summaryrefslogtreecommitdiff
path: root/include/linux/slub_def.h
AgeCommit message (Collapse)AuthorFilesLines
2020-08-07mm: memcg/slab: use a single set of kmem_caches for all allocationsRoman Gushchin1-10/+0
Instead of having two sets of kmem_caches: one for system-wide and non-accounted allocations and the second one shared by all accounted allocations, we can use just one. The idea is simple: space for obj_cgroup metadata can be allocated on demand and filled only for accounted allocations. It allows to remove a bunch of code which is required to handle kmem_cache clones for accounted allocations. There is no more need to create them, accumulate statistics, propagate attributes, etc. It's a quite significant simplification. Also, because the total number of slab_caches is reduced almost twice (not all kmem_caches have a memcg clone), some additional memory savings are expected. On my devvm it additionally saves about 3.5% of slab memory. [guro@fb.com: fix build on MIPS] Link: http://lkml.kernel.org/r/20200717214810.3733082-1-guro@fb.com Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Naresh Kamboju <naresh.kamboju@linaro.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-18-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: memcg/slab: allocate obj_cgroups for non-root slab pagesRoman Gushchin1-0/+5
Allocate and release memory to store obj_cgroup pointers for each non-root slab page. Reuse page->mem_cgroup pointer to store a pointer to the allocated space. This commit temporarily increases the memory footprint of the kernel memory accounting. To store obj_cgroup pointers we'll need a place for an objcg_pointer for each allocated object. However, the following patches in the series will enable sharing of slab pages between memory cgroups, which will dramatically increase the total slab utilization. And the final memory footprint will be significantly smaller than before. To distinguish between obj_cgroups and memcg pointers in case when it's not obvious which one is used (as in page_cgroup_ino()), let's always set the lowest bit in the obj_cgroup case. The original obj_cgroups pointer is marked to be ignored by kmemleak, which otherwise would report a memory leak for each allocated vector. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-8-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07mm: slub: implement SLUB version of obj_to_index()Roman Gushchin1-0/+16
This commit implements SLUB version of the obj_to_index() function, which will be required to calculate the offset of obj_cgroup in the obj_cgroups vector to store/obtain the objcg ownership data. To make it faster, let's repeat the SLAB's trick introduced by commit 6a2d7a955d8d ("SLAB: use a multiply instead of a divide in obj_to_index()") and avoid an expensive division. Vlastimil Babka noticed, that SLUB does have already a similar function called slab_index(), which is defined only if SLUB_DEBUG is enabled. The function does a similar math, but with a division, and it also takes a page address instead of a page pointer. Let's remove slab_index() and replace it with the new helper __obj_to_index(), which takes a page address. obj_to_index() will be a simple wrapper taking a page pointer and passing page_address(page) into __obj_to_index(). Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Tejun Heo <tj@kernel.org> Link: http://lkml.kernel.org/r/20200623174037.3951353-5-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-06include/linux/slub_def.h: comment fixesTobin C. Harding1-6/+6
Capitialize comment string, use C89 comment style, correct grammar/punctuation in comments. Link: http://lkml.kernel.org/r/20190204005713.9463-2-tobin@kernel.org Link: http://lkml.kernel.org/r/20190204005713.9463-3-tobin@kernel.org Link: http://lkml.kernel.org/r/20190204005713.9463-4-tobin@kernel.org Signed-off-by: Tobin C. Harding <tobin@kernel.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-28slub: fix failure when we delete and create a slab cacheMikulas Patocka1-0/+4
In kernel 4.17 I removed some code from dm-bufio that did slab cache merging (commit 21bb13276768: "dm bufio: remove code that merges slab caches") - both slab and slub support merging caches with identical attributes, so dm-bufio now just calls kmem_cache_create and relies on implicit merging. This uncovered a bug in the slub subsystem - if we delete a cache and immediatelly create another cache with the same attributes, it fails because of duplicate filename in /sys/kernel/slab/. The slub subsystem offloads freeing the cache to a workqueue - and if we create the new cache before the workqueue runs, it complains because of duplicate filename in sysfs. This patch fixes the bug by moving the call of kobject_del from sysfs_slab_remove_workfn to shutdown_cache. kobject_del must be called while we hold slab_mutex - so that the sysfs entry is deleted before a cache with the same attributes could be created. Running device-mapper-test-suite with: dmtest run --suite thin-provisioning -n /commit_failure_causes_fallback/ triggered: Buffer I/O error on dev dm-0, logical block 1572848, async page read device-mapper: thin: 253:1: metadata operation 'dm_pool_alloc_data_block' failed: error = -5 device-mapper: thin: 253:1: aborting current metadata transaction sysfs: cannot create duplicate filename '/kernel/slab/:a-0000144' CPU: 2 PID: 1037 Comm: kworker/u48:1 Not tainted 4.17.0.snitm+ #25 Hardware name: Supermicro SYS-1029P-WTR/X11DDW-L, BIOS 2.0a 12/06/2017 Workqueue: dm-thin do_worker [dm_thin_pool] Call Trace: dump_stack+0x5a/0x73 sysfs_warn_dup+0x58/0x70 sysfs_create_dir_ns+0x77/0x80 kobject_add_internal+0xba/0x2e0 kobject_init_and_add+0x70/0xb0 sysfs_slab_add+0xb1/0x250 __kmem_cache_create+0x116/0x150 create_cache+0xd9/0x1f0 kmem_cache_create_usercopy+0x1c1/0x250 kmem_cache_create+0x18/0x20 dm_bufio_client_create+0x1ae/0x410 [dm_bufio] dm_block_manager_create+0x5e/0x90 [dm_persistent_data] __create_persistent_data_objects+0x38/0x940 [dm_thin_pool] dm_pool_abort_metadata+0x64/0x90 [dm_thin_pool] metadata_operation_failed+0x59/0x100 [dm_thin_pool] alloc_data_block.isra.53+0x86/0x180 [dm_thin_pool] process_cell+0x2a3/0x550 [dm_thin_pool] do_worker+0x28d/0x8f0 [dm_thin_pool] process_one_work+0x171/0x370 worker_thread+0x49/0x3f0 kthread+0xf8/0x130 ret_from_fork+0x35/0x40 kobject_add_internal failed for :a-0000144 with -EEXIST, don't try to register things with the same name in the same directory. kmem_cache_create(dm_bufio_buffer-16) failed with error -17 Link: http://lkml.kernel.org/r/alpine.LRH.2.02.1806151817130.6333@file01.intranet.prod.int.rdu2.redhat.com Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Reported-by: Mike Snitzer <snitzer@redhat.com> Tested-by: Mike Snitzer <snitzer@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-08slub: remove kmem_cache->reservedMatthew Wilcox1-1/+0
The reserved field was only used for embedding an rcu_head in the data structure. With the previous commit, we no longer need it. That lets us remove the 'reserved' argument to a lot of functions. Link: http://lkml.kernel.org/r/20180518194519.3820-16-willy@infradead.org Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Jérôme Glisse <jglisse@redhat.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06slub: make struct kmem_cache_order_objects::x unsigned intAlexey Dobriyan1-1/+1
struct kmem_cache_order_objects is for mixing order and number of objects, and orders aren't big enough to warrant 64-bit width. Propagate unsignedness down so that everything fits. !!! Patch assumes that "PAGE_SIZE << order" doesn't overflow. !!! Link: http://lkml.kernel.org/r/20180305200730.15812-23-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06slab: make usercopy region 32-bitAlexey Dobriyan1-2/+2
If kmem case sizes are 32-bit, then usecopy region should be too. Link: http://lkml.kernel.org/r/20180305200730.15812-21-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Cc: David Miller <davem@davemloft.net> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06slub: make ->size unsigned intAlexey Dobriyan1-1/+1
Linux doesn't support negative length objects (including meta data). Link: http://lkml.kernel.org/r/20180305200730.15812-18-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06slub: make ->object_size unsigned intAlexey Dobriyan1-1/+1
Linux doesn't support negative length objects. Link: http://lkml.kernel.org/r/20180305200730.15812-17-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06slub: make ->offset unsigned intAlexey Dobriyan1-1/+1
->offset is free pointer offset from the start of the object, can't be negative. Link: http://lkml.kernel.org/r/20180305200730.15812-16-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06slub: make ->cpu_partial unsigned intAlexey Dobriyan1-1/+2
/* * cpu_partial determined the maximum number of objects * kept in the per cpu partial lists of a processor. */ Can't be negative. Link: http://lkml.kernel.org/r/20180305200730.15812-15-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06slub: make ->inuse unsigned intAlexey Dobriyan1-1/+1
->inuse is "the number of bytes in actual use by the object", can't be negative. Link: http://lkml.kernel.org/r/20180305200730.15812-14-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06slub: make ->align unsigned intAlexey Dobriyan1-1/+1
Kmem cache alignment can't be negative. Link: http://lkml.kernel.org/r/20180305200730.15812-13-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06slub: make ->reserved unsigned intAlexey Dobriyan1-1/+1
->reserved is either 0 or sizeof(struct rcu_head), can't be negative. Link: http://lkml.kernel.org/r/20180305200730.15812-12-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06slub: make ->red_left_pad unsigned intAlexey Dobriyan1-1/+1
Padding length can't be negative. Link: http://lkml.kernel.org/r/20180305200730.15812-11-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06slub: make ->max_attr_size unsigned intAlexey Dobriyan1-1/+2
->max_attr_size is maximum length of every SLAB memcg attribute ever written. VFS limits those to INT_MAX. Link: http://lkml.kernel.org/r/20180305200730.15812-10-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-06slub: make ->remote_node_defrag_ratio unsigned intAlexey Dobriyan1-1/+1
->remote_node_defrag_ratio is in range 0..1000. This also adds a check and modifies the behavior to return an error code. Before this patch invalid values were ignored. Link: http://lkml.kernel.org/r/20180305200730.15812-9-adobriyan@gmail.com Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-15usercopy: Prepare for usercopy whitelistingDavid Windsor1-0/+3
This patch prepares the slab allocator to handle caches having annotations (useroffset and usersize) defining usercopy regions. This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY whitelisting code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Currently, hardened usercopy performs dynamic bounds checking on slab cache objects. This is good, but still leaves a lot of kernel memory available to be copied to/from userspace in the face of bugs. To further restrict what memory is available for copying, this creates a way to whitelist specific areas of a given slab cache object for copying to/from userspace, allowing much finer granularity of access control. Slab caches that are never exposed to userspace can declare no whitelist for their objects, thereby keeping them unavailable to userspace via dynamic copy operations. (Note, an implicit form of whitelisting is the use of constant sizes in usercopy operations and get_user()/put_user(); these bypass hardened usercopy checks since these sizes cannot change at runtime.) To support this whitelist annotation, usercopy region offset and size members are added to struct kmem_cache. The slab allocator receives a new function, kmem_cache_create_usercopy(), that creates a new cache with a usercopy region defined, suitable for declaring spans of fields within the objects that get copied to/from userspace. In this patch, the default kmem_cache_create() marks the entire allocation as whitelisted, leaving it semantically unchanged. Once all fine-grained whitelists have been added (in subsequent patches), this will be changed to a usersize of 0, making caches created with kmem_cache_create() not copyable to/from userspace. After the entire usercopy whitelist series is applied, less than 15% of the slab cache memory remains exposed to potential usercopy bugs after a fresh boot: Total Slab Memory: 48074720 Usercopyable Memory: 6367532 13.2% task_struct 0.2% 4480/1630720 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 269760/8740224 dentry 11.1% 585984/5273856 mm_struct 29.1% 54912/188448 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 81920/81920 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 167936/167936 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 455616/455616 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 812032/812032 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1310720/1310720 After some kernel build workloads, the percentage (mainly driven by dentry and inode caches expanding) drops under 10%: Total Slab Memory: 95516184 Usercopyable Memory: 8497452 8.8% task_struct 0.2% 4000/1456000 RAW 0.3% 300/96000 RAWv6 2.1% 1408/64768 ext4_inode_cache 3.0% 1217280/39439872 dentry 11.1% 1623200/14608800 mm_struct 29.1% 73216/251264 kmalloc-8 100.0% 24576/24576 kmalloc-16 100.0% 28672/28672 kmalloc-32 100.0% 94208/94208 kmalloc-192 100.0% 96768/96768 kmalloc-128 100.0% 143360/143360 names_cache 100.0% 163840/163840 kmalloc-64 100.0% 245760/245760 kmalloc-256 100.0% 339968/339968 kmalloc-512 100.0% 350720/350720 kmalloc-96 100.0% 563520/563520 kmalloc-8192 100.0% 655360/655360 kmalloc-1024 100.0% 794624/794624 kmalloc-4096 100.0% 819200/819200 kmalloc-2048 100.0% 1257472/1257472 Signed-off-by: David Windsor <dave@nullcore.net> [kees: adjust commit log, split out a few extra kmalloc hunks] [kees: add field names to function declarations] [kees: convert BUGs to WARNs and fail closed] [kees: add attack surface reduction analysis to commit log] Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: linux-mm@kvack.org Cc: linux-xfs@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Christoph Lameter <cl@linux.com>
2017-11-16slab, slub, slob: add slab_flags_tAlexey Dobriyan1-1/+1
Add sparse-checked slab_flags_t for struct kmem_cache::flags (SLAB_POISON, etc). SLAB is bloated temporarily by switching to "unsigned long", but only temporarily. Link: http://lkml.kernel.org/r/20171021100225.GA22428@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman1-0/+1
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-09-07mm: add SLUB free list pointer obfuscationKees Cook1-0/+4
This SLUB free list pointer obfuscation code is modified from Brad Spengler/PaX Team's code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. This adds a per-cache random value to SLUB caches that is XORed with their freelist pointer address and value. This adds nearly zero overhead and frustrates the very common heap overflow exploitation method of overwriting freelist pointers. A recent example of the attack is written up here: http://cyseclabs.com/blog/cve-2016-6187-heap-off-by-one-exploit and there is a section dedicated to the technique the book "A Guide to Kernel Exploitation: Attacking the Core". This is based on patches by Daniel Micay, and refactored to minimize the use of #ifdef. With 200-count cycles of "hackbench -g 20 -l 1000" I saw the following run times: before: mean 10.11882499999999999995 variance .03320378329145728642 stdev .18221905304181911048 after: mean 10.12654000000000000014 variance .04700556623115577889 stdev .21680767106160192064 The difference gets lost in the noise, but if the above is to be taken literally, using CONFIG_FREELIST_HARDENED is 0.07% slower. Link: http://lkml.kernel.org/r/20170802180609.GA66807@beast Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Daniel Micay <danielmicay@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Tycho Andersen <tycho@docker.com> Cc: Alexander Popov <alex.popov@linux.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07mm/slub.c: wrap kmem_cache->cpu_partial in config CONFIG_SLUB_CPU_PARTIALWei Yang1-0/+13
kmem_cache->cpu_partial is just used when CONFIG_SLUB_CPU_PARTIAL is set, so wrap it with config CONFIG_SLUB_CPU_PARTIAL will save some space on 32bit arch. This patch wraps kmem_cache->cpu_partial in config CONFIG_SLUB_CPU_PARTIAL and wraps its sysfs too. Link: http://lkml.kernel.org/r/20170502144533.10729-4-richard.weiyang@gmail.com Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07mm/slub.c: wrap cpu_slab->partial in CONFIG_SLUB_CPU_PARTIALWei Yang1-0/+19
cpu_slab's field partial is used when CONFIG_SLUB_CPU_PARTIAL is set, which means we can save a pointer's space on each cpu for every slub item. This patch wraps cpu_slab->partial in CONFIG_SLUB_CPU_PARTIAL and wraps its sysfs use too. [akpm@linux-foundation.org: avoid strange 80-col tricks] Link: http://lkml.kernel.org/r/20170502144533.10729-3-richard.weiyang@gmail.com Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-07mm/slub.c: pack red_left_pad with another int to save a wordWei Yang1-1/+1
Patch series "try to save some memory for kmem_cache in some cases", v2. kmem_cache is a frequently used data in kernel. During the code reading, I found maybe we could save some space in some cases. 1. On 64bit arch, type int will occupy a word if it doesn't sit well. 2. cpu_slab->partial is just used when CONFIG_SLUB_CPU_PARTIAL is set 3. cpu_partial is just used when CONFIG_SLUB_CPU_PARTIAL is set, while just save some space on 32bit arch. This patch (of 3): On 64bit arch, struct is 8-bytes aligned, so int will occupy a word if it doesn't sit well. This patch pack red_left_pad with reserved to save 8 bytes for struct kmem_cache on a 64bit arch. Link: http://lkml.kernel.org/r/20170502144533.10729-2-richard.weiyang@gmail.com Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-24slub: make sysfs file removal asynchronousTejun Heo1-0/+1
Commit bf5eb3de3847 ("slub: separate out sysfs_slab_release() from sysfs_slab_remove()") made slub sysfs file removals synchronous to kmem_cache shutdown. Unfortunately, this created a possible ABBA deadlock between slab_mutex and sysfs draining mechanism triggering the following lockdep warning. ====================================================== [ INFO: possible circular locking dependency detected ] 4.10.0-test+ #48 Not tainted ------------------------------------------------------- rmmod/1211 is trying to acquire lock: (s_active#120){++++.+}, at: [<ffffffff81308073>] kernfs_remove+0x23/0x40 but task is already holding lock: (slab_mutex){+.+.+.}, at: [<ffffffff8120f691>] kmem_cache_destroy+0x41/0x2d0 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (slab_mutex){+.+.+.}: lock_acquire+0xf6/0x1f0 __mutex_lock+0x75/0x950 mutex_lock_nested+0x1b/0x20 slab_attr_store+0x75/0xd0 sysfs_kf_write+0x45/0x60 kernfs_fop_write+0x13c/0x1c0 __vfs_write+0x28/0x120 vfs_write+0xc8/0x1e0 SyS_write+0x49/0xa0 entry_SYSCALL_64_fastpath+0x1f/0xc2 -> #0 (s_active#120){++++.+}: __lock_acquire+0x10ed/0x1260 lock_acquire+0xf6/0x1f0 __kernfs_remove+0x254/0x320 kernfs_remove+0x23/0x40 sysfs_remove_dir+0x51/0x80 kobject_del+0x18/0x50 __kmem_cache_shutdown+0x3e6/0x460 kmem_cache_destroy+0x1fb/0x2d0 kvm_exit+0x2d/0x80 [kvm] vmx_exit+0x19/0xa1b [kvm_intel] SyS_delete_module+0x198/0x1f0 entry_SYSCALL_64_fastpath+0x1f/0xc2 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(slab_mutex); lock(s_active#120); lock(slab_mutex); lock(s_active#120); *** DEADLOCK *** 2 locks held by rmmod/1211: #0: (cpu_hotplug.dep_map){++++++}, at: [<ffffffff810a7877>] get_online_cpus+0x37/0x80 #1: (slab_mutex){+.+.+.}, at: [<ffffffff8120f691>] kmem_cache_destroy+0x41/0x2d0 stack backtrace: CPU: 3 PID: 1211 Comm: rmmod Not tainted 4.10.0-test+ #48 Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01 v02.05 05/07/2012 Call Trace: print_circular_bug+0x1be/0x210 __lock_acquire+0x10ed/0x1260 lock_acquire+0xf6/0x1f0 __kernfs_remove+0x254/0x320 kernfs_remove+0x23/0x40 sysfs_remove_dir+0x51/0x80 kobject_del+0x18/0x50 __kmem_cache_shutdown+0x3e6/0x460 kmem_cache_destroy+0x1fb/0x2d0 kvm_exit+0x2d/0x80 [kvm] vmx_exit+0x19/0xa1b [kvm_intel] SyS_delete_module+0x198/0x1f0 ? SyS_delete_module+0x5/0x1f0 entry_SYSCALL_64_fastpath+0x1f/0xc2 It'd be the cleanest to deal with the issue by removing sysfs files without holding slab_mutex before the rest of shutdown; however, given the current code structure, it is pretty difficult to do so. This patch punts sysfs file removal to a work item. Before commit bf5eb3de3847, the removal was punted to a RCU delayed work item which is executed after release. Now, we're punting to a different work item on shutdown which still maintains the goal removing the sysfs files earlier when destroying kmem_caches. Link: http://lkml.kernel.org/r/20170620204512.GI21326@htj.duckdns.org Fixes: bf5eb3de3847 ("slub: separate out sysfs_slab_release() from sysfs_slab_remove()") Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Tested-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-23slub: separate out sysfs_slab_release() from sysfs_slab_remove()Tejun Heo1-2/+2
Separate out slub sysfs removal and release, and call the former earlier from __kmem_cache_shutdown(). There's no reason to defer sysfs removal through RCU and this will later allow us to remove sysfs files way earlier during memory cgroup offline instead of release. Link: http://lkml.kernel.org/r/20170117235411.9408-3-tj@kernel.org Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-29mm, kasan: switch SLUB to stackdepot, enable memory quarantine for SLUBAlexander Potapenko1-0/+4
For KASAN builds: - switch SLUB allocator to using stackdepot instead of storing the allocation/deallocation stacks in the objects; - change the freelist hook so that parts of the freelist can be put into the quarantine. [aryabinin@virtuozzo.com: fixes] Link: http://lkml.kernel.org/r/1468601423-28676-1-git-send-email-aryabinin@virtuozzo.com Link: http://lkml.kernel.org/r/1468347165-41906-3-git-send-email-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <adech.fo@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Steven Rostedt (Red Hat) <rostedt@goodmis.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Kuthonuzo Luruo <kuthonuzo.luruo@hpe.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-29mm, kasan: account for object redzone in SLUB's nearest_obj()Alexander Potapenko1-4/+6
When looking up the nearest SLUB object for a given address, correctly calculate its offset if SLAB_RED_ZONE is enabled for that cache. Previously, when KASAN had detected an error on an object from a cache with SLAB_RED_ZONE set, the actual start address of the object was miscalculated, which led to random stacks having been reported. When looking up the nearest SLUB object for a given address, correctly calculate its offset if SLAB_RED_ZONE is enabled for that cache. Fixes: 7ed2f9e663854db ("mm, kasan: SLAB support") Link: http://lkml.kernel.org/r/1468347165-41906-2-git-send-email-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <adech.fo@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Steven Rostedt (Red Hat) <rostedt@goodmis.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kostya Serebryany <kcc@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Kuthonuzo Luruo <kuthonuzo.luruo@hpe.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27mm: SLUB freelist randomizationThomas Garnier1-0/+5
Implements freelist randomization for the SLUB allocator. It was previous implemented for the SLAB allocator. Both use the same configuration option (CONFIG_SLAB_FREELIST_RANDOM). The list is randomized during initialization of a new set of pages. The order on different freelist sizes is pre-computed at boot for performance. Each kmem_cache has its own randomized freelist. This security feature reduces the predictability of the kernel SLUB allocator against heap overflows rendering attacks much less stable. For example these attacks exploit the predictability of the heap: - Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU) - Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95) Performance results: slab_test impact is between 3% to 4% on average for 100000 attempts without smp. It is a very focused testing, kernbench show the overall impact on the system is way lower. Before: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles 100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles 100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles 100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles 100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles 100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles 100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles 100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles 100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles 100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 70 cycles 100000 times kmalloc(16)/kfree -> 70 cycles 100000 times kmalloc(32)/kfree -> 70 cycles 100000 times kmalloc(64)/kfree -> 70 cycles 100000 times kmalloc(128)/kfree -> 70 cycles 100000 times kmalloc(256)/kfree -> 69 cycles 100000 times kmalloc(512)/kfree -> 70 cycles 100000 times kmalloc(1024)/kfree -> 73 cycles 100000 times kmalloc(2048)/kfree -> 72 cycles 100000 times kmalloc(4096)/kfree -> 71 cycles After: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles 100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles 100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles 100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles 100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles 100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles 100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles 100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles 100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles 100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles 2. Kmalloc: alloc/free test 100000 times kmalloc(8)/kfree -> 66 cycles 100000 times kmalloc(16)/kfree -> 66 cycles 100000 times kmalloc(32)/kfree -> 66 cycles 100000 times kmalloc(64)/kfree -> 66 cycles 100000 times kmalloc(128)/kfree -> 65 cycles 100000 times kmalloc(256)/kfree -> 67 cycles 100000 times kmalloc(512)/kfree -> 67 cycles 100000 times kmalloc(1024)/kfree -> 64 cycles 100000 times kmalloc(2048)/kfree -> 67 cycles 100000 times kmalloc(4096)/kfree -> 67 cycles Kernbench, before: Average Optimal load -j 12 Run (std deviation): Elapsed Time 101.873 (1.16069) User Time 1045.22 (1.60447) System Time 88.969 (0.559195) Percent CPU 1112.9 (13.8279) Context Switches 189140 (2282.15) Sleeps 99008.6 (768.091) After: Average Optimal load -j 12 Run (std deviation): Elapsed Time 102.47 (0.562732) User Time 1045.3 (1.34263) System Time 88.311 (0.342554) Percent CPU 1105.8 (6.49444) Context Switches 189081 (2355.78) Sleeps 99231.5 (800.358) Link: http://lkml.kernel.org/r/1464295031-26375-3-git-send-email-thgarnie@google.com Signed-off-by: Thomas Garnier <thgarnie@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-27mm: slub: remove unused virt_to_obj()Andrey Ryabinin1-16/+0
It's unused since commit 7ed2f9e66385 ("mm, kasan: SLAB support") Link: http://lkml.kernel.org/r/1464020961-2242-1-git-send-email-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-26mm, kasan: SLAB supportAlexander Potapenko1-0/+11
Add KASAN hooks to SLAB allocator. This patch is based on the "mm: kasan: unified support for SLUB and SLAB allocators" patch originally prepared by Dmitry Chernenkov. Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-16mm/slub: support left redzoneJoonsoo Kim1-0/+1
SLUB already has a redzone debugging feature. But it is only positioned at the end of object (aka right redzone) so it cannot catch left oob. Although current object's right redzone acts as left redzone of next object, first object in a slab cannot take advantage of this effect. This patch explicitly adds a left red zone to each object to detect left oob more precisely. Background: Someone complained to me that left OOB doesn't catch even if KASAN is enabled which does page allocation debugging. That page is out of our control so it would be allocated when left OOB happens and, in this case, we can't find OOB. Moreover, SLUB debugging feature can be enabled without page allocator debugging and, in this case, we will miss that OOB. Before trying to implement, I expected that changes would be too complex, but, it doesn't look that complex to me now. Almost changes are applied to debug specific functions so I feel okay. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-21mm: memcontrol: move kmem accounting code to CONFIG_MEMCGJohannes Weiner1-1/+1
The cgroup2 memory controller will account important in-kernel memory consumers per default. Move all necessary components to CONFIG_MEMCG. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-14mm: slub: share object_err functionAndrey Ryabinin1-0/+3
Remove static and add function declarations to linux/slub_def.h so it could be used by kernel address sanitizer. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrey Konovalov <adech.fo@gmail.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-14mm: slub: introduce virt_to_obj functionAndrey Ryabinin1-0/+16
virt_to_obj takes kmem_cache address, address of slab page, address x pointing somewhere inside slab object, and returns address of the beginning of object. Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrey Konovalov <adech.fo@gmail.com> Cc: Yuri Gribov <tetra2005@gmail.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Christoph Lameter <cl@linux.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13slab: embed memcg_cache_params to kmem_cacheVladimir Davydov1-1/+1
Currently, kmem_cache stores a pointer to struct memcg_cache_params instead of embedding it. The rationale is to save memory when kmem accounting is disabled. However, the memcg_cache_params has shrivelled drastically since it was first introduced: * Initially: struct memcg_cache_params { bool is_root_cache; union { struct kmem_cache *memcg_caches[0]; struct { struct mem_cgroup *memcg; struct list_head list; struct kmem_cache *root_cache; bool dead; atomic_t nr_pages; struct work_struct destroy; }; }; }; * Now: struct memcg_cache_params { bool is_root_cache; union { struct { struct rcu_head rcu_head; struct kmem_cache *memcg_caches[0]; }; struct { struct mem_cgroup *memcg; struct kmem_cache *root_cache; }; }; }; So the memory saving does not seem to be a clear win anymore. OTOH, keeping a pointer to memcg_cache_params struct instead of embedding it results in touching one more cache line on kmem alloc/free hot paths. Besides, it makes linking kmem caches in a list chained by a field of struct memcg_cache_params really painful due to a level of indirection, while I want to make them linked in the following patch. That said, let us embed it. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-07slub: use sysfs'es release mechanism for kmem_cacheChristoph Lameter1-0/+9
debugobjects warning during netfilter exit: ------------[ cut here ]------------ WARNING: CPU: 6 PID: 4178 at lib/debugobjects.c:260 debug_print_object+0x8d/0xb0() ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x20 Modules linked in: CPU: 6 PID: 4178 Comm: kworker/u16:2 Tainted: G W 3.11.0-next-20130906-sasha #3984 Workqueue: netns cleanup_net Call Trace: dump_stack+0x52/0x87 warn_slowpath_common+0x8c/0xc0 warn_slowpath_fmt+0x46/0x50 debug_print_object+0x8d/0xb0 __debug_check_no_obj_freed+0xa5/0x220 debug_check_no_obj_freed+0x15/0x20 kmem_cache_free+0x197/0x340 kmem_cache_destroy+0x86/0xe0 nf_conntrack_cleanup_net_list+0x131/0x170 nf_conntrack_pernet_exit+0x5d/0x70 ops_exit_list+0x5e/0x70 cleanup_net+0xfb/0x1c0 process_one_work+0x338/0x550 worker_thread+0x215/0x350 kthread+0xe7/0xf0 ret_from_fork+0x7c/0xb0 Also during dcookie cleanup: WARNING: CPU: 12 PID: 9725 at lib/debugobjects.c:260 debug_print_object+0x8c/0xb0() ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x20 Modules linked in: CPU: 12 PID: 9725 Comm: trinity-c141 Not tainted 3.15.0-rc2-next-20140423-sasha-00018-gc4ff6c4 #408 Call Trace: dump_stack (lib/dump_stack.c:52) warn_slowpath_common (kernel/panic.c:430) warn_slowpath_fmt (kernel/panic.c:445) debug_print_object (lib/debugobjects.c:262) __debug_check_no_obj_freed (lib/debugobjects.c:697) debug_check_no_obj_freed (lib/debugobjects.c:726) kmem_cache_free (mm/slub.c:2689 mm/slub.c:2717) kmem_cache_destroy (mm/slab_common.c:363) dcookie_unregister (fs/dcookies.c:302 fs/dcookies.c:343) event_buffer_release (arch/x86/oprofile/../../../drivers/oprofile/event_buffer.c:153) __fput (fs/file_table.c:217) ____fput (fs/file_table.c:253) task_work_run (kernel/task_work.c:125 (discriminator 1)) do_notify_resume (include/linux/tracehook.h:196 arch/x86/kernel/signal.c:751) int_signal (arch/x86/kernel/entry_64.S:807) Sysfs has a release mechanism. Use that to release the kmem_cache structure if CONFIG_SYSFS is enabled. Only slub is changed - slab currently only supports /proc/slabinfo and not /sys/kernel/slab/*. We talked about adding that and someone was working on it. [akpm@linux-foundation.org: fix CONFIG_SYSFS=n build] [akpm@linux-foundation.org: fix CONFIG_SYSFS=n build even more] Signed-off-by: Christoph Lameter <cl@linux.com> Reported-by: Sasha Levin <sasha.levin@oracle.com> Tested-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Greg KH <greg@kroah.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Pekka Enberg <penberg@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Bart Van Assche <bvanassche@acm.org> Cc: Al Viro <viro@ZenIV.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08slub: rework sysfs layout for memcg cachesVladimir Davydov1-0/+3
Currently, we try to arrange sysfs entries for memcg caches in the same manner as for global caches. Apart from turning /sys/kernel/slab into a mess when there are a lot of kmem-active memcgs created, it actually does not work properly - we won't create more than one link to a memcg cache in case its parent is merged with another cache. For instance, if A is a root cache merged with another root cache B, we will have the following sysfs setup: X A -> X B -> X where X is some unique id (see create_unique_id()). Now if memcgs M and N start to allocate from cache A (or B, which is the same), we will get: X X:M X:N A -> X B -> X A:M -> X:M A:N -> X:N Since B is an alias for A, we won't get entries B:M and B:N, which is confusing. It is more logical to have entries for memcg caches under the corresponding root cache's sysfs directory. This would allow us to keep sysfs layout clean, and avoid such inconsistencies like one described above. This patch does the trick. It creates a "cgroup" kset in each root cache kobject to keep its children caches there. Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Glauber Costa <glommer@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-22Merge branch 'slab/next' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux Pull SLAB changes from Pekka Enberg: "The patches from Joonsoo Kim switch mm/slab.c to use 'struct page' for slab internals similar to mm/slub.c. This reduces memory usage and improves performance: https://lkml.org/lkml/2013/10/16/155 Rest of the changes are bug fixes from various people" * 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux: (21 commits) mm, slub: fix the typo in mm/slub.c mm, slub: fix the typo in include/linux/slub_def.h slub: Handle NULL parameter in kmem_cache_flags slab: replace non-existing 'struct freelist *' with 'void *' slab: fix to calm down kmemleak warning slub: proper kmemleak tracking if CONFIG_SLUB_DEBUG disabled slab: rename slab_bufctl to slab_freelist slab: remove useless statement for checking pfmemalloc slab: use struct page for slab management slab: replace free and inuse in struct slab with newly introduced active slab: remove SLAB_LIMIT slab: remove kmem_bufctl_t slab: change the management method of free objects of the slab slab: use __GFP_COMP flag for allocating slab pages slab: use well-defined macro, virt_to_slab() slab: overloading the RCU head over the LRU for RCU free slab: remove cachep in struct slab_rcu slab: remove nodeid in struct slab slab: remove colouroff in struct slab slab: change return type of kmem_getpages() to struct page ...
2013-11-11mm, slub: fix the typo in include/linux/slub_def.hZhi Yong Wu1-1/+1
Acked-by: Christoph Lameter <cl@linux.com> Signed-off-by: Zhi Yong Wu <wuzhy@linux.vnet.ibm.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-09-04slub: remove verify_mem_not_deleted()Christoph Lameter1-13/+0
I do not see any user for this code in the tree. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-09-04mm/sl[aou]b: Move kmallocXXX functions to common codeChristoph Lameter1-97/+0
The kmalloc* functions of all slab allcoators are similar now so lets move them into slab.h. This requires some function naming changes in slob. As a results of this patch there is a common set of functions for all allocators. Also means that kmalloc_large() is now available in general to perform large order allocations that go directly via the page allocator. kmalloc_large() can be substituted if kmalloc() throws warnings because of too large allocations. kmalloc_large() has exactly the same semantics as kmalloc but can only used for allocations > PAGE_SIZE. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-02-01slab: Common definition for kmem_cache_nodeChristoph Lameter1-11/+0
Put the definitions for the kmem_cache_node structures together so that we have one structure. That will allow us to create more common fields in the future which could yield more opportunities to share code. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-02-01slab: Common Kmalloc cache determinationChristoph Lameter1-31/+10
Extract the optimized lookup functions from slub and put them into slab_common.c. Then make slab use these functions as well. Joonsoo notes that this fixes some issues with constant folding which also reduces the code size for slub. https://lkml.org/lkml/2012/10/20/82 Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-02-01slab: Common definition for the array of kmalloc cachesChristoph Lameter1-6/+0
Have a common definition fo the kmalloc cache arrays in SLAB and SLUB Acked-by: Glauber Costa <glommer@parallels.com> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-02-01slab: Common constants for kmalloc boundariesChristoph Lameter1-16/+3
Standardize the constants that describe the smallest and largest object kept in the kmalloc arrays for SLAB and SLUB. Differentiate between the maximum size for which a slab cache is used (KMALLOC_MAX_CACHE_SIZE) and the maximum allocatable size (KMALLOC_MAX_SIZE, KMALLOC_MAX_ORDER). Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2013-02-01slab: Common kmalloc slab index determinationChristoph Lameter1-63/+0
Extract the function to determine the index of the slab within the array of kmalloc caches as well as a function to determine maximum object size from the nr of the kmalloc slab. This is used here only to simplify slub bootstrap but will be used later also for SLAB. Acked-by: Glauber Costa <glommer@parallels.com> Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
2012-12-19slub: slub-specific propagation changesGlauber Costa1-0/+1
SLUB allows us to tune a particular cache behavior with sysfs-based tunables. When creating a new memcg cache copy, we'd like to preserve any tunables the parent cache already had. This can be done by tapping into the store attribute function provided by the allocator. We of course don't need to mess with read-only fields. Since the attributes can have multiple types and are stored internally by sysfs, the best strategy is to issue a ->show() in the root cache, and then ->store() in the memcg cache. The drawback of that, is that sysfs can allocate up to a page in buffering for show(), that we are likely not to need, but also can't guarantee. To avoid always allocating a page for that, we can update the caches at store time with the maximum attribute size ever stored to the root cache. We will then get a buffer big enough to hold it. The corolary to this, is that if no stores happened, nothing will be propagated. It can also happen that a root cache has its tunables updated during normal system operation. In this case, we will propagate the change to all caches that are already active. [akpm@linux-foundation.org: tweak code to avoid __maybe_unused] Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-19sl[au]b: allocate objects from memcg cacheGlauber Costa1-1/+4
We are able to match a cache allocation to a particular memcg. If the task doesn't change groups during the allocation itself - a rare event, this will give us a good picture about who is the first group to touch a cache page. This patch uses the now available infrastructure by calling memcg_kmem_get_cache() before all the cache allocations. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Frederic Weisbecker <fweisbec@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: JoonSoo Kim <js1304@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Michal Hocko <mhocko@suse.cz> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Rik van Riel <riel@redhat.com> Cc: Suleiman Souhlal <suleiman@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>