the page cache or calling set_page_huge_active() on it.) Link: https://lkml.kernel.org/r/20210301222728.176417-5-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Reviewed-by: Peter Xu <peterx@redhat.com> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: David Rientjes <rientjes@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oliver Upton <oupton@google.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Price <steven.price@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05userfaultfd: add minor fault registration modeAxel Rasmussen1-2/+13
Patch series "userfaultfd: add minor fault handling", v9. Overview ======== This series adds a new userfaultfd feature, UFFD_FEATURE_MINOR_HUGETLBFS. When enabled (via the UFFDIO_API ioctl), this feature means that any hugetlbfs VMAs registered with UFFDIO_REGISTER_MODE_MISSING will *also* get events for "minor" faults. By "minor" fault, I mean the following situation: Let there exist two mappings (i.e., VMAs) to the same page(s) (shared memory). One of the mappings is registered with userfaultfd (in minor mode), and the other is not. Via the non-UFFD mapping, the underlying pages have already been allocated & filled with some contents. The UFFD mapping has not yet been faulted in; when it is touched for the first time, this results in what I'm calling a "minor" fault. As a concrete example, when working with hugetlbfs, we have huge_pte_none(), but find_lock_page() finds an existing page. We also add a new ioctl to resolve such faults: UFFDIO_CONTINUE. The idea is, userspace resolves the fault by either a) doing nothing if the contents are already correct, or b) updating the underlying contents using the second, non-UFFD mapping (via memcpy/memset or similar, or something fancier like RDMA, or etc...). In either case, userspace issues UFFDIO_CONTINUE to tell the kernel "I have ensured the page contents are correct, carry on setting up the mapping". Use Case ======== Consider the use case of VM live migration (e.g. under QEMU/KVM): 1. While a VM is still running, we copy the contents of its memory to a target machine. The pages are populated on the target by writing to the non-UFFD mapping, using the setup described above. The VM is still running (and therefore its memory is likely changing), so this may be repeated several times, until we decide the target is "up to date enough". 2. We pause the VM on the source, and start executing on the target machine. During this gap, the VM's user(s) will *see* a pause, so it is desirable to minimize this window. 3. Between the last time any page was copied from the source to the target, and when the VM was paused, the contents of that page may have changed - and therefore the copy we have on the target machine is out of date. Although we can keep track of which pages are out of date, for VMs with large amounts of memory, it is "slow" to transfer this information to the target machine. We want to resume execution before such a transfer would complete. 4. So, the guest begins executing on the target machine. The first time it touches its memory (via the UFFD-registered mapping), userspace wants to intercept this fault. Userspace checks whether or not the page is up to date, and if not, copies the updated page from the source machine, via the non-UFFD mapping. Finally, whether a copy was performed or not, userspace issues a UFFDIO_CONTINUE ioctl to tell the kernel "I have ensured the page contents are correct, carry on setting up the mapping". We don't have to do all of the final updates on-demand. The userfaultfd manager can, in the background, also copy over updated pages once it receives the map of which pages are up-to-date or not. Interaction with Existing APIs ============================== Because this is a feature, a registered VMA could potentially receive both missing and minor faults. I spent some time thinking through how the existing API interacts with the new feature: UFFDIO_CONTINUE cannot be used to resolve non-minor faults, as it does not allocate a new page. If UFFDIO_CONTINUE is used on a non-minor fault: - For non-shared memory or shmem, -EINVAL is returned. - For hugetlb, -EFAULT is returned. UFFDIO_COPY and UFFDIO_ZEROPAGE cannot be used to resolve minor faults. Without modifications, the existing codepath assumes a new page needs to be allocated. This is okay, since userspace must have a second non-UFFD-registered mapping anyway, thus there isn't much reason to want to use these in any case (just memcpy or memset or similar). - If UFFDIO_COPY is used on a minor fault, -EEXIST is returned. - If UFFDIO_ZEROPAGE is used on a minor fault, -EEXIST is returned (or -EINVAL in the case of hugetlb, as UFFDIO_ZEROPAGE is unsupported in any case). - UFFDIO_WRITEPROTECT simply doesn't work with shared memory, and returns -ENOENT in that case (regardless of the kind of fault). Future Work =========== This series only supports hugetlbfs. I have a second series in flight to support shmem as well, extending the functionality. This series is more mature than the shmem support at this point, and the functionality works fully on hugetlbfs, so this series can be merged first and then shmem support will follow. This patch (of 6): This feature allows userspace to intercept "minor" faults. By "minor" faults, I mean the following situation: Let there exist two mappings (i.e., VMAs) to the same page(s). One of the mappings is registered with userfaultfd (in minor mode), and the other is not. Via the non-UFFD mapping, the underlying pages have already been allocated & filled with some contents. The UFFD mapping has not yet been faulted in; when it is touched for the first time, this results in what I'm calling a "minor" fault. As a concrete example, when working with hugetlbfs, we have huge_pte_none(), but find_lock_page() finds an existing page. This commit adds the new registration mode, and sets the relevant flag on the VMAs being registered. In the hugetlb fault path, if we find that we have huge_pte_none(), but find_lock_page() does indeed find an existing page, then we have a "minor" fault, and if the VMA has the userfaultfd registration flag, we call into userfaultfd to handle it. This is implemented as a new registration mode, instead of an API feature. This is because the alternative implementation has significant drawbacks [1]. However, doing it this was requires we allocate a VM_* flag for the new registration mode. On 32-bit systems, there are no unused bits, so this feature is only supported on architectures with CONFIG_ARCH_USES_HIGH_VMA_FLAGS. When attempting to register a VMA in MINOR mode on 32-bit architectures, we return -EINVAL. [1] https://lore.kernel.org/patchwork/patch/1380226/ [peterx@redhat.com: fix minor fault page leak] Link: https://lkml.kernel.org/r/20210322175132.36659-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20210301222728.176417-1-axelrasmussen@google.com Link: https://lkml.kernel.org/r/20210301222728.176417-2-axelrasmussen@google.com Signed-off-by: Axel Rasmussen <axelrasmussen@google.com> Reviewed-by: Peter Xu <peterx@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chinwen Chang <chinwen.chang@mediatek.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Lokesh Gidra <lokeshgidra@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Michal Koutn" <mkoutny@suse.com> Cc: Michel Lespinasse <walken@google.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Shaohua Li <shli@fb.com> Cc: Shawn Anastasio <shawn@anastas.io> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Steven Price <steven.price@arm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Adam Ruprecht <ruprecht@google.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Cannon Matthews <cannonmatthews@google.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Upton <oupton@google.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15userfaultfd: add UFFD_USER_MODE_ONLYLokesh Gidra1-0/+9
Patch series "Control over userfaultfd kernel-fault handling", v6. This patch series is split from [1]. The other series enables SELinux support for userfaultfd file descriptors so that its creation and movement can be controlled. It has been demonstrated on various occasions that suspending kernel code execution for an arbitrary amount of time at any access to userspace memory (copy_from_user()/copy_to_user()/...) can be exploited to change the intended behavior of the kernel. For instance, handling page faults in kernel-mode using userfaultfd has been exploited in [2, 3]. Likewise, FUSE, which is similar to userfaultfd in this respect, has been exploited in [4, 5] for similar outcome. This small patch series adds a new flag to userfaultfd(2) that allows callers to give up the ability to handle kernel-mode faults with the resulting UFFD file object. It then adds a 'user-mode only' option to the unprivileged_userfaultfd sysctl knob to require unprivileged callers to use this new flag. The purpose of this new interface is to decrease the chance of an unprivileged userfaultfd user taking advantage of userfaultfd to enhance security vulnerabilities by lengthening the race window in kernel code. [1] https://lore.kernel.org/lkml/20200211225547.235083-1-dancol@google.com/ [2] https://duasynt.com/blog/linux-kernel-heap-spray [3] https://duasynt.com/blog/cve-2016-6187-heap-off-by-one-exploit [4] https://googleprojectzero.blogspot.com/2016/06/exploiting-recursion-in-linux-kernel_20.html [5] https://bugs.chromium.org/p/project-zero/issues/detail?id=808 This patch (of 2): userfaultfd handles page faults from both user and kernel code. Add a new UFFD_USER_MODE_ONLY flag for userfaultfd(2) that makes the resulting userfaultfd object refuse to handle faults from kernel mode, treating these faults as if SIGBUS were always raised, causing the kernel code to fail with EFAULT. A future patch adds a knob allowing administrators to give some processes the ability to create userfaultfd file objects only if they pass UFFD_USER_MODE_ONLY, reducing the likelihood that these processes will exploit userfaultfd's ability to delay kernel page faults to open timing windows for future exploits. Link: https://lkml.kernel.org/r/20201120030411.2690816-1-lokeshgidra@google.com Link: https://lkml.kernel.org/r/20201120030411.2690816-2-lokeshgidra@google.com Signed-off-by: Daniel Colascione <dancol@google.com> Signed-off-by: Lokesh Gidra <lokeshgidra@google.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: <calin@google.com> Cc: Daniel Colascione <dancol@dancol.org> Cc: Eric Biggers <ebiggers@kernel.org> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Jeff Vander Stoep <jeffv@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Joel Fernandes (Google)" <joel@joelfernandes.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Kees Cook <keescook@chromium.org> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Mauro Carvalho Chehab <mchehab+huawei@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nitin Gupta <nigupta@nvidia.com> Cc: Peter Xu <peterx@redhat.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Shaohua Li <shli@fb.com> Cc: Stephen Smalley <stephen.smalley.work@gmail.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07userfaultfd: wp: enabled write protection in userfaultfd APIShaohua Li1-2/+4
Now it's safe to enable write protection in userfaultfd API Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jerome Glisse <jglisse@redhat.com> Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Brian Geffon <bgeffon@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Pavel Emelyanov <xemul@openvz.org> Link: http://lkml.kernel.org/r/20200220163112.11409-15-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07userfaultfd: wp: add the writeprotect API to userfaultfd ioctlAndrea Arcangeli1-0/+23
Introduce the new uffd-wp APIs for userspace. Firstly, we'll allow to do UFFDIO_REGISTER with write protection tracking using the new UFFDIO_REGISTER_MODE_WP flag. Note that this flag can co-exist with the existing UFFDIO_REGISTER_MODE_MISSING, in which case the userspace program can not only resolve missing page faults, and at the same time tracking page data changes along the way. Secondly, we introduced the new UFFDIO_WRITEPROTECT API to do page level write protection tracking. Note that we will need to register the memory region with UFFDIO_REGISTER_MODE_WP before that. [peterx@redhat.com: write up the commit message] [peterx@redhat.com: remove useless block, write commit message, check against VM_MAYWRITE rather than VM_WRITE when register] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jerome Glisse <jglisse@redhat.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Brian Geffon <bgeffon@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@fb.com> Link: http://lkml.kernel.org/r/20200220163112.11409-14-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07userfaultfd: wp: add UFFDIO_COPY_MODE_WPAndrea Arcangeli1-5/+6
This allows UFFDIO_COPY to map pages write-protected. [peterx@redhat.com: switch to VM_WARN_ON_ONCE in mfill_atomic_pte; add brackets around "dst_vma->vm_flags & VM_WRITE"; fix wordings in comments and commit messages] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Jerome Glisse <jglisse@redhat.com> Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Brian Geffon <bgeffon@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Martin Cracauer <cracauer@cons.org> Cc: Marty McFadden <mcfadden8@llnl.gov> Cc: Maya Gokhale <gokhale2@llnl.gov> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Pavel Emelyanov <xemul@openvz.org> Cc: Rik van Riel <riel@redhat.com> Cc: Shaohua Li <shli@fb.com> Link: http://lkml.kernel.org/r/20200220163112.11409-6-peterx@redhat.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-02License cleanup: add SPDX license identifier to uapi header files with no ↵Greg Kroah-Hartman1-0/+1
license Many user space API headers are missing licensing information, which makes it hard for compliance tools to determine the correct license. By default are files without license information under the default license of the kernel, which is GPLV2. Marking them GPLV2 would exclude them from being included in non GPLV2 code, which is obviously not intended. The user space API headers fall under the syscall exception which is in the kernels COPYING file: NOTE! This copyright does *not* cover user programs that use kernel services by normal system calls - this is merely considered normal use of the kernel, and does *not* fall under the heading of "derived work". otherwise syscall usage would not be possible. Update the files which contain no license information with an SPDX license identifier. The chosen identifier is 'GPL-2.0 WITH Linux-syscall-note' which is the officially assigned identifier for the Linux syscall exception. SPDX license identifiers are a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. See the previous patch in this series for the methodology of how this patch was researched. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-07userfaultfd: provide pid in userfault msg - add feat unionAndrea Arcangeli1-1/+3
No ABI change, but this will make it more explicit to software that ptid is only available if requested by passing UFFD_FEATURE_THREAD_ID to UFFDIO_API. The fact it's a union will also self document it shouldn't be taken for granted there's a tpid there. Link: http://lkml.kernel.org/r/20170802165145.22628-7-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Alexey Perevalov <a.perevalov@samsung.com> Cc: Maxime Coquelin <maxime.coquelin@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-07userfaultfd: provide pid in userfault msgAlexey Perevalov1-3/+7
It could be useful for calculating downtime during postcopy live migration per vCPU. Side observer or application itself will be informed about proper task's sleep during userfaultfd processing. Process's thread id is being provided when user requeste it by setting UFFD_FEATURE_THREAD_ID bit into uffdio_api.features. Link: http://lkml.kernel.org/r/20170802165145.22628-6-aarcange@redhat.com Signed-off-by: Alexey Perevalov <a.perevalov@samsung.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Maxime Coquelin <maxime.coquelin@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-07mm: userfaultfd: add feature to request for a signal deliveryPrakash Sangappa1-1/+9
In some cases, userfaultfd mechanism should just deliver a SIGBUS signal to the faulting process, instead of the page-fault event. Dealing with page-fault event using a monitor thread can be an overhead in these cases. For example applications like the database could use the signaling mechanism for robustness purpose. Database uses hugetlbfs for performance reason. Files on hugetlbfs filesystem are created and huge pages allocated using fallocate() API. Pages are deallocated/freed using fallocate() hole punching support. These files are mmapped and accessed by many processes as shared memory. The database keeps track of which offsets in the hugetlbfs file have pages allocated. Any access to mapped address over holes in the file, which can occur due to bugs in the application, is considered invalid and expect the process to simply receive a SIGBUS. However, currently when a hole in the file is accessed via the mapped address, kernel/mm attempts to automatically allocate a page at page fault time, resulting in implicitly filling the hole in the file. This may not be the desired behavior for applications like the database that want to explicitly manage page allocations of hugetlbfs files. Using userfaultfd mechanism with this support to get a signal, database application can prevent pages from being allocated implicitly when processes access mapped address over holes in the file. This patch adds UFFD_FEATURE_SIGBUS feature to userfaultfd mechnism to request for a SIGBUS signal. See following for previous discussion about the database requirement leading to this proposal as suggested by Andrea. http://www.spinics.net/lists/linux-mm/msg129224.html Link: http://lkml.kernel.org/r/1501552446-748335-2-git-send-email-prakash.sangappa@oracle.com Signed-off-by: Prakash Sangappa <prakash.sangappa@oracle.com> Reviewed-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-10userfaultfd: non-cooperative: rollback userfaultfd_exitAndrea Arcangeli1-4/+1
Patch series "userfaultfd non-cooperative further update for 4.11 merge window". Unfortunately I noticed one relevant bug in userfaultfd_exit while doing more testing. I've been doing testing before and this was also tested by kbuild bot and exercised by the selftest, but this bug never reproduced before. I dropped userfaultfd_exit as result. I dropped it because of implementation difficulty in receiving signals in __mmput and because I think -ENOSPC as result from the background UFFDIO_COPY should be enough already. Before I decided to remove userfaultfd_exit, I noticed userfaultfd_exit wasn't exercised by the selftest and when I tried to exercise it, after moving it to a more correct place in __mmput where it would make more sense and where the vma list is stable, it resulted in the event_wait_completion in D state. So then I added the second patch to be sure even if we call userfaultfd_event_wait_completion too late during task exit(), we won't risk to generate tasks in D state. The same check exists in handle_userfault() for the same reason, except it makes a difference there, while here is just a robustness check and it's run under WARN_ON_ONCE. While looking at the userfaultfd_event_wait_completion() function I looked back at its callers too while at it and I think it's not ok to stop executing dup_fctx on the fcs list because we relay on userfaultfd_event_wait_completion to execute userfaultfd_ctx_put(fctx->orig) which is paired against userfaultfd_ctx_get(fctx->orig) in dup_userfault just before list_add(fcs). This change only takes care of fctx->orig but this area also needs further review looking for similar problems in fctx->new. The only patch that is urgent is the first because it's an use after free during a SMP race condition that affects all processes if CONFIG_USERFAULTFD=y. Very hard to reproduce though and probably impossible without SLUB poisoning enabled. This patch (of 3): I once reproduced this oops with the userfaultfd selftest, it's not easily reproducible and it requires SLUB poisoning to reproduce. general protection fault: 0000 [#1] SMP Modules linked in: CPU: 2 PID: 18421 Comm: userfaultfd Tainted: G ------------ T 3.10.0+ #15 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.10.1-0-g8891697-prebuilt.qemu-project.org 04/01/2014 task: ffff8801f83b9440 ti: ffff8801f833c000 task.ti: ffff8801f833c000 RIP: 0010:[<ffffffff81451299>] [<ffffffff81451299>] userfaultfd_exit+0x29/0xa0 RSP: 0018:ffff8801f833fe80 EFLAGS: 00010202 RAX: ffff8801f833ffd8 RBX: 6b6b6b6b6b6b6b6b RCX: ffff8801f83b9440 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff8800baf18600 RBP: ffff8801f833fee8 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000000 R11: ffffffff8127ceb3 R12: 0000000000000000 R13: ffff8800baf186b0 R14: ffff8801f83b99f8 R15: 00007faed746c700 FS: 0000000000000000(0000) GS:ffff88023fc80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00007faf0966f028 CR3: 0000000001bc6000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Call Trace: do_exit+0x297/0xd10 SyS_exit+0x17/0x20 tracesys+0xdd/0xe2 Code: 00 00 66 66 66 66 90 55 48 89 e5 41 54 53 48 83 ec 58 48 8b 1f 48 85 db 75 11 eb 73 66 0f 1f 44 00 00 48 8b 5b 10 48 85 db 74 64 <4c> 8b a3 b8 00 00 00 4d 85 e4 74 eb 41 f6 84 24 2c 01 00 00 80 RIP [<ffffffff81451299>] userfaultfd_exit+0x29/0xa0 RSP <ffff8801f833fe80> ---[ end trace 9fecd6dcb442846a ]--- In the debugger I located the "mm" pointer in the stack and walking mm->mmap->vm_next through the end shows the vma->vm_next list is fully consistent and it is null terminated list as expected. So this has to be an SMP race condition where userfaultfd_exit was running while the vma list was being modified by another CPU. When userfaultfd_exit() run one of the ->vm_next pointers pointed to SLAB_POISON (RBX is the vma pointer and is 0x6b6b..). The reason is that it's not running in __mmput but while there are still other threads running and it's not holding the mmap_sem (it can't as it has to wait the even to be received by the manager). So this is an use after free that was happening for all processes. One more implementation problem aside from the race condition: userfaultfd_exit has really to check a flag in mm->flags before walking the vma or it's going to slowdown the exit() path for regular tasks. One more implementation problem: at that point signals can't be delivered so it would also create a task in D state if the manager doesn't read the event. The major design issue: it overall looks superfluous as the manager can check for -ENOSPC in the background transfer: if (mmget_not_zero(ctx->mm)) { [..] } else { return -ENOSPC; } It's safer to roll it back and re-introduce it later if at all. [rppt@linux.vnet.ibm.com: documentation fixup after removal of UFFD_EVENT_EXIT] Link: http://lkml.kernel.org/r/1488345437-4364-1-git-send-email-rppt@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/20170224181957.19736-2-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Acked-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25userfaultfd: non-cooperative: add event for exit() notificationMike Rapoport1-1/+4
Allow userfaultfd monitor track termination of the processes that have memory backed by the uffd. [rppt@linux.vnet.ibm.com: add comment] Link: http://lkml.kernel.org/r/20170202135448.GB19804@rapoport-lnxLink: http://lkml.kernel.org/r/1485542673-24387-4-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Pavel Emelyanov <xemul@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25userfaultfd: non-cooperative: add event for memory unmapsMike Rapoport1-0/+3
When a non-cooperative userfaultfd monitor copies pages in the background, it may encounter regions that were already unmapped. Addition of UFFD_EVENT_UNMAP allows the uffd monitor to track precisely changes in the virtual memory layout. Since there might be different uffd contexts for the affected VMAs, we first should create a temporary representation for the unmap event for each uffd context and then notify them one by one to the appropriate userfault file descriptors. The event notification occurs after the mmap_sem has been released. [arnd@arndb.de: fix nommu build] Link: http://lkml.kernel.org/r/20170203165141.3665284-1-arnd@arndb.de [mhocko@suse.com: fix nommu build] Link: http://lkml.kernel.org/r/20170202091503.GA22823@dhcp22.suse.cz Link: http://lkml.kernel.org/r/1485542673-24387-3-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Pavel Emelyanov <xemul@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-25userfaultfd: non-cooperative: rename *EVENT_MADVDONTNEED to *EVENT_REMOVEMike Rapoport1-4/+4
Patch series "userfaultfd: non-cooperative: add madvise() event for MADV_REMOVE request". These patches add notification of madvise(MADV_REMOVE) event to non-cooperative userfaultfd monitor. The first pacth renames EVENT_MADVDONTNEED to EVENT_REMOVE along with relevant functions and structures. Using _REMOVE instead of _MADVDONTNEED describes the event semantics more clearly and I hope it's not too late for such change in the ABI. This patch (of 3): The UFFD_EVENT_MADVDONTNEED purpose is to notify uffd monitor about removal of certain range from address space tracked by userfaultfd. Hence, UFFD_EVENT_REMOVE seems to better reflect the operation semantics. Respectively, 'madv_dn' field of uffd_msg is renamed to 'remove' and the madvise_userfault_dontneed callback is renamed to userfaultfd_remove. Link: http://lkml.kernel.org/r/1484814154-1557-2-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23userfaultfd: hugetlbfs: UFFD_FEATURE_MISSING_SHMEMAndrea Arcangeli1-1/+7
Userland developers asked to be notified immediately by the UFFDIO_API ioctl if shmem missing mode is supported by userfaultfd in the running kernel. This avoids the need to run UFFDIO_REGISTER on a shmem virtual memory range to find out. Link: http://lkml.kernel.org/r/20161216144821.5183-38-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michael Rapoport <RAPOPORT@il.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23userfaultfd: shmem: allow registration of shared memory rangesMike Rapoport1-1/+1
Expand the userfaultfd_register/unregister routines to allow shared memory VMAs. Currently, there is no UFFDIO_ZEROPAGE and write-protection support for shared memory VMAs, which is reflected in ioctl methods supported by uffdio_register. Link: http://lkml.kernel.org/r/20161216144821.5183-34-aarcange@redhat.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michael Rapoport <RAPOPORT@il.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23userfaultfd: hugetlbfs: UFFD_FEATURE_MISSING_HUGETLBFSAndrea Arcangeli1-3/+25
Userland developers asked to be notified immediately by the UFFDIO_API ioctl if hugetlbfs missing mode is supported by userfaultfd in the running kernel. This avoids the need to run UFFDIO_REGISTER on a hugetlbfs virtual memory range to find out. Link: http://lkml.kernel.org/r/20161216144821.5183-27-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michael Rapoport <RAPOPORT@il.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23userfaultfd: hugetlbfs: allow registration of ranges containing huge pagesMike Kravetz1-0/+3
Expand the userfaultfd_register/unregister routines to allow VM_HUGETLB vmas. huge page alignment checking is performed after a VM_HUGETLB vma is encountered. Also, since there is no UFFDIO_ZEROPAGE support for huge pages do not return that as a valid ioctl method for huge page ranges. Link: http://lkml.kernel.org/r/20161216144821.5183-22-aarcange@redhat.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michael Rapoport <RAPOPORT@il.ibm.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23userfaultfd: non-cooperative: add madvise() event for MADV_DONTNEED requestPavel Emelyanov1-1/+9
If the page is punched out of the address space the uffd reader should know this and zeromap the respective area in case of the #PF event. Link: http://lkml.kernel.org/r/20161216144821.5183-14-aarcange@redhat.com Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michael Rapoport <RAPOPORT@il.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23userfaultfd: non-cooperative: add mremap() eventPavel Emelyanov1-1/+10
The event denotes that an area [start:end] moves to different location. Length change isn't reported as "new" addresses, if they appear on the uffd reader side they will not contain any data and the latter can just zeromap them. Waiting for the event ACK is also done outside of mmap sem, as for fork event. Link: http://lkml.kernel.org/r/20161216144821.5183-12-aarcange@redhat.com Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michael Rapoport <RAPOPORT@il.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23userfaultfd: non-cooperative: Add fork() eventPavel Emelyanov1-10/+5
When the mm with uffd-ed vmas fork()-s the respective vmas notify their uffds with the event which contains a descriptor with new uffd. This new descriptor can then be used to get events from the child and populate its mm with data. Note, that there can be different uffd-s controlling different vmas within one mm, so first we should collect all those uffds (and ctx-s) in a list and then notify them all one by one but only once per fork(). The context is created at fork() time but the descriptor, file struct and anon inode object is created at event read time. So some trickery is added to the userfaultfd_ctx_read() to handle the ctx queues' locking vs file creation. Another thing worth noticing is that the task that fork()-s waits for the uffd event to get processed WITHOUT the mmap sem. [aarcange@redhat.com: build warning fix] Link: http://lkml.kernel.org/r/20161216144821.5183-10-aarcange@redhat.com Link: http://lkml.kernel.org/r/20161216144821.5183-9-aarcange@redhat.com Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Michael Rapoport <RAPOPORT@il.ibm.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23userfaultfd: document _IOR/_IOWAndrea Arcangeli1-0/+6
Patch series "userfaultfd tmpfs/hugetlbfs/non-cooperative", v2 These userfaultfd features are finished and are ready for larger exposure in -mm and upstream merging. 1) tmpfs non present userfault 2) hugetlbfs non present userfault 3) non cooperative userfault for fork/madvise/mremap qemu development code is already exercising 2) and container postcopy live migration needs 3). 1) is not currently used but there's a self test and we know some qemu user for various reasons uses tmpfs as backing for KVM so it'll need it too to use postcopy live migration with tmpfs memory. All review feedback from the previous submit has been handled and the fixes are included. There's no outstanding issue AFIK. Upstream code just did a s/fe/vmf/ conversion in the page faults and this has been converted as well incrementally. In addition to the previous submits, this also wakes up stuck userfaults during UFFDIO_UNREGISTER. The non cooperative testcase actually reproduced this problem by getting stuck instead of quitting clean in some rare case as it could call UFFDIO_UNREGISTER while some userfault could be still in flight. The other option would have been to keep leaving it up to userland to serialize itself and to patch the testcase instead but the wakeup during unregister I think is preferable. David also asked the UFFD_FEATURE_MISSING_HUGETLBFS and UFFD_FEATURE_MISSING_SHMEM feature flags to be added so QEMU can avoid to probe if the hugetlbfs/shmem missing support is available by calling UFFDIO_REGISTER. QEMU already checks HUGETLBFS_MAGIC with fstatfs so if UFFD_FEATURE_MISSING_HUGETLBFS is also set, it knows UFFDIO_REGISTER will succeed (or if it fails, it's for some other more concerning reason). There's no reason to worry about adding too many feature flags. There are 64 available and worst case we've to bump the API if someday we're really going to run out of them. The round-trip network latency of hugetlbfs userfaults during postcopy live migration is still of the order of dozen milliseconds on 10GBit if at 2MB hugepage granularity so it's working perfectly and it should provide for higher bandwidth or lower CPU usage (which makes it interesting to add an option in the future to support THP granularity too for anonymous memory, UFFDIO_COPY would then have to create THP if alignment/len allows for it). 1GB hugetlbfs granularity will require big changes in hugetlbfs to work so it's deferred for later. This patch (of 42): This adds proper documentation (inline) to avoid the risk of further misunderstandings about the semantics of _IOW/_IOR and it also reminds whoever will bump the UFFDIO_API in the future, to change the two ioctl to _IOW. This was found while implementing strace support for those ioctl, otherwise we could have never found it by just reviewing kernel code and testing it. _IOC_READ or _IOC_WRITE alters nothing but the ioctl number itself, so it's only worth fixing if the UFFDIO_API is bumped someday. Link: http://lkml.kernel.org/r/20161216144821.5183-2-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reported-by: "Dmitry V. Levin" <ldv@altlinux.org> Cc: Michael Rapoport <RAPOPORT@il.ibm.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-10-02userfaultfd: remove kernel header include from uapi headerAndre Przywara1-2/+0
As include/uapi/linux/userfaultfd.h is a user visible header file, it should not include kernel-exclusive header files. So trying to build the userfaultfd test program from the selftests directory fails, since it contains a reference to linux/compiler.h. As it turns out, that header is not really needed there, so we can simply remove it to fix that issue. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Shuah Khan <shuahkh@osg.samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05userfaultfd: UFFDIO_COPY|UFFDIO_ZEROPAGE uAPIAndrea Arcangeli1-1/+41
This implements the uABI of UFFDIO_COPY and UFFDIO_ZEROPAGE. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Pavel Emelyanov <xemul@parallels.com> Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com> Cc: zhang.zhanghailiang@huawei.com Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andres Lagar-Cavilla <andreslc@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Hugh Dickins <hughd@google.com> Cc: Peter Feiner <pfeiner@google.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05userfaultfd: change the read API to return a uffd_msgAndrea Arcangeli1-15/+55
I had requests to return the full address (not the page aligned one) to userland. It's not entirely clear how the page offset could be relevant because userfaults aren't like SIGBUS that can sigjump to a different place and it actually skip resolving the fault depending on a page offset. There's currently no real way to skip the fault especially because after a UFFDIO_COPY|ZEROPAGE, the fault is optimized to be retried within the kernel without having to return to userland first (not even self modifying code replacing the .text that touched the faulting address would prevent the fault to be repeated). Userland cannot skip repeating the fault even more so if the fault was triggered by a KVM secondary page fault or any get_user_pages or any copy-user inside some syscall which will return to kernel code. The second time FAULT_FLAG_RETRY_NOWAIT won't be set leading to a SIGBUS being raised because the userfault can't wait if it cannot release the mmap_map first (and FAULT_FLAG_RETRY_NOWAIT is required for that). Still returning userland a proper structure during the read() on the uffd, can allow to use the current UFFD_API for the future non-cooperative extensions too and it looks cleaner as well. Once we get additional fields there's no point to return the fault address page aligned anymore to reuse the bits below PAGE_SHIFT. The only downside is that the read() syscall will read 32bytes instead of 8bytes but that's not going to be measurable overhead. The total number of new events that can be extended or of new future bits for already shipped events, is limited to 64 by the features field of the uffdio_api structure. If more will be needed a bump of UFFD_API will be required. [akpm@linux-foundation.org: use __packed] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Pavel Emelyanov <xemul@parallels.com> Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com> Cc: zhang.zhanghailiang@huawei.com Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andres Lagar-Cavilla <andreslc@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Hugh Dickins <hughd@google.com> Cc: Peter Feiner <pfeiner@google.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05userfaultfd: Rename uffd_api.bits into .featuresPavel Emelyanov1-3/+9
This is (seems to be) the minimal thing that is required to unblock standard uffd usage from the non-cooperative one. Now more bits can be added to the features field indicating e.g. UFFD_FEATURE_FORK and others needed for the latter use-case. Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com> Cc: zhang.zhanghailiang@huawei.com Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andres Lagar-Cavilla <andreslc@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Hugh Dickins <hughd@google.com> Cc: Peter Feiner <pfeiner@google.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-05userfaultfd: uAPIAndrea Arcangeli1-0/+83
Defines the uAPI of the userfaultfd, notably the ioctl numbers and protocol. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Pavel Emelyanov <xemul@parallels.com> Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com> Cc: zhang.zhanghailiang@huawei.com Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andres Lagar-Cavilla <andreslc@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Hugh Dickins <hughd@google.com> Cc: Peter Feiner <pfeiner@google.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>