summaryrefslogtreecommitdiff
path: root/include/linux/flex_array.h
AgeCommit message (Collapse)AuthorFilesLines
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman1-0/+1
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-03-29Documentation: Add flexible-arrays.rst to the documentation treesayli karnik1-0/+67
Add flexible-arrays.rst to Documentation/core-api. Add kernel-doc comments to allow referencing. Signed-off-by: sayli karnik <karniksayli1995@gmail.com> Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2014-01-22reciprocal_divide: update/correction of the algorithmHannes Frederic Sowa1-1/+2
Jakub Zawadzki noticed that some divisions by reciprocal_divide() were not correct [1][2], which he could also show with BPF code after divisions are transformed into reciprocal_value() for runtime invariance which can be passed to reciprocal_divide() later on; reverse in BPF dump ended up with a different, off-by-one K in some situations. This has been fixed by Eric Dumazet in commit aee636c4809fa5 ("bpf: do not use reciprocal divide"). This follow-up patch improves reciprocal_value() and reciprocal_divide() to work in all cases by using Granlund and Montgomery method, so that also future use is safe and without any non-obvious side-effects. Known problems with the old implementation were that division by 1 always returned 0 and some off-by-ones when the dividend and divisor where very large. This seemed to not be problematic with its current users, as far as we can tell. Eric Dumazet checked for the slab usage, we cannot surely say so in the case of flex_array. Still, in order to fix that, we propose an extension from the original implementation from commit 6a2d7a955d8d resp. [3][4], by using the algorithm proposed in "Division by Invariant Integers Using Multiplication" [5], Torbjörn Granlund and Peter L. Montgomery, that is, pseudocode for q = n/d where q, n, d is in u32 universe: 1) Initialization: int l = ceil(log_2 d) uword m' = floor((1<<32)*((1<<l)-d)/d)+1 int sh_1 = min(l,1) int sh_2 = max(l-1,0) 2) For q = n/d, all uword: uword t = (n*m')>>32 q = (t+((n-t)>>sh_1))>>sh_2 The assembler implementation from Agner Fog [6] also helped a lot while implementing. We have tested the implementation on x86_64, ppc64, i686, s390x; on x86_64/haswell we're still half the latency compared to normal divide. Joint work with Daniel Borkmann. [1] http://www.wireshark.org/~darkjames/reciprocal-buggy.c [2] http://www.wireshark.org/~darkjames/set-and-dump-filter-k-bug.c [3] https://gmplib.org/~tege/division-paper.pdf [4] http://homepage.cs.uiowa.edu/~jones/bcd/divide.html [5] http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.2556 [6] http://www.agner.org/optimize/asmlib.zip Reported-by: Jakub Zawadzki <darkjames-ws@darkjames.pl> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Austin S Hemmelgarn <ahferroin7@gmail.com> Cc: linux-kernel@vger.kernel.org Cc: Jesse Gross <jesse@nicira.com> Cc: Jamal Hadi Salim <jhs@mojatatu.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Matt Mackall <mpm@selenic.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Andy Gospodarek <andy@greyhouse.net> Cc: Veaceslav Falico <vfalico@redhat.com> Cc: Jay Vosburgh <fubar@us.ibm.com> Cc: Jakub Zawadzki <darkjames-ws@darkjames.pl> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-05-27flex_array: avoid divisions when accessing elementsJesse Gross1-0/+2
On most architectures division is an expensive operation and accessing an element currently requires four of them. This performance penalty effectively precludes flex arrays from being used on any kind of fast path. However, two of these divisions can be handled at creation time and the others can be replaced by a reciprocal divide, completely avoiding real divisions on access. [eparis@redhat.com: rebase on top of changes to support 0 len elements] [eparis@redhat.com: initialize part_nr when array fits entirely in base] Signed-off-by: Jesse Gross <jesse@nicira.com> Signed-off-by: Eric Paris <eparis@redhat.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-04-29flex_array: flex_array_prealloc takes a number of elements, not an endEric Paris1-1/+1
Change flex_array_prealloc to take the number of elements for which space should be allocated instead of the last (inclusive) element. Users and documentation are updated accordingly. flex_arrays got introduced before they had users. When folks started using it, they ended up needing a different API than was coded up originally. This swaps over to the API that folks apparently need. Based-on-patch-by: Steffen Klassert <steffen.klassert@secunet.com> Signed-off-by: Eric Paris <eparis@redhat.com> Tested-by: Chris Richards <gizmo@giz-works.com> Acked-by: Dave Hansen <dave@linux.vnet.ibm.com> Cc: stable@kernel.org [2.6.38+]
2010-12-01flex_array: fix flex_array_put_ptr macro to be valid CEric Paris1-1/+1
Using flex_array_put_ptr() results in a compile error "error: lvalue required as unary ‘&’ operand" fix the casting order to fix this. Signed-off-by: Eric Paris <eparis@redhat.com>
2010-08-10flex_array: add helpers to get and put to make pointers easy to useEric Paris1-0/+5
Getting and putting arrays of pointers with flex arrays is a PITA. You have to remember to pass &ptr to the _put and you have to do weird and wacky casting to get the ptr back from the _get. Add two functions flex_array_get_ptr() and flex_array_put_ptr() to handle all of the magic. [akpm@linux-foundation.org: simplification suggested by Joe] Signed-off-by: Eric Paris <eparis@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Cc: Joe Perches <joe@perches.com> Cc: James Morris <jmorris@namei.org> Cc: Joe Perches <joe@perches.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22flex_array: introduce DEFINE_FLEX_ARRAYDavid Rientjes1-4/+26
FLEX_ARRAY_INIT(element_size, total_nr_elements) cannot determine if either parameter is valid, so flex arrays which are statically allocated with this interface can easily become corrupted or reference beyond its allocated memory. This removes FLEX_ARRAY_INIT() as a struct flex_array initializer since no initializer may perform the required checking. Instead, the array is now defined with a new interface: DEFINE_FLEX_ARRAY(name, element_size, total_nr_elements) This may be prefixed with `static' for file scope. This interface includes compile-time checking of the parameters to ensure they are valid. Since the validity of both element_size and total_nr_elements depend on FLEX_ARRAY_BASE_SIZE and FLEX_ARRAY_PART_SIZE, the kernel build will fail if either of these predefined values changes such that the array parameters are no longer valid. Since BUILD_BUG_ON() requires compile time constants, several of the static inline functions that were once local to lib/flex_array.c had to be moved to include/linux/flex_array.h. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22flex_array: add flex_array_shrink functionDavid Rientjes1-0/+1
Add a new function to the flex_array API: int flex_array_shrink(struct flex_array *fa) This function will free all unused second-level pages. Since elements are now poisoned if they are not allocated with __GFP_ZERO, it's possible to identify parts that consist solely of unused elements. flex_array_shrink() returns the number of pages freed. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22flex_array: add flex_array_clear functionDavid Rientjes1-0/+1
Add a new function to the flex_array API: int flex_array_clear(struct flex_array *fa, unsigned int element_nr) This function will zero the element at element_nr in the flex_array. Although this is equivalent to using flex_array_put() and passing a pointer to zero'd memory, flex_array_clear() does not require such a pointer to memory that would most likely need to be allocated on the caller's stack which could be significantly large depending on element_size. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-27flex_array: convert element_nr formals to unsignedDavid Rientjes1-4/+6
It's problematic to allow signed element_nr's or total's to be passed as part of the flex array API. flex_array_alloc() allows total_nr_elements to be set to a negative quantity, which is obviously erroneous. flex_array_get() and flex_array_put() allows negative array indices in dereferencing an array part, which could address memory mapped before struct flex_array. The fix is to convert all existing element_nr formals to be qualified as unsigned. Existing checks to compare it to total_nr_elements or the max array size based on element_size need not be changed. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-27flex_array: declare parts member to have incomplete typeDavid Rientjes1-1/+1
The `parts' member of struct flex_array should evaluate to an incomplete type so that sizeof() cannot be used and C99 does not require the zero-length specification. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Dave Hansen <dave@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-07-30lib: flexible array implementationDave Hansen1-0/+47
Once a structure goes over PAGE_SIZE*2, we see occasional allocation failures. Some people have chosen to switch over to things like vmalloc() that will let them keep array-like access to such a large structures. But, vmalloc() has plenty of downsides. Here's an alternative. I think it's what Andrew was suggesting here: http://lkml.org/lkml/2009/7/2/518 I call it a flexible array. It does all of its work in PAGE_SIZE bits, so never does an order>0 allocation. The base level has PAGE_SIZE-2*sizeof(int) bytes of storage for pointers to the second level. So, with a 32-bit arch, you get about 4MB (4183112 bytes) of total storage when the objects pack nicely into a page. It is half that on 64-bit because the pointers are twice the size. There's a table detailing this in the code. There are kerneldocs for the functions, but here's an overview: flex_array_alloc() - dynamically allocate a base structure flex_array_free() - free the array and all of the second-level pages flex_array_free_parts() - free the second-level pages, but not the base (for static bases) flex_array_put() - copy into the array at the given index flex_array_get() - copy out of the array at the given index flex_array_prealloc() - preallocate the second-level pages between the given indexes to guarantee no allocs will occur at put() time. We could also potentially just pass the "element_size" into each of the API functions instead of storing it internally. That would get us one more base pointer on 32-bit. I've been testing this by running it in userspace. The header and patch that I've been using are here, as well as the little script I'm using to generate the size table which goes in the kerneldocs. http://sr71.net/~dave/linux/flexarray/ [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>