Age | Commit message (Collapse) | Author | Files | Lines |
|
The radix-tree and idr preload mechanisms use preempt_disable() to protect
the complete operation between xxx_preload() and xxx_preload_end().
As the code inside the preempt disabled section acquires regular spinlocks,
which are converted to 'sleeping' spinlocks on a PREEMPT_RT kernel and
eventually calls into a memory allocator, this conflicts with the RT
semantics.
Convert it to a local_lock which allows RT kernels to substitute them with
a real per CPU lock. On non RT kernels this maps to preempt_disable() as
before, but provides also lockdep coverage of the critical region.
No functional change.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20200527201119.1692513-3-bigeasy@linutronix.de
|
|
This API is unsafe to use under the RCU lock. With no in-tree users
remaining, remove it to prevent future bugs.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 or at your option any
later version this program is distributed in the hope that it will
be useful but without any warranty without even the implied warranty
of merchantability or fitness for a particular purpose see the gnu
general public license for more details you should have received a
copy of the gnu general public license along with this program if
not write to the free software foundation inc 675 mass ave cambridge
ma 02139 usa
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 77 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Armijn Hemel <armijn@tjaldur.nl>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.837555891@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
All users have now been converted to the XArray. Removing the support
reduces code size and ensures new users will use the XArray instead.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
|
|
The tag_tagged_items() function is supposed to test the page-writeback
tagging code. Since that has been converted to the XArray, there's
not much point in testing the radix tree's tagging code. This requires
using the pthread mutex embedded in the xarray instead of an external
lock, so remove the pthread mutexes which protect xarrays/radix trees.
Also remove radix_tree_iter_tag_set() as this was the last user.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
|
|
The page cache was the only user of this interface and it has now
been converted to the XArray. Transform the test into a test of
xas_init_marks().
Signed-off-by: Matthew Wilcox <willy@infradead.org>
|
|
This function was only used by the page cache which is now converted
to the XArray.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
|
|
radix_tree_split and radix_tree_join were never used upstream. Remove
them; if they're needed in future they will be replaced by XArray
equivalents.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
|
|
The only user of this functionality was the workingset code, and it's
now been converted to the XArray. Remove __radix_tree_delete_node()
entirely as it was also only used by the workingset code.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
|
|
xa_find() is a slightly easier API to use than
radix_tree_gang_lookup_slot() because it contains its own RCU locking.
This commit removes the last user of radix_tree_gang_lookup_slot()
so remove the function too.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
|
|
There's no direct replacement for radix_tree_for_each_contig()
in the XArray API as it's an unusual thing to do. Instead,
open-code a loop using xas_next(). This removes the only user of
radix_tree_for_each_contig() so delete the iterator from the API and
the test suite code for it.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
|
|
Use the XArray APIs to add and replace pages in the page cache. This
removes two uses of the radix tree preload API and is significantly
shorter code. It also removes the last user of __radix_tree_create()
outside radix-tree.c itself, so make it static.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
|
|
This is a direct replacement for struct radix_tree_node. A couple of
struct members have changed name, so convert those. Use a #define so
that radix tree users continue to work without change.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
|
|
This is a direct replacement for struct radix_tree_root. Some of the
struct members have changed name; convert those, and use a #define so
that radix_tree users continue to work without change.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
|
|
Instead of storing a pointer to the slot containing the canonical entry,
store the offset of the slot. Produces slightly more efficient code
(~300 bytes) and simplifies the implementation.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
|
|
Introduce xarray value entries and tagged pointers to replace radix
tree exceptional entries. This is a slight change in encoding to allow
the use of an extra bit (we can now store BITS_PER_LONG - 1 bits in a
value entry). It is also a change in emphasis; exceptional entries are
intimidating and different. As the comment explains, you can choose
to store values or pointers in the xarray and they are both first-class
citizens.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
|
|
This results in no change in structure size on 64-bit machines as it
fits in the padding between the gfp_t and the void *. 32-bit machines
will grow the structure from 8 to 12 bytes. Almost all radix trees are
protected with (at least) a spinlock, so as they are converted from
radix trees to xarrays, the data structures will shrink again.
Initialising the spinlock requires a name for the benefit of lockdep, so
RADIX_TREE_INIT() now needs to know the name of the radix tree it's
initialising, and so do IDR_INIT() and IDA_INIT().
Also add the xa_lock() and xa_unlock() family of wrappers to make it
easier to use the lock. If we could rely on -fplan9-extensions in the
compiler, we could avoid all of this syntactic sugar, but that wasn't
added until gcc 4.6.
Link: http://lkml.kernel.org/r/20180313132639.17387-8-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "XArray", v9. (First part thereof).
This patchset is, I believe, appropriate for merging for 4.17. It
contains the XArray implementation, to eventually replace the radix
tree, and converts the page cache to use it.
This conversion keeps the radix tree and XArray data structures in sync
at all times. That allows us to convert the page cache one function at
a time and should allow for easier bisection. Other than renaming some
elements of the structures, the data structures are fundamentally
unchanged; a radix tree walk and an XArray walk will touch the same
number of cachelines. I have changes planned to the XArray data
structure, but those will happen in future patches.
Improvements the XArray has over the radix tree:
- The radix tree provides operations like other trees do; 'insert' and
'delete'. But what most users really want is an automatically
resizing array, and so it makes more sense to give users an API that
is like an array -- 'load' and 'store'. We still have an 'insert'
operation for users that really want that semantic.
- The XArray considers locking as part of its API. This simplifies a
lot of users who formerly had to manage their own locking just for
the radix tree. It also improves code generation as we can now tell
RCU that we're holding a lock and it doesn't need to generate as much
fencing code. The other advantage is that tree nodes can be moved
(not yet implemented).
- GFP flags are now parameters to calls which may need to allocate
memory. The radix tree forced users to decide what the allocation
flags would be at creation time. It's much clearer to specify them at
allocation time.
- Memory is not preloaded; we don't tie up dozens of pages on the off
chance that the slab allocator fails. Instead, we drop the lock,
allocate a new node and retry the operation. We have to convert all
the radix tree, IDA and IDR preload users before we can realise this
benefit, but I have not yet found a user which cannot be converted.
- The XArray provides a cmpxchg operation. The radix tree forces users
to roll their own (and at least four have).
- Iterators take a 'max' parameter. That simplifies many users and will
reduce the amount of iteration done.
- Iteration can proceed backwards. We only have one user for this, but
since it's called as part of the pagefault readahead algorithm, that
seemed worth mentioning.
- RCU-protected pointers are not exposed as part of the API. There are
some fun bugs where the page cache forgets to use rcu_dereference()
in the current codebase.
- Value entries gain an extra bit compared to radix tree exceptional
entries. That gives us the extra bit we need to put huge page swap
entries in the page cache.
- Some iterators now take a 'filter' argument instead of having
separate iterators for tagged/untagged iterations.
The page cache is improved by this:
- Shorter, easier to read code
- More efficient iterations
- Reduction in size of struct address_space
- Fewer walks from the top of the data structure; the XArray API
encourages staying at the leaf node and conducting operations there.
This patch (of 8):
None of these bits may be used for slab allocations, so we can use them
as radix tree flags as long as we mask them off before passing them to
the slab allocator. Move the IDR flag from the high bits to the
GFP_ZONEMASK bits.
Link: http://lkml.kernel.org/r/20180313132639.17387-3-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Jeff Layton <jlayton@kernel.org>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
It has no more users, so remove it. Move idr_alloc() back into idr.c,
move the guts of idr_alloc_cmn() into idr_alloc_u32(), remove the
wrappers around idr_get_free_cmn() and rename it to idr_get_free().
While there is now no interface to allocate IDs larger than a u32,
the IDR internals remain ready to handle a larger ID should a need arise.
These changes make it possible to provide the guarantee that, if the
nextid pointer points into the object, the object's ID will be initialised
before a concurrent lookup can find the object.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
|
|
This include was added by commit 187f1882b5b0 ("BUG: headers with
BUG/BUG_ON etc. need linux/bug.h") because BUG_ON() was used in this
header at that time.
Some time later, commit 6d75f366b924 ("lib: radix-tree: check accounting
of existing slot replacement users") removed the use of BUG_ON() from
this header.
Since then, there is no reason to include <linux/bug.h>.
Link: http://lkml.kernel.org/r/1505660151-4383-1-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Chris Mi <chrism@mellanox.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
During truncation, the mapping has already been checked for shmem and
dax so it's known that workingset_update_node is required.
This patch avoids the checks on mapping for each page being truncated.
In all other cases, a lookup helper is used to determine if
workingset_update_node() needs to be called. The one danger is that the
API is slightly harder to use as calling workingset_update_node directly
without checking for dax or shmem mappings could lead to surprises.
However, the API rarely needs to be used and hopefully the comment is
enough to give people the hint.
sparsetruncate (tiny)
4.14.0-rc4 4.14.0-rc4
oneirq-v1r1 pickhelper-v1r1
Min Time 141.00 ( 0.00%) 140.00 ( 0.71%)
1st-qrtle Time 142.00 ( 0.00%) 141.00 ( 0.70%)
2nd-qrtle Time 142.00 ( 0.00%) 142.00 ( 0.00%)
3rd-qrtle Time 143.00 ( 0.00%) 143.00 ( 0.00%)
Max-90% Time 144.00 ( 0.00%) 144.00 ( 0.00%)
Max-95% Time 147.00 ( 0.00%) 145.00 ( 1.36%)
Max-99% Time 195.00 ( 0.00%) 191.00 ( 2.05%)
Max Time 230.00 ( 0.00%) 205.00 ( 10.87%)
Amean Time 144.37 ( 0.00%) 143.82 ( 0.38%)
Stddev Time 10.44 ( 0.00%) 9.00 ( 13.74%)
Coeff Time 7.23 ( 0.00%) 6.26 ( 13.41%)
Best99%Amean Time 143.72 ( 0.00%) 143.34 ( 0.26%)
Best95%Amean Time 142.37 ( 0.00%) 142.00 ( 0.26%)
Best90%Amean Time 142.19 ( 0.00%) 141.85 ( 0.24%)
Best75%Amean Time 141.92 ( 0.00%) 141.58 ( 0.24%)
Best50%Amean Time 141.69 ( 0.00%) 141.31 ( 0.27%)
Best25%Amean Time 141.38 ( 0.00%) 140.97 ( 0.29%)
As you'd expect, the gain is marginal but it can be detected. The
differences in bonnie are all within the noise which is not surprising
given the impact on the microbenchmark.
radix_tree_update_node_t is a callback for some radix operations that
optionally passes in a private field. The only user of the callback is
workingset_update_node and as it no longer requires a mapping, the
private field is removed.
Link: http://lkml.kernel.org/r/20171018075952.10627-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The following new APIs are added:
int idr_alloc_ext(struct idr *idr, void *ptr, unsigned long *index,
unsigned long start, unsigned long end, gfp_t gfp);
void *idr_remove_ext(struct idr *idr, unsigned long id);
void *idr_find_ext(const struct idr *idr, unsigned long id);
void *idr_replace_ext(struct idr *idr, void *ptr, unsigned long id);
void *idr_get_next_ext(struct idr *idr, unsigned long *nextid);
Signed-off-by: Chris Mi <chrism@mellanox.com>
Signed-off-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Many places were missing __rcu annotations. A few places needed a few
lines of explanation about why it was safe to not use RCU accessors.
Add a custom CFLAGS setting to the Makefile to ensure that new patches
don't miss RCU annotations.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
|
|
Some of these have been missing for many years. Others were recently
introduced by me. Fortunately, we have tools that help us find such
things.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
|
|
Instead of having this mysterious private_data in each radix_tree_node,
store a pointer to the root, which can be useful for debugging. This also
relieves the mm code from the duty of updating it.
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
|
|
The IDR is very similar to the radix tree. It has some functionality that
the radix tree did not have (alloc next free, cyclic allocation, a
callback-based for_each, destroy tree), which is readily implementable on
top of the radix tree. A few small changes were needed in order to use a
tag to represent nodes with free space below them. More extensive
changes were needed to support storing NULL as a valid entry in an IDR.
Plain radix trees still interpret NULL as a not-present entry.
The IDA is reimplemented as a client of the newly enhanced radix tree. As
in the current implementation, it uses a bitmap at the last level of the
tree.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Factor the deletion code out into __radix_tree_delete() and provide a
nice iterator-based wrapper around it. If we free the node, advance
the iterator to avoid reading from freed memory.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
|
|
The counterpart to radix_tree_iter_tag_set(), used by the IDR code
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: Rehas Sachdeva <aquannie@gmail.com>
|
|
If we're just getting the value of a tag, or looking up an entry,
we won't modify the radix tree, so we can declare these functions as
taking a const pointer. Mostly for documentation purposes, though it
might help code generation.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
|
|
We were using spinlock_t and INIT_LIST_HEAD without including spinlock.h
or list.h. They were being implicitly included through some other header
file, but that's fragile.
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
|
|
Several people report seeing warnings about inconsistent radix tree
nodes followed by crashes in the workingset code, which all looked like
use-after-free access from the shadow node shrinker.
Dave Jones managed to reproduce the issue with a debug patch applied,
which confirmed that the radix tree shrinking indeed frees shadow nodes
while they are still linked to the shadow LRU:
WARNING: CPU: 2 PID: 53 at lib/radix-tree.c:643 delete_node+0x1e4/0x200
CPU: 2 PID: 53 Comm: kswapd0 Not tainted 4.10.0-rc2-think+ #3
Call Trace:
delete_node+0x1e4/0x200
__radix_tree_delete_node+0xd/0x10
shadow_lru_isolate+0xe6/0x220
__list_lru_walk_one.isra.4+0x9b/0x190
list_lru_walk_one+0x23/0x30
scan_shadow_nodes+0x2e/0x40
shrink_slab.part.44+0x23d/0x5d0
shrink_node+0x22c/0x330
kswapd+0x392/0x8f0
This is the WARN_ON_ONCE(!list_empty(&node->private_list)) placed in the
inlined radix_tree_shrink().
The problem is with 14b468791fa9 ("mm: workingset: move shadow entry
tracking to radix tree exceptional tracking"), which passes an update
callback into the radix tree to link and unlink shadow leaf nodes when
tree entries change, but forgot to pass the callback when reclaiming a
shadow node.
While the reclaimed shadow node itself is unlinked by the shrinker, its
deletion from the tree can cause the left-most leaf node in the tree to
be shrunk. If that happens to be a shadow node as well, we don't unlink
it from the LRU as we should.
Consider this tree, where the s are shadow entries:
root->rnode
|
[0 n]
| |
[s ] [sssss]
Now the shadow node shrinker reclaims the rightmost leaf node through
the shadow node LRU:
root->rnode
|
[0 ]
|
[s ]
Because the parent of the deleted node is the first level below the
root and has only one child in the left-most slot, the intermediate
level is shrunk and the node containing the single shadow is put in
its place:
root->rnode
|
[s ]
The shrinker again sees a single left-most slot in a first level node
and thus decides to store the shadow in root->rnode directly and free
the node - which is a leaf node on the shadow node LRU.
root->rnode
|
s
Without the update callback, the freed node remains on the shadow LRU,
where it causes later shrinker runs to crash.
Pass the node updater callback into __radix_tree_delete_node() in case
the deletion causes the left-most branch in the tree to collapse too.
Also add warnings when linked nodes are freed right away, rather than
wait for the use-after-free when the list is scanned much later.
Fixes: 14b468791fa9 ("mm: workingset: move shadow entry tracking to radix tree exceptional tracking")
Reported-by: Dave Chinner <david@fromorbit.com>
Reported-by: Hugh Dickins <hughd@google.com>
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-and-tested-by: Dave Jones <davej@codemonkey.org.uk>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chris Leech <cleech@redhat.com>
Cc: Lee Duncan <lduncan@suse.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Calculate how many nodes we need to allocate to split an old_order entry
into multiple entries, each of size new_order. The test suite checks
that we allocated exactly the right number of nodes; neither too many
(checked by rtp->nr == 0), nor too few (checked by comparing
nr_allocated before and after the call to radix_tree_split()).
Link: http://lkml.kernel.org/r/1480369871-5271-60-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This new function splits a larger multiorder entry into smaller entries
(potentially multi-order entries). These entries are initialised to
RADIX_TREE_RETRY to ensure that RCU walkers who see this state aren't
confused. The caller should then call radix_tree_for_each_slot() and
radix_tree_replace_slot() in order to turn these retry entries into the
intended new entries. Tags are replicated from the original multiorder
entry into each new entry.
Link: http://lkml.kernel.org/r/1480369871-5271-59-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This new function allows for the replacement of many smaller entries in
the radix tree with one larger multiorder entry. From the point of view
of an RCU walker, they may see a mixture of the smaller entries and the
large entry during the same walk, but they will never see NULL for an
index which was populated before the join.
Link: http://lkml.kernel.org/r/1480369871-5271-58-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This is an exceptionally complicated function with just one caller
(tag_pages_for_writeback). We devote a large portion of the runtime of
the test suite to testing this one function which has one caller. By
introducing the new function radix_tree_iter_tag_set(), we can eliminate
all of the complexity while keeping the performance. The caller can now
use a fairly standard radix_tree_for_each() loop, and it doesn't need to
worry about tricksy things like 'start' wrapping.
The test suite continues to spend a large amount of time investigating
this function, but now it's testing the underlying primitives such as
radix_tree_iter_resume() and the radix_tree_for_each_tagged() iterator
which are also used by other parts of the kernel.
Link: http://lkml.kernel.org/r/1480369871-5271-57-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This rather complicated function can be better implemented as an
iterator. It has only one caller, so move the functionality to the only
place that needs it. Update the test suite to follow the same pattern.
Link: http://lkml.kernel.org/r/1480369871-5271-56-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Konstantin Khlebnikov <koct9i@gmail.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This fixes several interlinked problems with the iterators in the
presence of multiorder entries.
1. radix_tree_iter_next() would only advance by one slot, which would
result in the iterators returning the same entry more than once if
there were sibling entries.
2. radix_tree_next_slot() could return an internal pointer instead of
a user pointer if a tagged multiorder entry was immediately followed by
an entry of lower order.
3. radix_tree_next_slot() expanded to a lot more code than it used to
when multiorder support was compiled in. And I wasn't comfortable with
entry_to_node() being in a header file.
Fixing radix_tree_iter_next() for the presence of sibling entries
necessarily involves examining the contents of the radix tree, so we now
need to pass 'slot' to radix_tree_iter_next(), and we need to change the
calling convention so it is called *before* dropping the lock which
protects the tree. Also rename it to radix_tree_iter_resume(), as some
people thought it was necessary to call radix_tree_iter_next() each time
around the loop.
radix_tree_next_slot() becomes closer to how it looked before multiorder
support was introduced. It only checks to see if the next entry in the
chunk is a sibling entry or a pointer to a node; this should be rare
enough that handling this case out of line is not a performance impact
(and such impact is amortised by the fact that the entry we just
processed was a multiorder entry). Also, radix_tree_next_slot() used to
force a new chunk lookup for untagged entries, which is more expensive
than the out of line sibling entry skipping.
Link: http://lkml.kernel.org/r/1480369871-5271-55-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
I want to be able to reference node->parent after freeing node.
Currently node->parent is in a union with rcu_head, so it is overwritten
when the node is put on the RCU list. We know that private_list is not
referenced after the node is freed, so it is safe for these two members
to share space.
Link: http://lkml.kernel.org/r/1480369871-5271-50-git-send-email-mawilcox@linuxonhyperv.com
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently, we track the shadow entries in the page cache in the upper
bits of the radix_tree_node->count, behind the back of the radix tree
implementation. Because the radix tree code has no awareness of them,
we rely on random subtleties throughout the implementation (such as the
node->count != 1 check in the shrinking code, which is meant to exclude
multi-entry nodes but also happens to skip nodes with only one shadow
entry, as that's accounted in the upper bits). This is error prone and
has, in fact, caused the bug fixed in d3798ae8c6f3 ("mm: filemap: don't
plant shadow entries without radix tree node").
To remove these subtleties, this patch moves shadow entry tracking from
the upper bits of node->count to the existing counter for exceptional
entries. node->count goes back to being a simple counter of valid
entries in the tree node and can be shrunk to a single byte.
This vastly simplifies the page cache code. All accounting happens
natively inside the radix tree implementation, and maintaining the LRU
linkage of shadow nodes is consolidated into a single function in the
workingset code that is called for leaf nodes affected by a change in
the page cache tree.
This also removes the last user of the __radix_delete_node() return
value. Eliminate it.
Link: http://lkml.kernel.org/r/20161117193211.GE23430@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Support handing __radix_tree_replace() a callback that gets invoked for
all leaf nodes that change or get freed as a result of the slot
replacement, to assist users tracking nodes with node->private_list.
This prepares for putting page cache shadow entries into the radix tree
root again and drastically simplifying the shadow tracking.
Link: http://lkml.kernel.org/r/20161117193134.GD23430@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The bug in khugepaged fixed earlier in this series shows that radix tree
slot replacement is fragile; and it will become more so when not only
NULL<->!NULL transitions need to be caught but transitions from and to
exceptional entries as well. We need checks.
Re-implement radix_tree_replace_slot() on top of the sanity-checked
__radix_tree_replace(). This requires existing callers to also pass the
radix tree root, but it'll warn us when somebody replaces slots with
contents that need proper accounting (transitions between NULL entries,
real entries, exceptional entries) and where a replacement through the
slot pointer would corrupt the radix tree node counts.
Link: http://lkml.kernel.org/r/20161117193021.GB23430@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The way the page cache is sneaking shadow entries of evicted pages into
the radix tree past the node entry accounting and tracking them manually
in the upper bits of node->count is fraught with problems.
These shadow entries are marked in the tree as exceptional entries,
which are a native concept to the radix tree. Maintain an explicit
counter of exceptional entries in the radix tree node. Subsequent
patches will switch shadow entry tracking over to that counter.
DAX and shmem are the other users of exceptional entries. Since slot
replacements that change the entry type from regular to exceptional must
now be accounted, introduce a __radix_tree_replace() function that does
replacement and accounting, and switch DAX and shmem over.
The increase in radix tree node size is temporary. A followup patch
switches the shadow tracking to this new scheme and we'll no longer need
the upper bits in node->count and shrink that back to one byte.
Link: http://lkml.kernel.org/r/20161117192945.GA23430@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <mawilcox@linuxonhyperv.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There are four cases I can see where we could end up with a NULL 'slot' in
radix_tree_next_slot(). Yet radix_tree_next_slot() never actually checks
whether 'slot' is NULL. It just happens that for the cases where 'slot'
is NULL, some other combination of factors prevents us from dereferencing
it.
It would be very easy for someone to unwittingly change one of these
factors without realizing that we are implicitly depending on it to save
us from a NULL pointer dereference.
Add a comment documenting the things that allow 'slot' to be safely passed
as NULL to radix_tree_next_slot().
Here are details on the four cases:
1) radix_tree_iter_retry() via a non-tagged iteration like
radix_tree_for_each_slot(). In this case we currently aren't seeing a bug
because radix_tree_iter_retry() sets
iter->next_index = iter->index;
which means that in in the else case in radix_tree_next_slot(), 'count' is
zero, so we skip over the while() loop and effectively just return NULL
without ever dereferencing 'slot'.
2) radix_tree_iter_retry() via tagged iteration like
radix_tree_for_each_tagged(). This case was giving us NULL pointer
dereferences in testing, and was fixed with this commit:
commit 3cb9185c6730 ("radix-tree: fix radix_tree_iter_retry() for tagged
iterators.")
This fix doesn't explicitly check for 'slot' being NULL, though, it works
around the NULL pointer dereference by instead zeroing iter->tags in
radix_tree_iter_retry(), which makes us bail out of the if() case in
radix_tree_next_slot() before we dereference 'slot'.
3) radix_tree_iter_next() via via a non-tagged iteration like
radix_tree_for_each_slot(). This currently happens in shmem_tag_pins()
and shmem_partial_swap_usage().
As with non-tagged iteration, 'count' in the else case of
radix_tree_next_slot() is zero, so we skip over the while() loop and
effectively just return NULL without ever dereferencing 'slot'.
4) radix_tree_iter_next() via tagged iteration like
radix_tree_for_each_tagged(). This happens in shmem_wait_for_pins().
radix_tree_iter_next() zeros out iter->tags, so we end up exiting
radix_tree_next_slot() here:
if (flags & RADIX_TREE_ITER_TAGGED) {
void *canon = slot;
iter->tags >>= 1;
if (unlikely(!iter->tags))
return NULL;
Link: http://lkml.kernel.org/r/20160815194237.25967-2-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When the underflow checks were added to workingset_node_shadow_dec(),
they triggered immediately:
kernel BUG at ./include/linux/swap.h:276!
invalid opcode: 0000 [#1] SMP
Modules linked in: isofs usb_storage fuse xt_CHECKSUM ipt_MASQUERADE nf_nat_masquerade_ipv4 tun nf_conntrack_netbios_ns nf_conntrack_broadcast ip6t_REJECT nf_reject_ipv6
soundcore wmi acpi_als pinctrl_sunrisepoint kfifo_buf tpm_tis industrialio acpi_pad pinctrl_intel tpm_tis_core tpm nfsd auth_rpcgss nfs_acl lockd grace sunrpc dm_crypt
CPU: 0 PID: 20929 Comm: blkid Not tainted 4.8.0-rc8-00087-gbe67d60ba944 #1
Hardware name: System manufacturer System Product Name/Z170-K, BIOS 1803 05/06/2016
task: ffff8faa93ecd940 task.stack: ffff8faa7f478000
RIP: page_cache_tree_insert+0xf1/0x100
Call Trace:
__add_to_page_cache_locked+0x12e/0x270
add_to_page_cache_lru+0x4e/0xe0
mpage_readpages+0x112/0x1d0
blkdev_readpages+0x1d/0x20
__do_page_cache_readahead+0x1ad/0x290
force_page_cache_readahead+0xaa/0x100
page_cache_sync_readahead+0x3f/0x50
generic_file_read_iter+0x5af/0x740
blkdev_read_iter+0x35/0x40
__vfs_read+0xe1/0x130
vfs_read+0x96/0x130
SyS_read+0x55/0xc0
entry_SYSCALL_64_fastpath+0x13/0x8f
Code: 03 00 48 8b 5d d8 65 48 33 1c 25 28 00 00 00 44 89 e8 75 19 48 83 c4 18 5b 41 5c 41 5d 41 5e 5d c3 0f 0b 41 bd ef ff ff ff eb d7 <0f> 0b e8 88 68 ef ff 0f 1f 84 00
RIP page_cache_tree_insert+0xf1/0x100
This is a long-standing bug in the way shadow entries are accounted in
the radix tree nodes. The shrinker needs to know when radix tree nodes
contain only shadow entries, no pages, so node->count is split in half
to count shadows in the upper bits and pages in the lower bits.
Unfortunately, the radix tree implementation doesn't know of this and
assumes all entries are in node->count. When there is a shadow entry
directly in root->rnode and the tree is later extended, the radix tree
implementation will copy that entry into the new node and and bump its
node->count, i.e. increases the page count bits. Once the shadow gets
removed and we subtract from the upper counter, node->count underflows
and triggers the warning. Afterwards, without node->count reaching 0
again, the radix tree node is leaked.
Limit shadow entries to when we have actual radix tree nodes and can
count them properly. That means we lose the ability to detect refaults
from files that had only the first page faulted in at eviction time.
Fixes: 449dd6984d0e ("mm: keep page cache radix tree nodes in check")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-and-tested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The bottom two bits of radix tree entries are reserved for special use
by the radix tree code itself. A comment detailing their usage was
added by commit 3bcadd6fa6c4 ("radix-tree: free up the bottom bit of
exceptional entries for reuse")
This comment states that if the bottom two bits are '11', this means
that this is a locked exceptional entry.
It turns out that this bit combination was never actually used. Radix
tree locking for DAX was indeed implemented, but it actually used the
third LSB:
/* We use lowest available exceptional entry bit for locking */
#define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
This locking code was also made specific to the DAX code instead of
being generally implemented in radix-tree.h.
So, fix the comment.
Link: http://lkml.kernel.org/r/1468997731-2155-1-git-send-email-ross.zwisler@linux.intel.com
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The new helper is similar to radix_tree_maybe_preload(), but tries to
preload number of nodes required to insert (1 << order) continuous
naturally-aligned elements.
This is required to push huge pages into pagecache.
Link: http://lkml.kernel.org/r/1466021202-61880-24-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
radix_tree_iter_retry() resets slot to NULL, but it doesn't reset tags.
Then NULL slot and non-zero iter.tags passed to radix_tree_next_slot()
leading to crash:
RIP: radix_tree_next_slot include/linux/radix-tree.h:473
find_get_pages_tag+0x334/0x930 mm/filemap.c:1452
....
Call Trace:
pagevec_lookup_tag+0x3a/0x80 mm/swap.c:960
mpage_prepare_extent_to_map+0x321/0xa90 fs/ext4/inode.c:2516
ext4_writepages+0x10be/0x2b20 fs/ext4/inode.c:2736
do_writepages+0x97/0x100 mm/page-writeback.c:2364
__filemap_fdatawrite_range+0x248/0x2e0 mm/filemap.c:300
filemap_write_and_wait_range+0x121/0x1b0 mm/filemap.c:490
ext4_sync_file+0x34d/0xdb0 fs/ext4/fsync.c:115
vfs_fsync_range+0x10a/0x250 fs/sync.c:195
vfs_fsync fs/sync.c:209
do_fsync+0x42/0x70 fs/sync.c:219
SYSC_fdatasync fs/sync.c:232
SyS_fdatasync+0x19/0x20 fs/sync.c:230
entry_SYSCALL_64_fastpath+0x23/0xc1 arch/x86/entry/entry_64.S:207
We must reset iterator's tags to bail out from radix_tree_next_slot()
and go to the slow-path in radix_tree_next_chunk().
Fixes: 46437f9a554f ("radix-tree: fix race in gang lookup")
Link: http://lkml.kernel.org/r/1468495196-10604-1-git-send-email-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We are guaranteed that pointers to radix_tree_nodes always have the
bottom two bits clear (because they come from a slab cache, and slab
caches have a minimum alignment of sizeof(void *)), so we can redefine
'radix_tree_is_internal_node' to only return true if the bottom two bits
have value '01'. This frees up one quarter of the potential values for
use by the user.
Idea from Neil Brown.
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Suggested-by: Neil Brown <neilb@suse.de>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
These don't belong in radix-tree.h any more than PAGECACHE_TAG_* do.
Let's try to maintain the idea that radix-tree simply implements an
abstract data type.
Signed-off-by: NeilBrown <neilb@suse.com>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In addition to replacing the entry, we also clear all associated tags.
This is really a one-off special for page_cache_tree_delete() which had
far too much detailed knowledge about how the radix tree works.
For efficiency, factor node_tag_clear() out of radix_tree_tag_clear() It
can be used by radix_tree_delete_item() as well as
radix_tree_replace_clear_tags().
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jan Kara <jack@suse.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|