Age | Commit message (Collapse) | Author | Files | Lines |
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
kernelci.org reports a crazy stack usage for the VT code when CONFIG_KASAN
is enabled:
drivers/tty/vt/keyboard.c: In function 'kbd_keycode':
drivers/tty/vt/keyboard.c:1452:1: error: the frame size of 2240 bytes is larger than 2048 bytes [-Werror=frame-larger-than=]
The problem is that tty_insert_flip_char() gets inlined many times into
kbd_keycode(), and also into other functions, and each copy requires 128
bytes for stack redzone to check for a possible out-of-bounds access on
the 'ch' and 'flags' arguments that are passed into
tty_insert_flip_string_flags as a variable-length string.
This introduces a new __tty_insert_flip_char() function for the slow
path, which receives the two arguments by value. This completely avoids
the problem and the stack usage goes back down to around 100 bytes.
Without KASAN, this is also slightly better, as we don't have to
spill the arguments to the stack but can simply pass 'ch' and 'flag'
in registers, saving a few bytes in .text for each call site.
This should be backported to linux-4.0 or later, which first introduced
the stack sanitizer in the kernel.
Cc: stable@vger.kernel.org
Fixes: c420f167db8c ("kasan: enable stack instrumentation")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
tty flip buffers use GFP_ATOMIC allocations for received data
which is to be processed by the line discipline. For each byte
received, an extra byte is used to indicate the error status of
that byte.
Instead, if the received data is error-free, encode the entire
buffer without status bytes.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
There is no in-tree user of tty_prepare_flip_string_flags(); remove.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Allow driver to configure its maximum flip buffer memory
consumption/limit. This is necessary for very-high speed line
rates (in excess of 10MB/sec) because the flip buffers can
be saturated before the line discipline has a chance to
throttle the input.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Convert the tty_buffer_flush() exclusion mechanism to a
public interface - tty_buffer_lock/unlock_exclusive() - and use
the interface to safely write the paste selection to the line
discipline.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Lockless flip buffers require atomically updating the bytes-in-use
watermark.
The pty driver also peeks at the watermark value to limit
memory consumption to a much lower value than the default; query
the watermark with new fn, tty_buffer_space_avail().
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The char_buf_ptr and flag_buf_ptr values are trivially derived from
the .data field offset; compute values as needed.
Fixes a long-standing type-mismatch with the char and flag ptrs.
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Now, we start converting tty buffer functions to actually use
tty_port. This will allow us to get rid of the need of tty in many
call sites. Only tty_port will needed and hence no more
tty_port_tty_get in those paths.
This is the last one: tty_schedule_flip
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Now, we start converting tty buffer functions to actually use
tty_port. This will allow us to get rid of the need of tty in many
call sites. Only tty_port will needed and hence no more
tty_port_tty_get in those paths.
Now, the one where most of tty_port_tty_get gets removed:
tty_flip_buffer_push.
IOW we also closed all the races in drivers not using tty_port_tty_get
at all yet.
Also we move tty_flip_buffer_push declaration from include/linux/tty.h
to include/linux/tty_flip.h to all others while we are changing it
anyway.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Now, we start converting tty buffer functions to actually use
tty_port. This will allow us to get rid of the need of tty in many
call sites. Only tty_port will needed and hence no more
tty_port_tty_get in those paths.
tty_insert_flip_string this time.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Now, we start converting tty buffer functions to actually use
tty_port. This will allow us to get rid of the need of tty in many
call sites. Only tty_port will needed and hence no more
tty_port_tty_get in those paths.
tty_insert_flip_char is the next one to proceed. This one is used all
over the code, so the patch is huge.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Now, we start converting tty buffer functions to actually use
tty_port. This will allow us to get rid of the need of tty pointer in
many call sites. Only tty_port will be needed and hence no more
tty_port_tty_get calls in those paths.
Now 4 string flipping ones are on turn:
* tty_insert_flip_string_flags
* tty_insert_flip_string_fixed_flag
* tty_prepare_flip_string
* tty_prepare_flip_string_flags
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Now, we start converting tty buffer functions to actually use
tty_port. This will allow us to get rid of the need of tty pointer in
many call sites. Only tty_port will be needed and hence no more
tty_port_tty_get calls in those paths.
Here we start with tty_buffer_request_room.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
So this is it. The big step why we did all the work over the past
kernel releases. Now everything is prepared, so nothing protects us
from doing that big step.
| | \ \ nnnn/^l | |
| | \ / / | |
| '-,.__ => \/ ,-` => | '-,.__
| O __.´´) ( .` | O __.´´)
~~~ ~~ `` ~~~ ~~
The buffers are now in the tty_port structure and we can start
teaching the buffer helpers (insert char/string, flip etc.) to use
tty_port instead of tty_struct all around.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Acked-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The USB drivers often want to insert a series of bytes all with the same
flag set - provide a helper for this case.
Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
Remove 'active' field from tty buffer structure. This was added in 2.6.16
as part of a patch to make the new tty buffering SMP safe. This field is
unnecessary with the more intelligently written flush_to_ldisc that adds
receive_room handling.
Removing this field reverts to simpler logic where the tail buffer is
always the 'active' buffer, which should not be freed by flush_to_ldisc.
(active == buffer being filled with new data)
The result is simpler, smaller, and faster tty buffer code.
Signed-off-by: Paul Fulghum <paulkf@microgate.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
We changed the wrong symbol. It's tty_insert_flip_string_flags() which is
called from the previously-non-GPL'ed now-inlined tty_insert_flip_char().
Fix that up, and uninline tty_schedule_flip() while we're there.
Cc: Tobias Powalowski <t.powa@gmx.de>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Add a couple of 'const' qualifiers to the TTY flip buffer APIs, where
appropriate.
Signed-off-by: Thomas Koeller <thomas@koeller.dyndns.org>
Acked-by: Alan Cox <alan@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch removes all occurances of _INLINE_ in the kernel.
With the exception of tty_flip.h, I've simply removed the inline's since
gcc should know best which functions to be inlined.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Prevent stalled processing of received data when a driver allocates tty
buffer space but does not immediately follow the allocation with more data
and a call to schedule receive tty processing. (example: hvc_console) This
bug was introduced by the first locking patch for the new tty buffering.
Signed-off-by: Paul Fulghum <paulkf@microgate.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Change locking in the new tty buffering facility from using tty->read_lock,
which is currently ignored by drivers and thus ineffective. New locking
uses a new tty buffering specific lock enforced centrally in the tty
buffering code.
Two drivers (esp and cyclades) are updated to use the tty buffering
functions instead of accessing tty buffering internals directly. This is
required for the new locking to work.
Minor checks for NULL buffers added to
tty_prepare_flip_string/tty_prepare_flip_string_flags
Signed-off-by: Paul Fulghum <paulkf@microgate.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
The API and code have been through various bits of initial review by
serial driver people but they definitely need to live somewhere for a
while so the unconverted drivers can get knocked into shape, existing
drivers that have been updated can be better tuned and bugs whacked out.
This replaces the tty flip buffers with kmalloc objects in rings. In the
normal situation for an IRQ driven serial port at typical speeds the
behaviour is pretty much the same, two buffers end up allocated and the
kernel cycles between them as before.
When there are delays or at high speed we now behave far better as the
buffer pool can grow a bit rather than lose characters. This also means
that we can operate at higher speeds reliably.
For drivers that receive characters in blocks (DMA based, USB and
especially virtualisation) the layer allows a lot of driver specific
code that works around the tty layer with private secondary queues to be
removed. The IBM folks need this sort of layer, the smart serial port
people do, the virtualisers do (because a virtualised tty typically
operates at infinite speed rather than emulating 9600 baud).
Finally many drivers had invalid and unsafe attempts to avoid buffer
overflows by directly invoking tty methods extracted out of the innards
of work queue structs. These are no longer needed and all go away. That
fixes various random hangs with serial ports on overflow.
The other change in here is to optimise the receive_room path that is
used by some callers. It turns out that only one ldisc uses receive room
except asa constant and it updates it far far less than the value is
read. We thus make it a variable not a function call.
I expect the code to contain bugs due to the size alone but I'll be
watching and squashing them and feeding out new patches as it goes.
Because the buffers now dynamically expand you should only run out of
buffering when the kernel runs out of memory for real. That means a lot of
the horrible hacks high performance drivers used to do just aren't needed any
more.
Description:
tty_insert_flip_char is an old API and continues to work as before, as does
tty_flip_buffer_push() [this is why many drivers dont need modification]. It
does now also return the number of chars inserted
There are also
tty_buffer_request_room(tty, len)
which asks for a buffer block of the length requested and returns the space
found. This improves efficiency with hardware that knows how much to
transfer.
and tty_insert_flip_string_flags(tty, str, flags, len)
to insert a string of characters and flags
For a smart interface the usual code is
len = tty_request_buffer_room(tty, amount_hardware_says);
tty_insert_flip_string(tty, buffer_from_card, len);
More description!
At the moment tty buffers are attached directly to the tty. This is causing a
lot of the problems related to tty layer locking, also problems at high speed
and also with bursty data (such as occurs in virtualised environments)
I'm working on ripping out the flip buffers and replacing them with a pool of
dynamically allocated buffers. This allows both for old style "byte I/O"
devices and also helps virtualisation and smart devices where large blocks of
data suddenely materialise and need storing.
So far so good. Lots of drivers reference tty->flip.*. Several of them also
call directly and unsafely into function pointers it provides. This will all
break. Most drivers can use tty_insert_flip_char which can be kept as an API
but others need more.
At the moment I've added the following interfaces, if people think more will
be needed now is a good time to say
int tty_buffer_request_room(tty, size)
Try and ensure at least size bytes are available, returns actual room (may be
zero). At the moment it just uses the flipbuf space but that will change.
Repeated calls without characters being added are not cumulative. (ie if you
call it with 1, 1, 1, and then 4 you'll have four characters of space. The
other functions will also try and grow buffers in future but this will be a
more efficient way when you know block sizes.
int tty_insert_flip_char(tty, ch, flag)
As before insert a character if there is room. Now returns 1 for success, 0
for failure.
int tty_insert_flip_string(tty, str, len)
Insert a block of non error characters. Returns the number inserted.
int tty_prepare_flip_string(tty, strptr, len)
Adjust the buffer to allow len characters to be added. Returns a buffer
pointer in strptr and the length available. This allows for hardware that
needs to use functions like insl or mencpy_fromio.
Signed-off-by: Alan Cox <alan@redhat.com>
Cc: Paul Fulghum <paulkf@microgate.com>
Signed-off-by: Hirokazu Takata <takata@linux-m32r.org>
Signed-off-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: John Hawkes <hawkes@sgi.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|