summaryrefslogtreecommitdiff
path: root/include/linux/user_namespace.h
AgeCommit message (Collapse)AuthorFilesLines
2021-10-19ucounts: Fix signal ucount refcountingEric W. Biederman1-0/+2
In commit fda31c50292a ("signal: avoid double atomic counter increments for user accounting") Linus made a clever optimization to how rlimits and the struct user_struct. Unfortunately that optimization does not work in the obvious way when moved to nested rlimits. The problem is that the last decrement of the per user namespace per user sigpending counter might also be the last decrement of the sigpending counter in the parent user namespace as well. Which means that simply freeing the leaf ucount in __free_sigqueue is not enough. Maintain the optimization and handle the tricky cases by introducing inc_rlimit_get_ucounts and dec_rlimit_put_ucounts. By moving the entire optimization into functions that perform all of the work it becomes possible to ensure that every level is handled properly. The new function inc_rlimit_get_ucounts returns 0 on failure to increment the ucount. This is different than inc_rlimit_ucounts which increments the ucounts and returns LONG_MAX if the ucount counter has exceeded it's maximum or it wrapped (to indicate the counter needs to decremented). I wish we had a single user to account all pending signals to across all of the threads of a process so this complexity was not necessary Cc: stable@vger.kernel.org Fixes: d64696905554 ("Reimplement RLIMIT_SIGPENDING on top of ucounts") v1: https://lkml.kernel.org/r/87mtnavszx.fsf_-_@disp2133 Link: https://lkml.kernel.org/r/87fssytizw.fsf_-_@disp2133 Reviewed-by: Alexey Gladkov <legion@kernel.org> Tested-by: Rune Kleveland <rune.kleveland@infomedia.dk> Tested-by: Yu Zhao <yuzhao@google.com> Tested-by: Jordan Glover <Golden_Miller83@protonmail.ch> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-06-29Merge branch 'for-linus' of ↵Linus Torvalds1-3/+28
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull user namespace rlimit handling update from Eric Biederman: "This is the work mainly by Alexey Gladkov to limit rlimits to the rlimits of the user that created a user namespace, and to allow users to have stricter limits on the resources created within a user namespace." * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: cred: add missing return error code when set_cred_ucounts() failed ucounts: Silence warning in dec_rlimit_ucounts ucounts: Set ucount_max to the largest positive value the type can hold kselftests: Add test to check for rlimit changes in different user namespaces Reimplement RLIMIT_MEMLOCK on top of ucounts Reimplement RLIMIT_SIGPENDING on top of ucounts Reimplement RLIMIT_MSGQUEUE on top of ucounts Reimplement RLIMIT_NPROC on top of ucounts Use atomic_t for ucounts reference counting Add a reference to ucounts for each cred Increase size of ucounts to atomic_long_t
2021-04-30ucounts: Set ucount_max to the largest positive value the type can holdAlexey Gladkov1-0/+6
The ns->ucount_max[] is signed long which is less than the rlimit size. We have to protect ucount_max[] from overflow and only use the largest value that we can hold. On 32bit using "long" instead of "unsigned long" to hold the counts has the downside that RLIMIT_MSGQUEUE and RLIMIT_MEMLOCK are limited to 2GiB instead of 4GiB. I don't think anyone cares but it should be mentioned in case someone does. The RLIMIT_NPROC and RLIMIT_SIGPENDING used atomic_t so their maximum hasn't changed. Signed-off-by: Alexey Gladkov <legion@kernel.org> Link: https://lkml.kernel.org/r/1825a5dfa18bc5a570e79feb05e2bd07fd57e7e3.1619094428.git.legion@kernel.org Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2021-04-30Reimplement RLIMIT_MEMLOCK on top of ucountsAlexey Gladkov1-0/+1
The rlimit counter is tied to uid in the user_namespace. This allows rlimit values to be specified in userns even if they are already globally exceeded by the user. However, the value of the previous user_namespaces cannot be exceeded. Changelog v11: * Fix issue found by lkp robot. v8: * Fix issues found by lkp-tests project. v7: * Keep only ucounts for RLIMIT_MEMLOCK checks instead of struct cred. v6: * Fix bug in hugetlb_file_setup() detected by trinity. Reported-by: kernel test robot <oliver.sang@intel.com> Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Alexey Gladkov <legion@kernel.org> Link: https://lkml.kernel.org/r/970d50c70c71bfd4496e0e8d2a0a32feebebb350.1619094428.git.legion@kernel.org Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2021-04-30Reimplement RLIMIT_SIGPENDING on top of ucountsAlexey Gladkov1-0/+1
The rlimit counter is tied to uid in the user_namespace. This allows rlimit values to be specified in userns even if they are already globally exceeded by the user. However, the value of the previous user_namespaces cannot be exceeded. Changelog v11: * Revert most of changes to fix performance issues. v10: * Fix memory leak on get_ucounts failure. Signed-off-by: Alexey Gladkov <legion@kernel.org> Link: https://lkml.kernel.org/r/df9d7764dddd50f28616b7840de74ec0f81711a8.1619094428.git.legion@kernel.org Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2021-04-30Reimplement RLIMIT_MSGQUEUE on top of ucountsAlexey Gladkov1-0/+1
The rlimit counter is tied to uid in the user_namespace. This allows rlimit values to be specified in userns even if they are already globally exceeded by the user. However, the value of the previous user_namespaces cannot be exceeded. Signed-off-by: Alexey Gladkov <legion@kernel.org> Link: https://lkml.kernel.org/r/2531f42f7884bbfee56a978040b3e0d25cdf6cde.1619094428.git.legion@kernel.org Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2021-04-30Reimplement RLIMIT_NPROC on top of ucountsAlexey Gladkov1-0/+12
The rlimit counter is tied to uid in the user_namespace. This allows rlimit values to be specified in userns even if they are already globally exceeded by the user. However, the value of the previous user_namespaces cannot be exceeded. To illustrate the impact of rlimits, let's say there is a program that does not fork. Some service-A wants to run this program as user X in multiple containers. Since the program never fork the service wants to set RLIMIT_NPROC=1. service-A \- program (uid=1000, container1, rlimit_nproc=1) \- program (uid=1000, container2, rlimit_nproc=1) The service-A sets RLIMIT_NPROC=1 and runs the program in container1. When the service-A tries to run a program with RLIMIT_NPROC=1 in container2 it fails since user X already has one running process. We cannot use existing inc_ucounts / dec_ucounts because they do not allow us to exceed the maximum for the counter. Some rlimits can be overlimited by root or if the user has the appropriate capability. Changelog v11: * Change inc_rlimit_ucounts() which now returns top value of ucounts. * Drop inc_rlimit_ucounts_and_test() because the return code of inc_rlimit_ucounts() can be checked. Signed-off-by: Alexey Gladkov <legion@kernel.org> Link: https://lkml.kernel.org/r/c5286a8aa16d2d698c222f7532f3d735c82bc6bc.1619094428.git.legion@kernel.org Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2021-04-30Use atomic_t for ucounts reference countingAlexey Gladkov1-2/+2
The current implementation of the ucounts reference counter requires the use of spin_lock. We're going to use get_ucounts() in more performance critical areas like a handling of RLIMIT_SIGPENDING. Now we need to use spin_lock only if we want to change the hashtable. v10: * Always try to put ucounts in case we cannot increase ucounts->count. This will allow to cover the case when all consumers will return ucounts at once. v9: * Use a negative value to check that the ucounts->count is close to overflow. Signed-off-by: Alexey Gladkov <legion@kernel.org> Link: https://lkml.kernel.org/r/94d1dbecab060a6b116b0a2d1accd8ca1bbb4f5f.1619094428.git.legion@kernel.org Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2021-04-30Add a reference to ucounts for each credAlexey Gladkov1-0/+4
For RLIMIT_NPROC and some other rlimits the user_struct that holds the global limit is kept alive for the lifetime of a process by keeping it in struct cred. Adding a pointer to ucounts in the struct cred will allow to track RLIMIT_NPROC not only for user in the system, but for user in the user_namespace. Updating ucounts may require memory allocation which may fail. So, we cannot change cred.ucounts in the commit_creds() because this function cannot fail and it should always return 0. For this reason, we modify cred.ucounts before calling the commit_creds(). Changelog v6: * Fix null-ptr-deref in is_ucounts_overlimit() detected by trinity. This error was caused by the fact that cred_alloc_blank() left the ucounts pointer empty. Reported-by: kernel test robot <oliver.sang@intel.com> Signed-off-by: Alexey Gladkov <legion@kernel.org> Link: https://lkml.kernel.org/r/b37aaef28d8b9b0d757e07ba6dd27281bbe39259.1619094428.git.legion@kernel.org Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2021-04-30Increase size of ucounts to atomic_long_tAlexey Gladkov1-2/+2
RLIMIT_MSGQUEUE and RLIMIT_MEMLOCK use unsigned long to store their counters. As a preparation for moving rlimits based on ucounts, we need to increase the size of the variable to long. Signed-off-by: Alexey Gladkov <legion@kernel.org> Link: https://lkml.kernel.org/r/257aa5fb1a7d81cf0f4c34f39ada2320c4284771.1619094428.git.legion@kernel.org Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2021-04-29Merge tag 'fsnotify_for_v5.13-rc1' of ↵Linus Torvalds1-0/+4
git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs Pull fsnotify updates from Jan Kara: - support for limited fanotify functionality for unpriviledged users - faster merging of fanotify events - a few smaller fsnotify improvements * tag 'fsnotify_for_v5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs: shmem: allow reporting fanotify events with file handles on tmpfs fs: introduce a wrapper uuid_to_fsid() fanotify_user: use upper_32_bits() to verify mask fanotify: support limited functionality for unprivileged users fanotify: configurable limits via sysfs fanotify: limit number of event merge attempts fsnotify: use hash table for faster events merge fanotify: mix event info and pid into merge key hash fanotify: reduce event objectid to 29-bit hash fsnotify: allow fsnotify_{peek,remove}_first_event with empty queue
2021-04-21capabilities: require CAP_SETFCAP to map uid 0Serge E. Hallyn1-0/+3
cap_setfcap is required to create file capabilities. Since commit 8db6c34f1dbc ("Introduce v3 namespaced file capabilities"), a process running as uid 0 but without cap_setfcap is able to work around this as follows: unshare a new user namespace which maps parent uid 0 into the child namespace. While this task will not have new capabilities against the parent namespace, there is a loophole due to the way namespaced file capabilities are represented as xattrs. File capabilities valid in userns 1 are distinguished from file capabilities valid in userns 2 by the kuid which underlies uid 0. Therefore the restricted root process can unshare a new self-mapping namespace, add a namespaced file capability onto a file, then use that file capability in the parent namespace. To prevent that, do not allow mapping parent uid 0 if the process which opened the uid_map file does not have CAP_SETFCAP, which is the capability for setting file capabilities. As a further wrinkle: a task can unshare its user namespace, then open its uid_map file itself, and map (only) its own uid. In this case we do not have the credential from before unshare, which was potentially more restricted. So, when creating a user namespace, we record whether the creator had CAP_SETFCAP. Then we can use that during map_write(). With this patch: 1. Unprivileged user can still unshare -Ur ubuntu@caps:~$ unshare -Ur root@caps:~# logout 2. Root user can still unshare -Ur ubuntu@caps:~$ sudo bash root@caps:/home/ubuntu# unshare -Ur root@caps:/home/ubuntu# logout 3. Root user without CAP_SETFCAP cannot unshare -Ur: root@caps:/home/ubuntu# /sbin/capsh --drop=cap_setfcap -- root@caps:/home/ubuntu# /sbin/setcap cap_setfcap=p /sbin/setcap unable to set CAP_SETFCAP effective capability: Operation not permitted root@caps:/home/ubuntu# unshare -Ur unshare: write failed /proc/self/uid_map: Operation not permitted Note: an alternative solution would be to allow uid 0 mappings by processes without CAP_SETFCAP, but to prevent such a namespace from writing any file capabilities. This approach can be seen at [1]. Background history: commit 95ebabde382 ("capabilities: Don't allow writing ambiguous v3 file capabilities") tried to fix the issue by preventing v3 fscaps to be written to disk when the root uid would map to the same uid in nested user namespaces. This led to regressions for various workloads. For example, see [2]. Ultimately this is a valid use-case we have to support meaning we had to revert this change in 3b0c2d3eaa83 ("Revert 95ebabde382c ("capabilities: Don't allow writing ambiguous v3 file capabilities")"). Link: https://git.kernel.org/pub/scm/linux/kernel/git/sergeh/linux.git/log/?h=2021-04-15/setfcap-nsfscaps-v4 [1] Link: https://github.com/containers/buildah/issues/3071 [2] Signed-off-by: Serge Hallyn <serge@hallyn.com> Reviewed-by: Andrew G. Morgan <morgan@kernel.org> Tested-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: Christian Brauner <christian.brauner@ubuntu.com> Tested-by: Giuseppe Scrivano <gscrivan@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-03-16fanotify: configurable limits via sysfsAmir Goldstein1-0/+4
fanotify has some hardcoded limits. The only APIs to escape those limits are FAN_UNLIMITED_QUEUE and FAN_UNLIMITED_MARKS. Allow finer grained tuning of the system limits via sysfs tunables under /proc/sys/fs/fanotify, similar to tunables under /proc/sys/fs/inotify, with some minor differences. - max_queued_events - global system tunable for group queue size limit. Like the inotify tunable with the same name, it defaults to 16384 and applies on initialization of a new group. - max_user_marks - user ns tunable for marks limit per user. Like the inotify tunable named max_user_watches, on a machine with sufficient RAM and it defaults to 1048576 in init userns and can be further limited per containing user ns. - max_user_groups - user ns tunable for number of groups per user. Like the inotify tunable named max_user_instances, it defaults to 128 in init userns and can be further limited per containing user ns. The slightly different tunable names used for fanotify are derived from the "group" and "mark" terminology used in the fanotify man pages and throughout the code. Considering the fact that the default value for max_user_instances was increased in kernel v5.10 from 8192 to 1048576, leaving the legacy fanotify limit of 8192 marks per group in addition to the max_user_marks limit makes little sense, so the per group marks limit has been removed. Note that when a group is initialized with FAN_UNLIMITED_MARKS, its own marks are not accounted in the per user marks account, so in effect the limit of max_user_marks is only for the collection of groups that are not initialized with FAN_UNLIMITED_MARKS. Link: https://lore.kernel.org/r/20210304112921.3996419-2-amir73il@gmail.com Suggested-by: Jan Kara <jack@suse.cz> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Jan Kara <jack@suse.cz>
2020-08-19user: Use generic ns_common::countKirill Tkhai1-3/+2
Switch over user namespaces to use the newly introduced common lifetime counter. Currently every namespace type has its own lifetime counter which is stored in the specific namespace struct. The lifetime counters are used identically for all namespaces types. Namespaces may of course have additional unrelated counters and these are not altered. This introduces a common lifetime counter into struct ns_common. The ns_common struct encompasses information that all namespaces share. That should include the lifetime counter since its common for all of them. It also allows us to unify the type of the counters across all namespaces. Most of them use refcount_t but one uses atomic_t and at least one uses kref. Especially the last one doesn't make much sense since it's just a wrapper around refcount_t since 2016 and actually complicates cleanup operations by having to use container_of() to cast the correct namespace struct out of struct ns_common. Having the lifetime counter for the namespaces in one place reduces maintenance cost. Not just because after switching all namespaces over we will have removed more code than we added but also because the logic is more easily understandable and we indicate to the user that the basic lifetime requirements for all namespaces are currently identical. Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Christian Brauner <christian.brauner@ubuntu.com> Link: https://lore.kernel.org/r/159644979754.604812.601625186726406922.stgit@localhost.localdomain Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2020-01-14ns: Introduce Time NamespaceAndrei Vagin1-0/+1
Time Namespace isolates clock values. The kernel provides access to several clocks CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME, etc. CLOCK_REALTIME System-wide clock that measures real (i.e., wall-clock) time. CLOCK_MONOTONIC Clock that cannot be set and represents monotonic time since some unspecified starting point. CLOCK_BOOTTIME Identical to CLOCK_MONOTONIC, except it also includes any time that the system is suspended. For many users, the time namespace means the ability to changes date and time in a container (CLOCK_REALTIME). Providing per namespace notions of CLOCK_REALTIME would be complex with a massive overhead, but has a dubious value. But in the context of checkpoint/restore functionality, monotonic and boottime clocks become interesting. Both clocks are monotonic with unspecified starting points. These clocks are widely used to measure time slices and set timers. After restoring or migrating processes, it has to be guaranteed that they never go backward. In an ideal case, the behavior of these clocks should be the same as for a case when a whole system is suspended. All this means that it is required to set CLOCK_MONOTONIC and CLOCK_BOOTTIME clocks, which can be achieved by adding per-namespace offsets for clocks. A time namespace is similar to a pid namespace in the way how it is created: unshare(CLONE_NEWTIME) system call creates a new time namespace, but doesn't set it to the current process. Then all children of the process will be born in the new time namespace, or a process can use the setns() system call to join a namespace. This scheme allows setting clock offsets for a namespace, before any processes appear in it. All available clone flags have been used, so CLONE_NEWTIME uses the highest bit of CSIGNAL. It means that it can be used only with the unshare() and the clone3() system calls. [ tglx: Adjusted paragraph about clone3() to reality and massaged the changelog a bit. ] Co-developed-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://criu.org/Time_namespace Link: https://lists.openvz.org/pipermail/criu/2018-June/041504.html Link: https://lore.kernel.org/r/20191112012724.250792-4-dima@arista.com
2019-06-26keys: Move the user and user-session keyrings to the user_namespaceDavid Howells1-2/+7
Move the user and user-session keyrings to the user_namespace struct rather than pinning them from the user_struct struct. This prevents these keyrings from propagating across user-namespaces boundaries with regard to the KEY_SPEC_* flags, thereby making them more useful in a containerised environment. The issue is that a single user_struct may be represent UIDs in several different namespaces. The way the patch does this is by attaching a 'register keyring' in each user_namespace and then sticking the user and user-session keyrings into that. It can then be searched to retrieve them. Signed-off-by: David Howells <dhowells@redhat.com> cc: Jann Horn <jannh@google.com>
2019-06-26keys: Namespace keyring namesDavid Howells1-0/+5
Keyring names are held in a single global list that any process can pick from by means of keyctl_join_session_keyring (provided the keyring grants Search permission). This isn't very container friendly, however. Make the following changes: (1) Make default session, process and thread keyring names begin with a '.' instead of '_'. (2) Keyrings whose names begin with a '.' aren't added to the list. Such keyrings are system specials. (3) Replace the global list with per-user_namespace lists. A keyring adds its name to the list for the user_namespace that it is currently in. (4) When a user_namespace is deleted, it just removes itself from the keyring name list. The global keyring_name_lock is retained for accessing the name lists. This allows (4) to work. This can be tested by: # keyctl newring foo @s 995906392 # unshare -U $ keyctl show ... 995906392 --alswrv 65534 65534 \_ keyring: foo ... $ keyctl session foo Joined session keyring: 935622349 As can be seen, a new session keyring was created. The capability bit KEYCTL_CAPS1_NS_KEYRING_NAME is set if the kernel is employing this feature. Signed-off-by: David Howells <dhowells@redhat.com> cc: Eric W. Biederman <ebiederm@xmission.com>
2017-11-16Merge branch 'for-linus' of ↵Linus Torvalds1-7/+16
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull user namespace update from Eric Biederman: "The only change that is production ready this round is the work to increase the number of uid and gid mappings a user namespace can support from 5 to 340. This code was carefully benchmarked and it was confirmed that in the existing cases the performance remains the same. In the worst case with 340 mappings an cache cold stat times go from 158ns to 248ns. That is noticable but still quite small, and only the people who are doing crazy things pay the cost. This work uncovered some documentation and cleanup opportunities in the mapping code, and patches to make those cleanups and improve the documentation will be coming in the next merge window" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: userns: Simplify insert_extent userns: Make map_id_down a wrapper for map_id_range_down userns: Don't read extents twice in m_start userns: Simplify the user and group mapping functions userns: Don't special case a count of 0 userns: bump idmap limits to 340 userns: use union in {g,u}idmap struct
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman1-0/+1
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01userns: bump idmap limits to 340Christian Brauner1-3/+4
There are quite some use cases where users run into the current limit for {g,u}id mappings. Consider a user requesting us to map everything but 999, and 1001 for a given range of 1000000000 with a sub{g,u}id layout of: some-user:100000:1000000000 some-user:999:1 some-user:1000:1 some-user:1001:1 some-user:1002:1 This translates to: MAPPING-TYPE | CONTAINER | HOST | RANGE | -------------|-----------|---------|-----------| uid | 999 | 999 | 1 | uid | 1001 | 1001 | 1 | uid | 0 | 1000000 | 999 | uid | 1000 | 1001000 | 1 | uid | 1002 | 1001002 | 999998998 | ------------------------------------------------ gid | 999 | 999 | 1 | gid | 1001 | 1001 | 1 | gid | 0 | 1000000 | 999 | gid | 1000 | 1001000 | 1 | gid | 1002 | 1001002 | 999998998 | which is already the current limit. As discussed at LPC simply bumping the number of limits is not going to work since this would mean that struct uid_gid_map won't fit into a single cache-line anymore thereby regressing performance for the base-cases. The same problem seems to arise when using a single pointer. So the idea is to use struct uid_gid_extent { u32 first; u32 lower_first; u32 count; }; struct uid_gid_map { /* 64 bytes -- 1 cache line */ u32 nr_extents; union { struct uid_gid_extent extent[UID_GID_MAP_MAX_BASE_EXTENTS]; struct { struct uid_gid_extent *forward; struct uid_gid_extent *reverse; }; }; }; For the base cases we will only use the struct uid_gid_extent extent member. If we go over UID_GID_MAP_MAX_BASE_EXTENTS mappings we perform a single 4k kmalloc() which means we can have a maximum of 340 mappings (340 * size(struct uid_gid_extent) = 4080). For the latter case we use two pointers "forward" and "reverse". The forward pointer points to an array sorted by "first" and the reverse pointer points to an array sorted by "lower_first". We can then perform binary search on those arrays. Performance Testing: When Eric introduced the extent-based struct uid_gid_map approach he measured the performanc impact of his idmap changes: > My benchmark consisted of going to single user mode where nothing else was > running. On an ext4 filesystem opening 1,000,000 files and looping through all > of the files 1000 times and calling fstat on the individuals files. This was > to ensure I was benchmarking stat times where the inodes were in the kernels > cache, but the inode values were not in the processors cache. My results: > v3.4-rc1: ~= 156ns (unmodified v3.4-rc1 with user namespace support disabled) > v3.4-rc1-userns-: ~= 155ns (v3.4-rc1 with my user namespace patches and user namespace support disabled) > v3.4-rc1-userns+: ~= 164ns (v3.4-rc1 with my user namespace patches and user namespace support enabled) I used an identical approach on my laptop. Here's a thorough description of what I did. I built a 4.14.0-rc4 mainline kernel with my new idmap patches applied. I booted into single user mode and used an ext4 filesystem to open/create 1,000,000 files. Then I looped through all of the files calling fstat() on each of them 1000 times and calculated the mean fstat() time for a single file. (The test program can be found below.) Here are the results. For fun, I compared the first version of my patch which scaled linearly with the new version of the patch: | # MAPPINGS | PATCH-V1 | PATCH-NEW | |--------------|------------|-----------| | 0 mappings | 158 ns | 158 ns | | 1 mappings | 164 ns | 157 ns | | 2 mappings | 170 ns | 158 ns | | 3 mappings | 175 ns | 161 ns | | 5 mappings | 187 ns | 165 ns | | 10 mappings | 218 ns | 199 ns | | 50 mappings | 528 ns | 218 ns | | 100 mappings | 980 ns | 229 ns | | 200 mappings | 1880 ns | 239 ns | | 300 mappings | 2760 ns | 240 ns | | 340 mappings | not tested | 248 ns | Here's the test program I used. I asked Eric what he did and this is a more "advanced" implementation of the idea. It's pretty straight-forward: #define __GNU_SOURCE #define __STDC_FORMAT_MACROS #include <errno.h> #include <dirent.h> #include <fcntl.h> #include <inttypes.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <sys/stat.h> #include <sys/time.h> #include <sys/types.h> int main(int argc, char *argv[]) { int ret; size_t i, k; int fd[1000000]; int times[1000]; char pathname[4096]; struct stat st; struct timeval t1, t2; uint64_t time_in_mcs; uint64_t sum = 0; if (argc != 2) { fprintf(stderr, "Please specify a directory where to create " "the test files\n"); exit(EXIT_FAILURE); } for (i = 0; i < sizeof(fd) / sizeof(fd[0]); i++) { sprintf(pathname, "%s/idmap_test_%zu", argv[1], i); fd[i]= open(pathname, O_RDWR | O_CREAT, S_IXUSR | S_IXGRP | S_IXOTH); if (fd[i] < 0) { ssize_t j; for (j = i; j >= 0; j--) close(fd[j]); exit(EXIT_FAILURE); } } for (k = 0; k < 1000; k++) { ret = gettimeofday(&t1, NULL); if (ret < 0) goto close_all; for (i = 0; i < sizeof(fd) / sizeof(fd[0]); i++) { ret = fstat(fd[i], &st); if (ret < 0) goto close_all; } ret = gettimeofday(&t2, NULL); if (ret < 0) goto close_all; time_in_mcs = (1000000 * t2.tv_sec + t2.tv_usec) - (1000000 * t1.tv_sec + t1.tv_usec); printf("Total time in micro seconds: %" PRIu64 "\n", time_in_mcs); printf("Total time in nanoseconds: %" PRIu64 "\n", time_in_mcs * 1000); printf("Time per file in nanoseconds: %" PRIu64 "\n", (time_in_mcs * 1000) / 1000000); times[k] = (time_in_mcs * 1000) / 1000000; } close_all: for (i = 0; i < sizeof(fd) / sizeof(fd[0]); i++) close(fd[i]); if (ret < 0) exit(EXIT_FAILURE); for (k = 0; k < 1000; k++) { sum += times[k]; } printf("Mean time per file in nanoseconds: %" PRIu64 "\n", sum / 1000); exit(EXIT_SUCCESS);; } Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> CC: Serge Hallyn <serge@hallyn.com> CC: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-11-01userns: use union in {g,u}idmap structChristian Brauner1-5/+13
- Add a struct containing two pointer to extents and wrap both the static extent array and the struct into a union. This is done in preparation for bumping the {g,u}idmap limits for user namespaces. - Add brackets around anonymous union when using designated initializers to initialize members in order to please gcc <= 4.4. Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2017-09-12Merge branch 'for-linus' of ↵Linus Torvalds1-1/+8
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull namespace updates from Eric Biederman: "Life has been busy and I have not gotten half as much done this round as I would have liked. I delayed it so that a minor conflict resolution with the mips tree could spend a little time in linux-next before I sent this pull request. This includes two long delayed user namespace changes from Kirill Tkhai. It also includes a very useful change from Serge Hallyn that allows the security capability attribute to be used inside of user namespaces. The practical effect of this is people can now untar tarballs and install rpms in user namespaces. It had been suggested to generalize this and encode some of the namespace information information in the xattr name. Upon close inspection that makes the things that should be hard easy and the things that should be easy more expensive. Then there is my bugfix/cleanup for signal injection that removes the magic encoding of the siginfo union member from the kernel internal si_code. The mips folks reported the case where I had used FPE_FIXME me is impossible so I have remove FPE_FIXME from mips, while at the same time including a return statement in that case to keep gcc from complaining about unitialized variables. I almost finished the work to get make copy_siginfo_to_user a trivial copy to user. The code is available at: git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace.git neuter-copy_siginfo_to_user-v3 But I did not have time/energy to get the code posted and reviewed before the merge window opened. I was able to see that the security excuse for just copying fields that we know are initialized doesn't work in practice there are buggy initializations that don't initialize the proper fields in siginfo. So we still sometimes copy unitialized data to userspace" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: Introduce v3 namespaced file capabilities mips/signal: In force_fcr31_sig return in the impossible case signal: Remove kernel interal si_code magic fcntl: Don't use ambiguous SIG_POLL si_codes prctl: Allow local CAP_SYS_ADMIN changing exe_file security: Use user_namespace::level to avoid redundant iterations in cap_capable() userns,pidns: Verify the userns for new pid namespaces signal/testing: Don't look for __SI_FAULT in userspace signal/mips: Document a conflict with SI_USER with SIGFPE signal/sparc: Document a conflict with SI_USER with SIGFPE signal/ia64: Document a conflict with SI_USER with SIGFPE signal/alpha: Document a conflict with SI_USER for SIGTRAP
2017-07-20userns,pidns: Verify the userns for new pid namespacesEric W. Biederman1-1/+8
It is pointless and confusing to allow a pid namespace hierarchy and the user namespace hierarchy to get out of sync. The owner of a child pid namespace should be the owner of the parent pid namespace or a descendant of the owner of the parent pid namespace. Otherwise it is possible to construct scenarios where a process has a capability over a parent pid namespace but does not have the capability over a child pid namespace. Which confusingly makes permission checks non-transitive. It requires use of setns into a pid namespace (but not into a user namespace) to create such a scenario. Add the function in_userns to help in making this determination. v2: Optimized in_userns by using level as suggested by: Kirill Tkhai <ktkhai@virtuozzo.com> Ref: 49f4d8b93ccf ("pidns: Capture the user namespace and filter ns_last_pid") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-06-30randstruct: Mark various structs for randomizationKees Cook1-1/+1
This marks many critical kernel structures for randomization. These are structures that have been targeted in the past in security exploits, or contain functions pointers, pointers to function pointer tables, lists, workqueues, ref-counters, credentials, permissions, or are otherwise sensitive. This initial list was extracted from Brad Spengler/PaX Team's code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Left out of this list is task_struct, which requires special handling and will be covered in a subsequent patch. Signed-off-by: Kees Cook <keescook@chromium.org>
2017-03-07ucount: Remove the atomicity from ucount->countEric W. Biederman1-1/+1
Always increment/decrement ucount->count under the ucounts_lock. The increments are there already and moving the decrements there means the locking logic of the code is simpler. This simplification in the locking logic fixes a race between put_ucounts and get_ucounts that could result in a use-after-free because the count could go zero then be found by get_ucounts and then be freed by put_ucounts. A bug presumably this one was found by a combination of syzkaller and KASAN. JongWhan Kim reported the syzkaller failure and Dmitry Vyukov spotted the race in the code. Cc: stable@vger.kernel.org Fixes: f6b2db1a3e8d ("userns: Make the count of user namespaces per user") Reported-by: JongHwan Kim <zzoru007@gmail.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Reviewed-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2017-03-03sched/headers, timers: Remove the <linux/sysctl.h> include from <linux/timer.h>Ingo Molnar1-0/+1
So we want to simplify <linux/sched.h>'s header dependencies, but one roadblock of that is <linux/timer.h>'s inclusion of sysctl.h, which brings in other, problematic headers. Note that timer.h's inclusion of sysctl.h can be avoided if we pre-declare ctl_table - so do that. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-03sched/headers: Remove <linux/rwsem.h> from <linux/sched.h>Ingo Molnar1-0/+1
This is a stray header that is not needed by anything in sched.h, so remove it. Update files that relied on the stray inclusion. This reduces the size of the header dependency graph. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02sched/headers: Prepare for the removal of various unrelated headers from ↵Ingo Molnar1-0/+1
<linux/sched.h> We are going to remove the following header inclusions from <linux/sched.h>: #include <asm/param.h> #include <linux/threads.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/timex.h> #include <linux/jiffies.h> #include <linux/rbtree.h> #include <linux/thread_info.h> #include <linux/cpumask.h> #include <linux/errno.h> #include <linux/nodemask.h> #include <linux/preempt.h> #include <asm/page.h> #include <linux/smp.h> #include <linux/compiler.h> #include <linux/completion.h> #include <linux/percpu.h> #include <linux/topology.h> #include <linux/rcupdate.h> #include <linux/time.h> #include <linux/timer.h> #include <linux/llist.h> #include <linux/uidgid.h> #include <asm/processor.h> Fix up a single .h file that got hold of <linux/sysctl.h> via one of these headers. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-24inotify: Convert to using per-namespace limitsNikolay Borisov1-0/+4
This patchset converts inotify to using the newly introduced per-userns sysctl infrastructure. Currently the inotify instances/watches are being accounted in the user_struct structure. This means that in setups where multiple users in unprivileged containers map to the same underlying real user (i.e. pointing to the same user_struct) the inotify limits are going to be shared as well, allowing one user(or application) to exhaust all others limits. Fix this by switching the inotify sysctls to using the per-namespace/per-user limits. This will allow the server admin to set sensible global limits, which can further be tuned inside every individual user namespace. Additionally, in order to preserve the sysctl ABI make the existing inotify instances/watches sysctls modify the values of the initial user namespace. Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com> Acked-by: Jan Kara <jack@suse.cz> Acked-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2016-09-23Merge branch 'nsfs-ioctls' into HEADEric W. Biederman1-0/+7
From: Andrey Vagin <avagin@openvz.org> Each namespace has an owning user namespace and now there is not way to discover these relationships. Pid and user namepaces are hierarchical. There is no way to discover parent-child relationships too. Why we may want to know relationships between namespaces? One use would be visualization, in order to understand the running system. Another would be to answer the question: what capability does process X have to perform operations on a resource governed by namespace Y? One more use-case (which usually called abnormal) is checkpoint/restart. In CRIU we are going to dump and restore nested namespaces. There [1] was a discussion about which interface to choose to determing relationships between namespaces. Eric suggested to add two ioctl-s [2]: > Grumble, Grumble. I think this may actually a case for creating ioctls > for these two cases. Now that random nsfs file descriptors are bind > mountable the original reason for using proc files is not as pressing. > > One ioctl for the user namespace that owns a file descriptor. > One ioctl for the parent namespace of a namespace file descriptor. Here is an implementaions of these ioctl-s. $ man man7/namespaces.7 ... Since Linux 4.X, the following ioctl(2) calls are supported for namespace file descriptors. The correct syntax is: fd = ioctl(ns_fd, ioctl_type); where ioctl_type is one of the following: NS_GET_USERNS Returns a file descriptor that refers to an owning user names‐ pace. NS_GET_PARENT Returns a file descriptor that refers to a parent namespace. This ioctl(2) can be used for pid and user namespaces. For user namespaces, NS_GET_PARENT and NS_GET_USERNS have the same meaning. In addition to generic ioctl(2) errors, the following specific ones can occur: EINVAL NS_GET_PARENT was called for a nonhierarchical namespace. EPERM The requested namespace is outside of the current namespace scope. [1] https://lkml.org/lkml/2016/7/6/158 [2] https://lkml.org/lkml/2016/7/9/101 Changes for v2: * don't return ENOENT for init_user_ns and init_pid_ns. There is nothing outside of the init namespace, so we can return EPERM in this case too. > The fewer special cases the easier the code is to get > correct, and the easier it is to read. // Eric Changes for v3: * rename ns->get_owner() to ns->owner(). get_* usually means that it grabs a reference. Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: "Michael Kerrisk (man-pages)" <mtk.manpages@gmail.com> Cc: "W. Trevor King" <wking@tremily.us> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Serge Hallyn <serge.hallyn@canonical.com>
2016-09-23kernel: add a helper to get an owning user namespace for a namespaceAndrey Vagin1-0/+7
Return -EPERM if an owning user namespace is outside of a process current user namespace. v2: In a first version ns_get_owner returned ENOENT for init_user_ns. This special cases was removed from this version. There is nothing outside of init_user_ns, so we can return EPERM. v3: rename ns->get_owner() to ns->owner(). get_* usually means that it grabs a reference. Acked-by: Serge Hallyn <serge@hallyn.com> Signed-off-by: Andrei Vagin <avagin@openvz.org> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2016-08-31mntns: Add a limit on the number of mount namespaces.Eric W. Biederman1-0/+1
v2: Fixed the very obvious lack of setting ucounts on struct mnt_ns reported by Andrei Vagin, and the kbuild test report. Reported-by: Andrei Vagin <avagin@openvz.org> Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-08-08netns: Add a limit on the number of net namespacesEric W. Biederman1-0/+1
Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-08-08cgroupns: Add a limit on the number of cgroup namespacesEric W. Biederman1-0/+1
Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-08-08ipcns: Add a limit on the number of ipc namespacesEric W. Biederman1-0/+1
Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-08-08utsns: Add a limit on the number of uts namespacesEric W. Biederman1-0/+1
Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-08-08pidns: Add a limit on the number of pid namespacesEric W. Biederman1-0/+1
Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-08-08userns: Generalize the user namespace count into ucountEric W. Biederman1-4/+10
The same kind of recursive sane default limit and policy countrol that has been implemented for the user namespace is desirable for the other namespaces, so generalize the user namespace refernce count into a ucount. Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-08-08userns: Make the count of user namespaces per userEric W. Biederman1-4/+14
Add a structure that is per user and per user ns and use it to hold the count of user namespaces. This makes prevents one user from creating denying service to another user by creating the maximum number of user namespaces. Rename the sysctl export of the maximum count from /proc/sys/userns/max_user_namespaces to /proc/sys/user/max_user_namespaces to reflect that the count is now per user. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-08-08userns: Add a limit on the number of user namespacesEric W. Biederman1-0/+6
Export the export the maximum number of user namespaces as /proc/sys/userns/max_user_namespaces. Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-08-08userns: Add per user namespace sysctls.Eric W. Biederman1-0/+4
Limit per userns sysctls to only be opened for write by a holder of CAP_SYS_RESOURCE. Add all of the necessary boilerplate for having per user namespace sysctls. Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-08-08userns: Free user namespaces in process contextEric W. Biederman1-2/+3
Add the necessary boiler plate to move freeing of user namespaces into work queue and thus into process context where things can sleep. This is a necessary precursor to per user namespace sysctls. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-06-24fs: Limit file caps to the user namespace of the super blockSeth Forshee1-0/+6
Capability sets attached to files must be ignored except in the user namespaces where the mounter is privileged, i.e. s_user_ns and its descendants. Otherwise a vector exists for gaining privileges in namespaces where a user is not already privileged. Add a new helper function, current_in_user_ns(), to test whether a user namespace is the same as or a descendant of another namespace. Use this helper to determine whether a file's capability set should be applied to the caps constructed during exec. --EWB Replaced in_userns with the simpler current_in_userns. Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Signed-off-by: Seth Forshee <seth.forshee@canonical.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2014-12-17Merge branch 'for-linus' of ↵Linus Torvalds1-0/+12
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull user namespace related fixes from Eric Biederman: "As these are bug fixes almost all of thes changes are marked for backporting to stable. The first change (implicitly adding MNT_NODEV on remount) addresses a regression that was created when security issues with unprivileged remount were closed. I go on to update the remount test to make it easy to detect if this issue reoccurs. Then there are a handful of mount and umount related fixes. Then half of the changes deal with the a recently discovered design bug in the permission checks of gid_map. Unix since the beginning has allowed setting group permissions on files to less than the user and other permissions (aka ---rwx---rwx). As the unix permission checks stop as soon as a group matches, and setgroups allows setting groups that can not later be dropped, results in a situtation where it is possible to legitimately use a group to assign fewer privileges to a process. Which means dropping a group can increase a processes privileges. The fix I have adopted is that gid_map is now no longer writable without privilege unless the new file /proc/self/setgroups has been set to permanently disable setgroups. The bulk of user namespace using applications even the applications using applications using user namespaces without privilege remain unaffected by this change. Unfortunately this ix breaks a couple user space applications, that were relying on the problematic behavior (one of which was tools/selftests/mount/unprivileged-remount-test.c). To hopefully prevent needing a regression fix on top of my security fix I rounded folks who work with the container implementations mostly like to be affected and encouraged them to test the changes. > So far nothing broke on my libvirt-lxc test bed. :-) > Tested with openSUSE 13.2 and libvirt 1.2.9. > Tested-by: Richard Weinberger <richard@nod.at> > Tested on Fedora20 with libvirt 1.2.11, works fine. > Tested-by: Chen Hanxiao <chenhanxiao@cn.fujitsu.com> > Ok, thanks - yes, unprivileged lxc is working fine with your kernels. > Just to be sure I was testing the right thing I also tested using > my unprivileged nsexec testcases, and they failed on setgroup/setgid > as now expected, and succeeded there without your patches. > Tested-by: Serge Hallyn <serge.hallyn@ubuntu.com> > I tested this with Sandstorm. It breaks as is and it works if I add > the setgroups thing. > Tested-by: Andy Lutomirski <luto@amacapital.net> # breaks things as designed :(" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: userns: Unbreak the unprivileged remount tests userns; Correct the comment in map_write userns: Allow setting gid_maps without privilege when setgroups is disabled userns: Add a knob to disable setgroups on a per user namespace basis userns: Rename id_map_mutex to userns_state_mutex userns: Only allow the creator of the userns unprivileged mappings userns: Check euid no fsuid when establishing an unprivileged uid mapping userns: Don't allow unprivileged creation of gid mappings userns: Don't allow setgroups until a gid mapping has been setablished userns: Document what the invariant required for safe unprivileged mappings. groups: Consolidate the setgroups permission checks mnt: Clear mnt_expire during pivot_root mnt: Carefully set CL_UNPRIVILEGED in clone_mnt mnt: Move the clear of MNT_LOCKED from copy_tree to it's callers. umount: Do not allow unmounting rootfs. umount: Disallow unprivileged mount force mnt: Update unprivileged remount test mnt: Implicitly add MNT_NODEV on remount when it was implicitly added by mount
2014-12-12userns: Add a knob to disable setgroups on a per user namespace basisEric W. Biederman1-0/+7
- Expose the knob to user space through a proc file /proc/<pid>/setgroups A value of "deny" means the setgroups system call is disabled in the current processes user namespace and can not be enabled in the future in this user namespace. A value of "allow" means the segtoups system call is enabled. - Descendant user namespaces inherit the value of setgroups from their parents. - A proc file is used (instead of a sysctl) as sysctls currently do not allow checking the permissions at open time. - Writing to the proc file is restricted to before the gid_map for the user namespace is set. This ensures that disabling setgroups at a user namespace level will never remove the ability to call setgroups from a process that already has that ability. A process may opt in to the setgroups disable for itself by creating, entering and configuring a user namespace or by calling setns on an existing user namespace with setgroups disabled. Processes without privileges already can not call setgroups so this is a noop. Prodcess with privilege become processes without privilege when entering a user namespace and as with any other path to dropping privilege they would not have the ability to call setgroups. So this remains within the bounds of what is possible without a knob to disable setgroups permanently in a user namespace. Cc: stable@vger.kernel.org Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2014-12-10userns: Don't allow setgroups until a gid mapping has been setablishedEric W. Biederman1-0/+5
setgroups is unique in not needing a valid mapping before it can be called, in the case of setgroups(0, NULL) which drops all supplemental groups. The design of the user namespace assumes that CAP_SETGID can not actually be used until a gid mapping is established. Therefore add a helper function to see if the user namespace gid mapping has been established and call that function in the setgroups permission check. This is part of the fix for CVE-2014-8989, being able to drop groups without privilege using user namespaces. Cc: stable@vger.kernel.org Reviewed-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2014-12-04common object embedded into various struct ....nsAl Viro1-1/+2
for now - just move corresponding ->proc_inum instances over there Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-08-09proc: constify seq_operationsFabian Frederick1-3/+3
proc_uid_seq_operations, proc_gid_seq_operations and proc_projid_seq_operations are only called in proc_id_map_open with seq_open as const struct seq_operations so we can constify the 3 structures and update proc_id_map_open prototype. text data bss dec hex filename 6817 404 1984 9205 23f5 kernel/user_namespace.o-before 6913 308 1984 9205 23f5 kernel/user_namespace.o-after Signed-off-by: Fabian Frederick <fabf@skynet.be> Cc: Joe Perches <joe@perches.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-24KEYS: Add per-user_namespace registers for persistent per-UID kerberos cachesDavid Howells1-0/+6
Add support for per-user_namespace registers of persistent per-UID kerberos caches held within the kernel. This allows the kerberos cache to be retained beyond the life of all a user's processes so that the user's cron jobs can work. The kerberos cache is envisioned as a keyring/key tree looking something like: struct user_namespace \___ .krb_cache keyring - The register \___ _krb.0 keyring - Root's Kerberos cache \___ _krb.5000 keyring - User 5000's Kerberos cache \___ _krb.5001 keyring - User 5001's Kerberos cache \___ tkt785 big_key - A ccache blob \___ tkt12345 big_key - Another ccache blob Or possibly: struct user_namespace \___ .krb_cache keyring - The register \___ _krb.0 keyring - Root's Kerberos cache \___ _krb.5000 keyring - User 5000's Kerberos cache \___ _krb.5001 keyring - User 5001's Kerberos cache \___ tkt785 keyring - A ccache \___ krbtgt/REDHAT.COM@REDHAT.COM big_key \___ http/REDHAT.COM@REDHAT.COM user \___ afs/REDHAT.COM@REDHAT.COM user \___ nfs/REDHAT.COM@REDHAT.COM user \___ krbtgt/KERNEL.ORG@KERNEL.ORG big_key \___ http/KERNEL.ORG@KERNEL.ORG big_key What goes into a particular Kerberos cache is entirely up to userspace. Kernel support is limited to giving you the Kerberos cache keyring that you want. The user asks for their Kerberos cache by: krb_cache = keyctl_get_krbcache(uid, dest_keyring); The uid is -1 or the user's own UID for the user's own cache or the uid of some other user's cache (requires CAP_SETUID). This permits rpc.gssd or whatever to mess with the cache. The cache returned is a keyring named "_krb.<uid>" that the possessor can read, search, clear, invalidate, unlink from and add links to. Active LSMs get a chance to rule on whether the caller is permitted to make a link. Each uid's cache keyring is created when it first accessed and is given a timeout that is extended each time this function is called so that the keyring goes away after a while. The timeout is configurable by sysctl but defaults to three days. Each user_namespace struct gets a lazily-created keyring that serves as the register. The cache keyrings are added to it. This means that standard key search and garbage collection facilities are available. The user_namespace struct's register goes away when it does and anything left in it is then automatically gc'd. Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: Simo Sorce <simo@redhat.com> cc: Serge E. Hallyn <serge.hallyn@ubuntu.com> cc: Eric W. Biederman <ebiederm@xmission.com>
2013-09-08Merge branch 'for-linus' of ↵Linus Torvalds1-4/+0
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull namespace changes from Eric Biederman: "This is an assorted mishmash of small cleanups, enhancements and bug fixes. The major theme is user namespace mount restrictions. nsown_capable is killed as it encourages not thinking about details that need to be considered. A very hard to hit pid namespace exiting bug was finally tracked and fixed. A couple of cleanups to the basic namespace infrastructure. Finally there is an enhancement that makes per user namespace capabilities usable as capabilities, and an enhancement that allows the per userns root to nice other processes in the user namespace" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: userns: Kill nsown_capable it makes the wrong thing easy capabilities: allow nice if we are privileged pidns: Don't have unshare(CLONE_NEWPID) imply CLONE_THREAD userns: Allow PR_CAPBSET_DROP in a user namespace. namespaces: Simplify copy_namespaces so it is clear what is going on. pidns: Fix hang in zap_pid_ns_processes by sending a potentially extra wakeup sysfs: Restrict mounting sysfs userns: Better restrictions on when proc and sysfs can be mounted vfs: Don't copy mount bind mounts of /proc/<pid>/ns/mnt between namespaces kernel/nsproxy.c: Improving a snippet of code. proc: Restrict mounting the proc filesystem vfs: Lock in place mounts from more privileged users