Age | Commit message (Collapse) | Author | Files | Lines |
|
The TX timestamping procedure for SJA1105 is a bit unconventional
because the transmit procedure itself is unconventional.
Control packets (and therefore PTP as well) are transmitted to a
specific port in SJA1105 using "management routes" which must be written
over SPI to the switch. These are one-shot rules that match by
destination MAC address on traffic coming from the CPU port, and select
the precise destination port for that packet. So to transmit a packet
from NET_TX softirq context, we actually need to defer to a process
context so that we can perform that SPI write before we send the packet.
The DSA master dev_queue_xmit() runs in process context, and we poll
until the switch confirms it took the TX timestamp, then we annotate the
skb clone with that TX timestamp. This is why the sja1105 driver does
not need an skb queue for TX timestamping.
But the SJA1110 is a bit (not much!) more conventional, and you can
request 2-step TX timestamping through the DSA header, as well as give
the switch a cookie (timestamp ID) which it will give back to you when
it has the timestamp. So now we do need a queue for keeping the skb
clones until their TX timestamps become available.
The interesting part is that the metadata frames from SJA1105 haven't
disappeared completely. On SJA1105 they were used as follow-ups which
contained RX timestamps, but on SJA1110 they are actually TX completion
packets, which contain a variable (up to 32) array of timestamps.
Why an array? Because:
- not only is the TX timestamp on the egress port being communicated,
but also the RX timestamp on the CPU port. Nice, but we don't care
about that, so we ignore it.
- because a packet could be multicast to multiple egress ports, each
port takes its own timestamp, and the TX completion packet contains
the individual timestamps on each port.
This is unconventional because switches typically have a timestamping
FIFO and raise an interrupt, but this one doesn't. So the tagger needs
to detect and parse meta frames, and call into the main switch driver,
which pairs the timestamps with the skbs in the TX timestamping queue
which are waiting for one.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The SJA1110 has improved a few things compared to SJA1105:
- To send a control packet from the host port with SJA1105, one needed
to program a one-shot "management route" over SPI. This is no longer
true with SJA1110, you can actually send "in-band control extensions"
in the packets sent by DSA, these are in fact DSA tags which contain
the destination port and switch ID.
- When receiving a control packet from the switch with SJA1105, the
source port and switch ID were written in bytes 3 and 4 of the
destination MAC address of the frame (which was a very poor shot at a
DSA header). If the control packet also had an RX timestamp, that
timestamp was sent in an actual follow-up packet, so there were
reordering concerns on multi-core/multi-queue DSA masters, where the
metadata frame with the RX timestamp might get processed before the
actual packet to which that timestamp belonged (there is no way to
pair a packet to its timestamp other than the order in which they were
received). On SJA1110, this is no longer true, control packets have
the source port, switch ID and timestamp all in the DSA tags.
- Timestamps from the switch were partial: to get a 64-bit timestamp as
required by PTP stacks, one would need to take the partial 24-bit or
32-bit timestamp from the packet, then read the current PTP time very
quickly, and then patch in the high bits of the current PTP time into
the captured partial timestamp, to reconstruct what the full 64-bit
timestamp must have been. That is awful because packet processing is
done in NAPI context, but reading the current PTP time is done over
SPI and therefore needs sleepable context.
But it also aggravated a few things:
- Not only is there a DSA header in SJA1110, but there is a DSA trailer
in fact, too. So DSA needs to be extended to support taggers which
have both a header and a trailer. Very unconventional - my understanding
is that the trailer exists because the timestamps couldn't be prepared
in time for putting them in the header area.
- Like SJA1105, not all packets sent to the CPU have the DSA tag added
to them, only control packets do:
* the ones which match the destination MAC filters/traps in
MAC_FLTRES1 and MAC_FLTRES0
* the ones which match FDB entries which have TRAP or TAKETS bits set
So we could in theory hack something up to request the switch to take
timestamps for all packets that reach the CPU, and those would be
DSA-tagged and contain the source port / switch ID by virtue of the
fact that there needs to be a timestamp trailer provided. BUT:
- The SJA1110 does not parse its own DSA tags in a way that is useful
for routing in cross-chip topologies, a la Marvell. And the sja1105
driver already supports cross-chip bridging from the SJA1105 days.
It does that by automatically setting up the DSA links as VLAN trunks
which contain all the necessary tag_8021q RX VLANs that must be
communicated between the switches that span the same bridge. So when
using tag_8021q on sja1105, it is possible to have 2 switches with
ports sw0p0, sw0p1, sw1p0, sw1p1, and 2 VLAN-unaware bridges br0 and
br1, and br0 can take sw0p0 and sw1p0, and br1 can take sw0p1 and
sw1p1, and forwarding will happen according to the expected rules of
the Linux bridge.
We like that, and we don't want that to go away, so as a matter of
fact, the SJA1110 tagger still needs to support tag_8021q.
So the sja1110 tagger is a hybrid between tag_8021q for data packets,
and the native hardware support for control packets.
On RX, packets have a 13-byte trailer if they contain an RX timestamp.
That trailer is padded in such a way that its byte 8 (the start of the
"residence time" field - not parsed by Linux because we don't care) is
aligned on a 16 byte boundary. So the padding has a variable length
between 0 and 15 bytes. The DSA header contains the offset of the
beginning of the padding relative to the beginning of the frame (and the
end of the padding is obviously the end of the packet minus 13 bytes,
the length of the trailer). So we discard it.
Packets which don't have a trailer contain the source port and switch ID
information in the header (they are "trap-to-host" packets). Packets
which have a trailer contain the source port and switch ID in the trailer.
On TX, the destination port mask and switch ID is always in the trailer,
so we always need to say in the header that a trailer is present.
The header needs a custom EtherType and this was chosen as 0xdadc, after
0xdada which is for Marvell and 0xdadb which is for VLANs in
VLAN-unaware mode on SJA1105 (and SJA1110 in fact too).
Because we use tag_8021q in concert with the native tagging protocol,
control packets will have 2 DSA tags.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
In SJA1105, RX timestamps for packets sent to the CPU are transmitted in
separate follow-up packets (metadata frames). These contain partial
timestamps (24 or 32 bits) which are kept in SJA1105_SKB_CB(skb)->meta_tstamp.
Thankfully, SJA1110 improved that, and the RX timestamps are now
transmitted in-band with the actual packet, in the timestamp trailer.
The RX timestamps are now full-width 64 bits.
Because we process the RX DSA tags in the rcv() method in the tagger,
but we would like to preserve the DSA code structure in that we populate
the skb timestamp in the port_rxtstamp() call which only happens later,
the implication is that we must somehow pass the 64-bit timestamp from
the rcv() method all the way to port_rxtstamp(). We can use the skb->cb
for that.
Rename the meta_tstamp from struct sja1105_skb_cb from "meta_tstamp" to
"tstamp", and increase its size to 64 bits.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Free skb->cb usage in core driver and let device drivers decide to
use or not. The reason having a DSA_SKB_CB(skb)->clone was because
dsa_skb_tx_timestamp() which may set the clone pointer was called
before p->xmit() which would use the clone if any, and the device
driver has no way to initialize the clone pointer.
This patch just put memset(skb->cb, 0, sizeof(skb->cb)) at beginning
of dsa_slave_xmit(). Some new features in the future, like one-step
timestamp may need more bytes of skb->cb to use in
dsa_skb_tx_timestamp(), and p->xmit().
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Create a subvlan_map as part of each port's tagger private structure.
This keeps reverse mappings of bridge-to-dsa_8021q VLAN retagging rules.
Note that as of this patch, this piece of code is never engaged, due to
the fact that the driver hasn't installed any retagging rule, so we'll
always see packets with a subvlan code of 0 (untagged).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
In VLAN-unaware mode, sja1105 uses VLAN tags with a custom TPID of
0xdadb. While in the yet-to-be introduced best_effort_vlan_filtering
mode, it needs to work with normal VLAN TPID values.
A complication arises when we must transmit a VLAN-tagged packet to the
switch when it's in VLAN-aware mode. We need to construct a packet with
2 VLAN tags, and the switch will use the outer header for routing and
pop it on egress. But sadly, here the 2 hardware generations don't
behave the same:
- E/T switches won't pop an ETH_P_8021AD tag on egress, it seems
(packets will remain double-tagged).
- P/Q/R/S switches will drop a packet with 2 ETH_P_8021Q tags (it looks
like it tries to prevent VLAN hopping).
But looks like the reverse is also true:
- E/T switches have no problem popping the outer tag from packets with
2 ETH_P_8021Q tags.
- P/Q/R/S will have no problem popping a single tag even if that is
ETH_P_8021AD.
So it is clear that if we want the hardware to work with dsa_8021q
tagging in VLAN-aware mode, we need to send different TPIDs depending on
revision. Keep that information in priv->info->qinq_tpid.
The per-port tagger structure will hold an xmit_tpid value that depends
not only upon the qinq_tpid, but also upon the VLAN awareness state
itself (in case we must transmit using 0xdadb).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
There are 3 things that are wrong with the DSA deferred xmit mechanism:
1. Its introduction has made the DSA hotpath ever so slightly more
inefficient for everybody, since DSA_SKB_CB(skb)->deferred_xmit needs
to be initialized to false for every transmitted frame, in order to
figure out whether the driver requested deferral or not (a very rare
occasion, rare even for the only driver that does use this mechanism:
sja1105). That was necessary to avoid kfree_skb from freeing the skb.
2. Because L2 PTP is a link-local protocol like STP, it requires
management routes and deferred xmit with this switch. But as opposed
to STP, the deferred work mechanism needs to schedule the packet
rather quickly for the TX timstamp to be collected in time and sent
to user space. But there is no provision for controlling the
scheduling priority of this deferred xmit workqueue. Too bad this is
a rather specific requirement for a feature that nobody else uses
(more below).
3. Perhaps most importantly, it makes the DSA core adhere a bit too
much to the NXP company-wide policy "Innovate Where It Doesn't
Matter". The sja1105 is probably the only DSA switch that requires
some frames sent from the CPU to be routed to the slave port via an
out-of-band configuration (register write) rather than in-band (DSA
tag). And there are indeed very good reasons to not want to do that:
if that out-of-band register is at the other end of a slow bus such
as SPI, then you limit that Ethernet flow's throughput to effectively
the throughput of the SPI bus. So hardware vendors should definitely
not be encouraged to design this way. We do _not_ want more
widespread use of this mechanism.
Luckily we have a solution for each of the 3 issues:
For 1, we can just remove that variable in the skb->cb and counteract
the effect of kfree_skb with skb_get, much to the same effect. The
advantage, of course, being that anybody who doesn't use deferred xmit
doesn't need to do any extra operation in the hotpath.
For 2, we can create a kernel thread for each port's deferred xmit work.
If the user switch ports are named swp0, swp1, swp2, the kernel threads
will be named swp0_xmit, swp1_xmit, swp2_xmit (there appears to be a 15
character length limit on kernel thread names). With this, the user can
change the scheduling priority with chrt $(pidof swp2_xmit).
For 3, we can actually move the entire implementation to the sja1105
driver.
So this patch deletes the generic implementation from the DSA core and
adds a new one, more adequate to the requirements of PTP TX
timestamping, in sja1105_main.c.
Suggested-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
I finally found out how the 4 management route slots are supposed to
be used, but.. it's not worth it.
The description from the comment I've just deleted in this commit is
still true: when more than 1 management slot is active at the same time,
the switch will match frames incoming [from the CPU port] on the lowest
numbered management slot that matches the frame's DMAC.
My issue was that one was not supposed to statically assign each port a
slot. Yes, there are 4 slots and also 4 non-CPU ports, but that is a
mere coincidence.
Instead, the switch can be used like this: every management frame gets a
slot at the right of the most recently assigned slot:
Send mgmt frame 1 through S0: S0 x x x
Send mgmt frame 2 through S1: S0 S1 x x
Send mgmt frame 3 through S2: S0 S1 S2 x
Send mgmt frame 4 through S3: S0 S1 S2 S3
The difference compared to the old usage is that the transmission of
frames 1-4 doesn't need to wait until the completion of the management
route. It is safe to use a slot to the right of the most recently used
one, because by protocol nobody will program a slot to your left and
"steal" your route towards the correct egress port.
So there is a potential throughput benefit here.
But mgmt frame 5 has no more free slot to use, so it has to wait until
_all_ of S0, S1, S2, S3 are full, in order to use S0 again.
And that's actually exactly the problem: I was looking for something
that would bring more predictable transmission latency, but this is
exactly the opposite: 3 out of 4 frames would be transmitted quicker,
but the 4th would draw the short straw and have a worse worst-case
latency than before.
Useless.
Things are made even worse by PTP TX timestamping, which is something I
won't go deeply into here. Suffice to say that the fact there is a
driver-level lock on the SPI bus offsets any potential throughput gains
that parallelism might bring.
So there's no going back to the multi-slot scheme, remove the
"mgmt_slot" variable from sja1105_port and the dummy static assignment
made at probe time.
While passing by, also remove the assignment to casc_port altogether.
Don't pretend that we support cascaded setups.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
And move the queue of skb's waiting for RX timestamps into the ptp_data
structure, since it isn't needed if PTP is not compiled.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Currently this stack trace can be seen with CONFIG_DEBUG_ATOMIC_SLEEP=y:
[ 41.568348] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:909
[ 41.576757] in_atomic(): 1, irqs_disabled(): 0, pid: 208, name: ptp4l
[ 41.583212] INFO: lockdep is turned off.
[ 41.587123] CPU: 1 PID: 208 Comm: ptp4l Not tainted 5.3.0-rc6-01445-ge950f2d4bc7f-dirty #1827
[ 41.599873] [<c0313d7c>] (unwind_backtrace) from [<c030e13c>] (show_stack+0x10/0x14)
[ 41.607584] [<c030e13c>] (show_stack) from [<c1212d50>] (dump_stack+0xd4/0x100)
[ 41.614863] [<c1212d50>] (dump_stack) from [<c037dfc8>] (___might_sleep+0x1c8/0x2b4)
[ 41.622574] [<c037dfc8>] (___might_sleep) from [<c122ea90>] (__mutex_lock+0x48/0xab8)
[ 41.630368] [<c122ea90>] (__mutex_lock) from [<c122f51c>] (mutex_lock_nested+0x1c/0x24)
[ 41.638340] [<c122f51c>] (mutex_lock_nested) from [<c0c6fe08>] (sja1105_static_config_reload+0x30/0x27c)
[ 41.647779] [<c0c6fe08>] (sja1105_static_config_reload) from [<c0c7015c>] (sja1105_hwtstamp_set+0x108/0x1cc)
[ 41.657562] [<c0c7015c>] (sja1105_hwtstamp_set) from [<c0feb650>] (dev_ifsioc+0x18c/0x330)
[ 41.665788] [<c0feb650>] (dev_ifsioc) from [<c0febbd8>] (dev_ioctl+0x320/0x6e8)
[ 41.673064] [<c0febbd8>] (dev_ioctl) from [<c0f8b1f4>] (sock_ioctl+0x334/0x5e8)
[ 41.680340] [<c0f8b1f4>] (sock_ioctl) from [<c05404a8>] (do_vfs_ioctl+0xb0/0xa10)
[ 41.687789] [<c05404a8>] (do_vfs_ioctl) from [<c0540e3c>] (ksys_ioctl+0x34/0x58)
[ 41.695151] [<c0540e3c>] (ksys_ioctl) from [<c0301000>] (ret_fast_syscall+0x0/0x28)
[ 41.702768] Exception stack(0xe8495fa8 to 0xe8495ff0)
[ 41.707796] 5fa0: beff4a8c 00000001 00000011 000089b0 beff4a8c beff4a80
[ 41.715933] 5fc0: beff4a8c 00000001 0000000c 00000036 b6fa98c8 004e19c1 00000001 00000000
[ 41.724069] 5fe0: 004dcedc beff4a6c 004c0738 b6e7af4c
[ 41.729860] BUG: scheduling while atomic: ptp4l/208/0x00000002
[ 41.735682] INFO: lockdep is turned off.
Enabling RX timestamping will logically disturb the fastpath (processing
of meta frames). Replace bool hwts_rx_en with a bit that is checked
atomically from the fastpath and temporarily unset from the sleepable
context during a change of the RX timestamping process (a destructive
operation anyways, requires switch reset).
If found unset, the fastpath (net/dsa/tag_sja1105.c) will just drop any
received meta frame and not take the meta_lock at all.
Fixes: a602afd200f5 ("net: dsa: sja1105: Expose PTP timestamping ioctls to userspace")
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Meta frame reception relies on the hardware keeping its promise that it
will send no other traffic towards the CPU port between a link-local
frame and a meta frame. Otherwise there is no other way to associate
the meta frame with the link-local frame it's holding a timestamp of.
The receive function is made stateful, and buffers a timestampable frame
until its meta frame arrives, then merges the two, drops the meta and
releases the link-local frame up the stack.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This will be used to keep state for RX timestamping. It is global
because the switch serializes timestampable and meta frames when
trapping them towards the CPU port (lower port indices have higher
priority) and therefore having one state machine per port would create
unnecessary complications.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Meta frames are sent on the CPU port by the switch if RX timestamping is
enabled. They contain a partial timestamp of the previous frame.
They are Ethernet frames with the Ethernet header constructed out of:
- SJA1105_META_DMAC
- SJA1105_META_SMAC
- ETH_P_SJA1105_META
The Ethernet payload will be decoded in a follow-up patch.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
On TX, timestamping is performed synchronously from the
port_deferred_xmit worker thread.
In management routes, the switch is requested to take egress timestamps
(again partial), which are reconstructed and appended to a clone of the
skb that was just sent. The cloning is done by DSA and we retrieve the
pointer from the structure that DSA keeps in skb->cb.
Then these clones are enqueued to the socket's error queue for
application-level processing.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Due to a confusion I thought that eth_type_trans() was called by the
network stack whereas it can actually be called by network drivers to
figure out the skb protocol and next packet_type handlers.
In light of the above, it is not safe to store the frame type from the
DSA tagger's .filter callback (first entry point on RX path), since GRO
is yet to be invoked on the received traffic. Hence it is very likely
that the skb->cb will actually get overwritten between eth_type_trans()
and the actual DSA packet_type handler.
Of course, what this patch fixes is the actual overwriting of the
SJA1105_SKB_CB(skb)->type field from the GRO layer, which made all
frames be seen as SJA1105_FRAME_TYPE_NORMAL (0).
Fixes: 227d07a07ef1 ("net: dsa: sja1105: Add support for traffic through standalone ports")
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
In order to support this, we are creating a make-shift switch tag out of
a VLAN trunk configured on the CPU port. Termination of normal traffic
on switch ports only works when not under a vlan_filtering bridge.
Termination of management (PTP, BPDU) traffic works under all
circumstances because it uses a different tagging mechanism
(incl_srcpt). We are making use of the generic CONFIG_NET_DSA_TAG_8021Q
code and leveraging it from our own CONFIG_NET_DSA_TAG_SJA1105.
There are two types of traffic: regular and link-local.
The link-local traffic received on the CPU port is trapped from the
switch's regular forwarding decisions because it matched one of the two
DMAC filters for management traffic.
On transmission, the switch requires special massaging for these
link-local frames. Due to a weird implementation of the switching IP, by
default it drops link-local frames that originate on the CPU port.
It needs to be told where to forward them to, through an SPI command
("management route") that is valid for only a single frame.
So when we're sending link-local traffic, we are using the
dsa_defer_xmit mechanism.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
VLAN filtering cannot be properly disabled in SJA1105. So in order to
emulate the "no VLAN awareness" behavior (not dropping traffic that is
tagged with a VID that isn't configured on the port), we need to hack
another switch feature: programmable TPID (which is 0x8100 for 802.1Q).
We are reprogramming the TPID to a bogus value which leaves the switch
thinking that all traffic is untagged, and therefore accepts it.
Under a vlan_filtering bridge, the proper TPID of ETH_P_8021Q is
installed again, and the switch starts identifying 802.1Q-tagged
traffic.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
At this moment the following is supported:
* Link state management through phylib
* Autonomous L2 forwarding managed through iproute2 bridge commands.
IP termination must be done currently through the master netdevice,
since the switch is unmanaged at this point and using
DSA_TAG_PROTO_NONE.
Signed-off-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: Georg Waibel <georg.waibel@sensor-technik.de>
Acked-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|