summaryrefslogtreecommitdiff
path: root/include/linux/btf.h
AgeCommit message (Collapse)AuthorFilesLines
2025-01-03bpf: Reject struct_ops registration that uses module ptr and the module ↵Martin KaFai Lau1-0/+5
btf_id is missing There is a UAF report in the bpf_struct_ops when CONFIG_MODULES=n. In particular, the report is on tcp_congestion_ops that has a "struct module *owner" member. For struct_ops that has a "struct module *owner" member, it can be extended either by the regular kernel module or by the bpf_struct_ops. bpf_try_module_get() will be used to do the refcounting and different refcount is done based on the owner pointer. When CONFIG_MODULES=n, the btf_id of the "struct module" is missing: WARN: resolve_btfids: unresolved symbol module Thus, the bpf_try_module_get() cannot do the correct refcounting. Not all subsystem's struct_ops requires the "struct module *owner" member. e.g. the recent sched_ext_ops. This patch is to disable bpf_struct_ops registration if the struct_ops has the "struct module *" member and the "struct module" btf_id is missing. The btf_type_is_fwd() helper is moved to the btf.h header file for this test. This has happened since the beginning of bpf_struct_ops which has gone through many changes. The Fixes tag is set to a recent commit that this patch can apply cleanly. Considering CONFIG_MODULES=n is not common and the age of the issue, targeting for bpf-next also. Fixes: 1611603537a4 ("bpf: Create argument information for nullable arguments.") Reported-by: Robert Morris <rtm@csail.mit.edu> Closes: https://lore.kernel.org/bpf/74665.1733669976@localhost/ Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Tested-by: Eduard Zingerman <eddyz87@gmail.com> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/r/20241220201818.127152-1-martin.lau@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-11-04bpf: Move btf_type_is_struct_ptr() under CONFIG_BPF_SYSCALLAlistair Francis1-11/+10
The static inline btf_type_is_struct_ptr() function calls btf_type_skip_modifiers() which is guarded by CONFIG_BPF_SYSCALL. btf_type_is_struct_ptr() is also only called by CONFIG_BPF_SYSCALL ifdef code, so let's only expose btf_type_is_struct_ptr() if CONFIG_BPF_SYSCALL is defined. Signed-off-by: Alistair Francis <alistair.francis@wdc.com> Link: https://lore.kernel.org/r/20241104060300.421403-1-alistair.francis@wdc.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-10-04bpf: Use KF_FASTCALL to mark kfuncs supporting fastcall contractEduard Zingerman1-0/+1
In order to allow pahole add btf_decl_tag("bpf_fastcall") for kfuncs supporting bpf_fastcall, mark such functions with KF_FASTCALL in id_set8 objects. Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240916091712.2929279-4-eddyz87@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-08-21bpf: extract iterator argument type and name validation logicAndrii Nakryiko1-0/+5
Verifier enforces that all iterator structs are named `bpf_iter_<name>` and that whenever iterator is passed to a kfunc it's passed as a valid PTR -> STRUCT chain (with potentially const modifiers in between). We'll need this check for upcoming changes, so instead of duplicating the logic, extract it into a helper function. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/r/20240808232230.2848712-2-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-07-09Merge tag 'for-netdev' of ↵Paolo Abeni1-0/+65
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next Daniel Borkmann says: ==================== pull-request: bpf-next 2024-07-08 The following pull-request contains BPF updates for your *net-next* tree. We've added 102 non-merge commits during the last 28 day(s) which contain a total of 127 files changed, 4606 insertions(+), 980 deletions(-). The main changes are: 1) Support resilient split BTF which cuts down on duplication and makes BTF as compact as possible wrt BTF from modules, from Alan Maguire & Eduard Zingerman. 2) Add support for dumping kfunc prototypes from BTF which enables both detecting as well as dumping compilable prototypes for kfuncs, from Daniel Xu. 3) Batch of s390x BPF JIT improvements to add support for BPF arena and to implement support for BPF exceptions, from Ilya Leoshkevich. 4) Batch of riscv64 BPF JIT improvements in particular to add 12-argument support for BPF trampolines and to utilize bpf_prog_pack for the latter, from Pu Lehui. 5) Extend BPF test infrastructure to add a CHECKSUM_COMPLETE validation option for skbs and add coverage along with it, from Vadim Fedorenko. 6) Inline bpf_get_current_task/_btf() helpers in the arm64 BPF JIT which gives a small 1% performance improvement in micro-benchmarks, from Puranjay Mohan. 7) Extend the BPF verifier to track the delta between linked registers in order to better deal with recent LLVM code optimizations, from Alexei Starovoitov. 8) Fix bpf_wq_set_callback_impl() kfunc signature where the third argument should have been a pointer to the map value, from Benjamin Tissoires. 9) Extend BPF selftests to add regular expression support for test output matching and adjust some of the selftest when compiled under gcc, from Cupertino Miranda. 10) Simplify task_file_seq_get_next() and remove an unnecessary loop which always iterates exactly once anyway, from Dan Carpenter. 11) Add the capability to offload the netfilter flowtable in XDP layer through kfuncs, from Florian Westphal & Lorenzo Bianconi. 12) Various cleanups in networking helpers in BPF selftests to shave off a few lines of open-coded functions on client/server handling, from Geliang Tang. 13) Properly propagate prog->aux->tail_call_reachable out of BPF verifier, so that x86 JIT does not need to implement detection, from Leon Hwang. 14) Fix BPF verifier to add a missing check_func_arg_reg_off() to prevent an out-of-bounds memory access for dynpointers, from Matt Bobrowski. 15) Fix bpf_session_cookie() kfunc to return __u64 instead of long pointer as it might lead to problems on 32-bit archs, from Jiri Olsa. 16) Enhance traffic validation and dynamic batch size support in xsk selftests, from Tushar Vyavahare. bpf-next-for-netdev * tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (102 commits) selftests/bpf: DENYLIST.aarch64: Remove fexit_sleep selftests/bpf: amend for wrong bpf_wq_set_callback_impl signature bpf: helpers: fix bpf_wq_set_callback_impl signature libbpf: Add NULL checks to bpf_object__{prev_map,next_map} selftests/bpf: Remove exceptions tests from DENYLIST.s390x s390/bpf: Implement exceptions s390/bpf: Change seen_reg to a mask bpf: Remove unnecessary loop in task_file_seq_get_next() riscv, bpf: Optimize stack usage of trampoline bpf, devmap: Add .map_alloc_check selftests/bpf: Remove arena tests from DENYLIST.s390x selftests/bpf: Add UAF tests for arena atomics selftests/bpf: Introduce __arena_global s390/bpf: Support arena atomics s390/bpf: Enable arena s390/bpf: Support address space cast instruction s390/bpf: Support BPF_PROBE_MEM32 s390/bpf: Land on the next JITed instruction after exception s390/bpf: Introduce pre- and post- probe functions s390/bpf: Get rid of get_probe_mem_regno() ... ==================== Link: https://patch.msgid.link/20240708221438.10974-1-daniel@iogearbox.net Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2024-06-22libbpf,bpf: Share BTF relocate-related code with kernelAlan Maguire1-0/+64
Share relocation implementation with the kernel. As part of this, we also need the type/string iteration functions so also share btf_iter.c file. Relocation code in kernel and userspace is identical save for the impementation of the reparenting of split BTF to the relocated base BTF and retrieval of the BTF header from "struct btf"; these small functions need separate user-space and kernel implementations for the separate "struct btf"s they operate upon. One other wrinkle on the kernel side is we have to map .BTF.ids in modules as they were generated with the type ids used at BTF encoding time. btf_relocate() optionally returns an array mapping from old BTF ids to relocated ids, so we use that to fix up these references where needed for kfuncs. Signed-off-by: Alan Maguire <alan.maguire@oracle.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/bpf/20240620091733.1967885-5-alan.maguire@oracle.com
2024-06-14bpf: Harden __bpf_kfunc tag against linker kfunc removalTony Ambardar1-1/+1
BPF kfuncs are often not directly referenced and may be inadvertently removed by optimization steps during kernel builds, thus the __bpf_kfunc tag mitigates against this removal by including the __used macro. However, this macro alone does not prevent removal during linking, and may still yield build warnings (e.g. on mips64el): [...] LD vmlinux BTFIDS vmlinux WARN: resolve_btfids: unresolved symbol bpf_verify_pkcs7_signature WARN: resolve_btfids: unresolved symbol bpf_lookup_user_key WARN: resolve_btfids: unresolved symbol bpf_lookup_system_key WARN: resolve_btfids: unresolved symbol bpf_key_put WARN: resolve_btfids: unresolved symbol bpf_iter_task_next WARN: resolve_btfids: unresolved symbol bpf_iter_css_task_new WARN: resolve_btfids: unresolved symbol bpf_get_file_xattr WARN: resolve_btfids: unresolved symbol bpf_ct_insert_entry WARN: resolve_btfids: unresolved symbol bpf_cgroup_release WARN: resolve_btfids: unresolved symbol bpf_cgroup_from_id WARN: resolve_btfids: unresolved symbol bpf_cgroup_acquire WARN: resolve_btfids: unresolved symbol bpf_arena_free_pages NM System.map SORTTAB vmlinux OBJCOPY vmlinux.32 [...] Update the __bpf_kfunc tag to better guard against linker optimization by including the new __retain compiler macro, which fixes the warnings above. Verify the __retain macro with readelf by checking object flags for 'R': $ readelf -Wa kernel/trace/bpf_trace.o Section Headers: [Nr] Name Type Address Off Size ES Flg Lk Inf Al [...] [178] .text.bpf_key_put PROGBITS 00000000 6420 0050 00 AXR 0 0 8 [...] Key to Flags: [...] R (retain), D (mbind), p (processor specific) Fixes: 57e7c169cd6a ("bpf: Add __bpf_kfunc tag for marking kernel functions as kfuncs") Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Tony Ambardar <tony.ambardar@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: Jiri Olsa <jolsa@kernel.org> Reviewed-by: Jiri Olsa <jolsa@kernel.org> Cc: Yonghong Song <yonghong.song@linux.dev> Closes: https://lore.kernel.org/r/202401211357.OCX9yllM-lkp@intel.com/ Link: https://lore.kernel.org/bpf/ZlmGoT9KiYLZd91S@krava/T/ Link: https://lore.kernel.org/bpf/e9c64e9b5c073dabd457ff45128aabcab7630098.1717477560.git.Tony.Ambardar@gmail.com
2024-06-12bpf: verifier: Relax caller requirements for kfunc projection type argsDaniel Xu1-0/+1
Currently, if a kfunc accepts a projection type as an argument (eg struct __sk_buff *), the caller must exactly provide exactly the same type with provable provenance. However in practice, kfuncs that accept projection types _must_ cast to the underlying type before use b/c projection type layouts are completely made up. Thus, it is ok to relax the verifier rules around implicit conversions. We will use this functionality in the next commit when we align kfuncs to user-facing types. Signed-off-by: Daniel Xu <dxu@dxuuu.xyz> Link: https://lore.kernel.org/r/e2c025cb09ccfd4af1ec9e18284dc3cecff7514d.1718207789.git.dxu@dxuuu.xyz Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-02-14bpf: simplify btf_get_prog_ctx_type() into btf_is_prog_ctx_type()Andrii Nakryiko1-9/+8
Return result of btf_get_prog_ctx_type() is never used and callers only check NULL vs non-NULL case to determine if given type matches expected PTR_TO_CTX type. So rename function to `btf_is_prog_ctx_type()` and return a simple true/false. We'll use this simpler interface to handle kprobe program type's special typedef case in the next patch. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240212233221.2575350-2-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-02-14bpf: Create argument information for nullable arguments.Kui-Feng Lee1-0/+2
Collect argument information from the type information of stub functions to mark arguments of BPF struct_ops programs with PTR_MAYBE_NULL if they are nullable. A nullable argument is annotated by suffixing "__nullable" at the argument name of stub function. For nullable arguments, this patch sets a struct bpf_ctx_arg_aux to label their reg_type with PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL. This makes the verifier to check programs and ensure that they properly check the pointer. The programs should check if the pointer is null before accessing the pointed memory. The implementer of a struct_ops type should annotate the arguments that can be null. The implementer should define a stub function (empty) as a placeholder for each defined operator. The name of a stub function should be in the pattern "<st_op_type>__<operator name>". For example, for test_maybe_null of struct bpf_testmod_ops, it's stub function name should be "bpf_testmod_ops__test_maybe_null". You mark an argument nullable by suffixing the argument name with "__nullable" at the stub function. Since we already has stub functions for kCFI, we just reuse these stub functions with the naming convention mentioned earlier. These stub functions with the naming convention is only required if there are nullable arguments to annotate. For functions having not nullable arguments, stub functions are not necessary for the purpose of this patch. This patch will prepare a list of struct bpf_ctx_arg_aux, aka arg_info, for each member field of a struct_ops type. "arg_info" will be assigned to "prog->aux->ctx_arg_info" of BPF struct_ops programs in check_struct_ops_btf_id() so that it can be used by btf_ctx_access() later to set reg_type properly for the verifier. Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Link: https://lore.kernel.org/r/20240209023750.1153905-4-thinker.li@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-02-14bpf: Move __kfunc_param_match_suffix() to btf.c.Kui-Feng Lee1-0/+4
Move __kfunc_param_match_suffix() to btf.c and rename it as btf_param_match_suffix(). It can be reused by bpf_struct_ops later. Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Link: https://lore.kernel.org/r/20240209023750.1153905-3-thinker.li@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-01-24bpf, net: switch to dynamic registrationKui-Feng Lee1-0/+12
Replace the static list of struct_ops types with per-btf struct_ops_tab to enable dynamic registration. Both bpf_dummy_ops and bpf_tcp_ca now utilize the registration function instead of being listed in bpf_struct_ops_types.h. Cc: netdev@vger.kernel.org Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Link: https://lore.kernel.org/r/20240119225005.668602-12-thinker.li@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-01-24bpf: refactory struct_ops type initialization to a function.Kui-Feng Lee1-0/+1
Move the majority of the code to bpf_struct_ops_init_one(), which can then be utilized for the initialization of newly registered dynamically allocated struct_ops types in the following patches. Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Link: https://lore.kernel.org/r/20240119225005.668602-2-thinker.li@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-01-18bpf: extract bpf_ctx_convert_map logic and make it more reusableAndrii Nakryiko1-1/+1
Refactor btf_get_prog_ctx_type() a bit to allow reuse of bpf_ctx_convert_map logic in more than one places. Simplify interface by returning btf_type instead of btf_member (field reference in BTF). To do the above we need to touch and start untangling btf_translate_to_vmlinux() implementation. We do the bare minimum to not regress anything for btf_translate_to_vmlinux(), but its implementation is very questionable for what it claims to be doing. Mapping kfunc argument types to kernel corresponding types conceptually is quite different from recognizing program context types. Fixing this is out of scope for this change though. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240118033143.3384355-3-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-11-02bpf: Add __bpf_hook_{start,end} macrosDave Marchevsky1-0/+2
Not all uses of __diag_ignore_all(...) in BPF-related code in order to suppress warnings are wrapping kfunc definitions. Some "hook point" definitions - small functions meant to be used as attach points for fentry and similar BPF progs - need to suppress -Wmissing-declarations. We could use __bpf_kfunc_{start,end}_defs added in the previous patch in such cases, but this might be confusing to someone unfamiliar with BPF internals. Instead, this patch adds __bpf_hook_{start,end} macros, currently having the same effect as __bpf_kfunc_{start,end}_defs, then uses them to suppress warnings for two hook points in the kernel itself and some bpf_testmod hook points as well. Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Cc: Yafang Shao <laoar.shao@gmail.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Yafang Shao <laoar.shao@gmail.com> Link: https://lore.kernel.org/r/20231031215625.2343848-2-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-11-02bpf: Add __bpf_kfunc_{start,end}_defs macrosDave Marchevsky1-0/+9
BPF kfuncs are meant to be called from BPF programs. Accordingly, most kfuncs are not called from anywhere in the kernel, which the -Wmissing-prototypes warning is unhappy about. We've peppered __diag_ignore_all("-Wmissing-prototypes", ... everywhere kfuncs are defined in the codebase to suppress this warning. This patch adds two macros meant to bound one or many kfunc definitions. All existing kfunc definitions which use these __diag calls to suppress -Wmissing-prototypes are migrated to use the newly-introduced macros. A new __diag_ignore_all - for "-Wmissing-declarations" - is added to the __bpf_kfunc_start_defs macro based on feedback from Andrii on an earlier version of this patch [0] and another recent mailing list thread [1]. In the future we might need to ignore different warnings or do other kfunc-specific things. This change will make it easier to make such modifications for all kfunc defs. [0]: https://lore.kernel.org/bpf/CAEf4BzaE5dRWtK6RPLnjTW-MW9sx9K3Fn6uwqCTChK2Dcb1Xig@mail.gmail.com/ [1]: https://lore.kernel.org/bpf/ZT+2qCc%2FaXep0%2FLf@krava/ Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Suggested-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Cc: Jiri Olsa <olsajiri@gmail.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: David Vernet <void@manifault.com> Acked-by: Yafang Shao <laoar.shao@gmail.com> Link: https://lore.kernel.org/r/20231031215625.2343848-1-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-10-20bpf: teach the verifier to enforce css_iter and task_iter in RCU CSChuyi Zhou1-0/+1
css_iter and task_iter should be used in rcu section. Specifically, in sleepable progs explicit bpf_rcu_read_lock() is needed before use these iters. In normal bpf progs that have implicit rcu_read_lock(), it's OK to use them directly. This patch adds a new a KF flag KF_RCU_PROTECTED for bpf_iter_task_new and bpf_iter_css_new. It means the kfunc should be used in RCU CS. We check whether we are in rcu cs before we want to invoke this kfunc. If the rcu protection is guaranteed, we would let st->type = PTR_TO_STACK | MEM_RCU. Once user do rcu_unlock during the iteration, state MEM_RCU of regs would be cleared. is_iter_reg_valid_init() will reject if reg->type is UNTRUSTED. It is worth noting that currently, bpf_rcu_read_unlock does not clear the state of the STACK_ITER reg, since bpf_for_each_spilled_reg only considers STACK_SPILL. This patch also let bpf_for_each_spilled_reg search STACK_ITER. Signed-off-by: Chuyi Zhou <zhouchuyi@bytedance.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20231018061746.111364-6-zhouchuyi@bytedance.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-09-02Merge tag 'probes-v6.6' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull probes updates from Masami Hiramatsu: - kprobes: use struct_size() for variable size kretprobe_instance data structure. - eprobe: Simplify trace_eprobe list iteration. - probe events: Data structure field access support on BTF argument. - Update BTF argument support on the functions in the kernel loadable modules (only loaded modules are supported). - Move generic BTF access function (search function prototype and get function parameters) to a separated file. - Add a function to search a member of data structure in BTF. - Support accessing BTF data structure member from probe args by C-like arrow('->') and dot('.') operators. e.g. 't sched_switch next=next->pid vruntime=next->se.vruntime' - Support accessing BTF data structure member from $retval. e.g. 'f getname_flags%return +0($retval->name):string' - Add string type checking if BTF type info is available. This will reject if user specify ":string" type for non "char pointer" type. - Automatically assume the fprobe event as a function return event if $retval is used. - selftests/ftrace: Add BTF data field access test cases. - Documentation: Update fprobe event example with BTF data field. * tag 'probes-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: Documentation: tracing: Update fprobe event example with BTF field selftests/ftrace: Add BTF fields access testcases tracing/fprobe-event: Assume fprobe is a return event by $retval tracing/probes: Add string type check with BTF tracing/probes: Support BTF field access from $retval tracing/probes: Support BTF based data structure field access tracing/probes: Add a function to search a member of a struct/union tracing/probes: Move finding func-proto API and getting func-param API to trace_btf tracing/probes: Support BTF argument on module functions tracing/eprobe: Iterate trace_eprobe directly kernel: kprobes: Use struct_size()
2023-08-23tracing/probes: Support BTF argument on module functionsMasami Hiramatsu (Google)1-0/+1
Since the btf returned from bpf_get_btf_vmlinux() only covers functions in the vmlinux, BTF argument is not available on the functions in the modules. Use bpf_find_btf_id() instead of bpf_get_btf_vmlinux()+btf_find_name_kind() so that BTF argument can find the correct struct btf and btf_type in it. With this fix, fprobe events can use `$arg*` on module functions as below # grep nf_log_ip_packet /proc/kallsyms ffffffffa0005c00 t nf_log_ip_packet [nf_log_syslog] ffffffffa0005bf0 t __pfx_nf_log_ip_packet [nf_log_syslog] # echo 'f nf_log_ip_packet $arg*' > dynamic_events # cat dynamic_events f:fprobes/nf_log_ip_packet__entry nf_log_ip_packet net=net pf=pf hooknum=hooknum skb=skb in=in out=out loginfo=loginfo prefix=prefix To support the module's btf which is removable, the struct btf needs to be ref-counted. So this also records the btf in the traceprobe_parse_context and returns the refcount when the parse has done. Link: https://lore.kernel.org/all/169272154223.160970.3507930084247934031.stgit@devnote2/ Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-08-09bpf: btf: Remove two unused function declarationsYue Haibing1-2/+0
Commit db559117828d ("bpf: Consolidate spin_lock, timer management into btf_record") removed the implementations but leave declarations. Signed-off-by: Yue Haibing <yuehaibing@huawei.com> Link: https://lore.kernel.org/r/20230808145741.33292-1-yuehaibing@huawei.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2023-05-20bpf: Add kfunc filter function to 'struct btf_kfunc_id_set'Aditi Ghag1-7/+11
This commit adds the ability to filter kfuncs to certain BPF program types. This is required to limit bpf_sock_destroy kfunc implemented in follow-up commits to programs with attach type 'BPF_TRACE_ITER'. The commit adds a callback filter to 'struct btf_kfunc_id_set'. The filter has access to the `bpf_prog` construct including its properties such as `expected_attached_type`. Signed-off-by: Aditi Ghag <aditi.ghag@isovalent.com> Link: https://lore.kernel.org/r/20230519225157.760788-7-aditi.ghag@isovalent.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2023-04-16bpf: Remove KF_KPTR_GET kfunc flagDavid Vernet1-1/+0
We've managed to improve the UX for kptrs significantly over the last 9 months. All of the existing use cases which previously had KF_KPTR_GET kfuncs (struct bpf_cpumask *, struct task_struct *, and struct cgroup *) have all been updated to be synchronized using RCU. In other words, their KF_KPTR_GET kfuncs have been removed in favor of KF_RCU | KF_ACQUIRE kfuncs, with the pointers themselves also being readable from maps in an RCU read region thanks to the types being RCU safe. While KF_KPTR_GET was a logical starting point for kptrs, it's become clear that they're not the correct abstraction. KF_KPTR_GET is a flag that essentially does nothing other than enforcing that the argument to a function is a pointer to a referenced kptr map value. At first glance, that's a useful thing to guarantee to a kfunc. It gives kfuncs the ability to try and acquire a reference on that kptr without requiring the BPF prog to do something like this: struct kptr_type *in_map, *new = NULL; in_map = bpf_kptr_xchg(&map->value, NULL); if (in_map) { new = bpf_kptr_type_acquire(in_map); in_map = bpf_kptr_xchg(&map->value, in_map); if (in_map) bpf_kptr_type_release(in_map); } That's clearly a pretty ugly (and racy) UX, and if using KF_KPTR_GET is the only alternative, it's better than nothing. However, the problem with any KF_KPTR_GET kfunc lies in the fact that it always requires some kind of synchronization in order to safely do an opportunistic acquire of the kptr in the map. This is because a BPF program running on another CPU could do a bpf_kptr_xchg() on that map value, and free the kptr after it's been read by the KF_KPTR_GET kfunc. For example, the now-removed bpf_task_kptr_get() kfunc did the following: struct task_struct *bpf_task_kptr_get(struct task_struct **pp) { struct task_struct *p; rcu_read_lock(); p = READ_ONCE(*pp); /* If p is non-NULL, it could still be freed by another CPU, * so we have to do an opportunistic refcount_inc_not_zero() * and return NULL if the task will be freed after the * current RCU read region. */ |f (p && !refcount_inc_not_zero(&p->rcu_users)) p = NULL; rcu_read_unlock(); return p; } In other words, the kfunc uses RCU to ensure that the task remains valid after it's been peeked from the map. However, this is completely redundant with just defining a KF_RCU kfunc that itself does a refcount_inc_not_zero(), which is exactly what bpf_task_acquire() now does. So, the question of whether KF_KPTR_GET is useful is actually, "Are there any synchronization mechanisms / safety flags that are required by certain kptrs, but which are not provided by the verifier to kfuncs?" The answer to that question today is "No", because every kptr we currently care about is RCU protected. Even if the answer ever became "yes", the proper way to support that referenced kptr type would be to add support for whatever synchronization mechanism it requires in the verifier, rather than giving kfuncs a flag that says, "Here's a pointer to a referenced kptr in a map, do whatever you need to do." With all that said -- so as to allow us to consolidate the kfunc API, and simplify the verifier a bit, this patch removes KF_KPTR_GET, and all relevant logic from the verifier. Signed-off-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/r/20230416084928.326135-3-void@manifault.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-16bpf: Remove btf_field_offs, use btf_record's fields insteadDave Marchevsky1-2/+0
The btf_field_offs struct contains (offset, size) for btf_record fields, sorted by offset. btf_field_offs is always used in conjunction with btf_record, which has btf_field 'fields' array with (offset, type), the latter of which btf_field_offs' size is derived from via btf_field_type_size. This patch adds a size field to struct btf_field and sorts btf_record's fields by offset, making it possible to get rid of btf_field_offs. Less data duplication and less code complexity results. Since btf_field_offs' lifetime closely followed the btf_record used to populate it, most complexity wins are from removal of initialization code like: if (btf_record_successfully_initialized) { foffs = btf_parse_field_offs(rec); if (IS_ERR_OR_NULL(foffs)) // free the btf_record and return err } Other changes in this patch are pretty mechanical: * foffs->field_off[i] -> rec->fields[i].offset * foffs->field_sz[i] -> rec->fields[i].size * Sort rec->fields in btf_parse_fields before returning * It's possible that this is necessary independently of other changes in this patch. btf_record_find in syscall.c expects btf_record's fields to be sorted by offset, yet there's no explicit sorting of them before this patch, record's fields are populated in the order they're read from BTF struct definition. BTF docs don't say anything about the sortedness of struct fields. * All functions taking struct btf_field_offs * input now instead take struct btf_record *. All callsites of these functions already have access to the correct btf_record. Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Link: https://lore.kernel.org/r/20230415201811.343116-2-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-04-11bpf: Add log_true_size output field to return necessary log buffer sizeAndrii Nakryiko1-1/+1
Add output-only log_true_size and btf_log_true_size field to BPF_PROG_LOAD and BPF_BTF_LOAD commands, respectively. It will return the size of log buffer necessary to fit in all the log contents at specified log_level. This is very useful for BPF loader libraries like libbpf to be able to size log buffer correctly, but could be used by users directly, if necessary, as well. This patch plumbs all this through the code, taking into account actual bpf_attr size provided by user to determine if these new fields are expected by users. And if they are, set them from kernel on return. We refactory btf_parse() function to accommodate this, moving attr and uattr handling inside it. The rest is very straightforward code, which is split from the logging accounting changes in the previous patch to make it simpler to review logic vs UAPI changes. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Lorenz Bauer <lmb@isovalent.com> Link: https://lore.kernel.org/bpf/20230406234205.323208-13-andrii@kernel.org
2023-03-11bpf: Support __kptr to local kptrsDave Marchevsky1-2/+0
If a PTR_TO_BTF_ID type comes from program BTF - not vmlinux or module BTF - it must have been allocated by bpf_obj_new and therefore must be free'd with bpf_obj_drop. Such a PTR_TO_BTF_ID is considered a "local kptr" and is tagged with MEM_ALLOC type tag by bpf_obj_new. This patch adds support for treating __kptr-tagged pointers to "local kptrs" as having an implicit bpf_obj_drop destructor for referenced kptr acquire / release semantics. Consider the following example: struct node_data { long key; long data; struct bpf_rb_node node; }; struct map_value { struct node_data __kptr *node; }; struct { __uint(type, BPF_MAP_TYPE_ARRAY); __type(key, int); __type(value, struct map_value); __uint(max_entries, 1); } some_nodes SEC(".maps"); If struct node_data had a matching definition in kernel BTF, the verifier would expect a destructor for the type to be registered. Since struct node_data does not match any type in kernel BTF, the verifier knows that there is no kfunc that provides a PTR_TO_BTF_ID to this type, and that such a PTR_TO_BTF_ID can only come from bpf_obj_new. So instead of searching for a registered dtor, a bpf_obj_drop dtor can be assumed. This allows the runtime to properly destruct such kptrs in bpf_obj_free_fields, which enables maps to clean up map_vals w/ such kptrs when going away. Implementation notes: * "kernel_btf" variable is renamed to "kptr_btf" in btf_parse_kptr. Before this patch, the variable would only ever point to vmlinux or module BTFs, but now it can point to some program BTF for local kptr type. It's later used to populate the (btf, btf_id) pair in kptr btf field. * It's necessary to btf_get the program BTF when populating btf_field for local kptr. btf_record_free later does a btf_put. * Behavior for non-local referenced kptrs is not modified, as bpf_find_btf_id helper only searches vmlinux and module BTFs for matching BTF type. If such a type is found, btf_field_kptr's btf will pass btf_is_kernel check, and the associated release function is some one-argument dtor. If btf_is_kernel check fails, associated release function is two-arg bpf_obj_drop_impl. Before this patch only btf_field_kptr's w/ kernel or module BTFs were created. Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Link: https://lore.kernel.org/r/20230310230743.2320707-2-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-09bpf: add iterator kfuncs registration and validation logicAndrii Nakryiko1-0/+4
Add ability to register kfuncs that implement BPF open-coded iterator contract and enforce naming and function proto convention. Enforcement happens at the time of kfunc registration and significantly simplifies the rest of iterators logic in the verifier. More details follow in subsequent patches, but we enforce the following conditions. All kfuncs (constructor, next, destructor) have to be named consistenly as bpf_iter_<type>_{new,next,destroy}(), respectively. <type> represents iterator type, and iterator state should be represented as a matching `struct bpf_iter_<type>` state type. Also, all iter kfuncs should have a pointer to this `struct bpf_iter_<type>` as the very first argument. Additionally: - Constructor, i.e., bpf_iter_<type>_new(), can have arbitrary extra number of arguments. Return type is not enforced either. - Next method, i.e., bpf_iter_<type>_next(), has to return a pointer type and should have exactly one argument: `struct bpf_iter_<type> *` (const/volatile/restrict and typedefs are ignored). - Destructor, i.e., bpf_iter_<type>_destroy(), should return void and should have exactly one argument, similar to the next method. - struct bpf_iter_<type> size is enforced to be positive and a multiple of 8 bytes (to fit stack slots correctly). Such strictness and consistency allows to build generic helpers abstracting important, but boilerplate, details to be able to use open-coded iterators effectively and ergonomically (see bpf_for_each() in subsequent patches). It also simplifies the verifier logic in some places. At the same time, this doesn't hurt generality of possible iterator implementations. Win-win. Constructor kfunc is marked with a new KF_ITER_NEW flags, next method is marked with KF_ITER_NEXT (and should also have KF_RET_NULL, of course), while destructor kfunc is marked as KF_ITER_DESTROY. Additionally, we add a trivial kfunc name validation: it should be a valid non-NULL and non-empty string. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20230308184121.1165081-3-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-03-03bpf: Introduce kptr_rcu.Alexei Starovoitov1-1/+1
The life time of certain kernel structures like 'struct cgroup' is protected by RCU. Hence it's safe to dereference them directly from __kptr tagged pointers in bpf maps. The resulting pointer is MEM_RCU and can be passed to kfuncs that expect KF_RCU. Derefrence of other kptr-s returns PTR_UNTRUSTED. For example: struct map_value { struct cgroup __kptr *cgrp; }; SEC("tp_btf/cgroup_mkdir") int BPF_PROG(test_cgrp_get_ancestors, struct cgroup *cgrp_arg, const char *path) { struct cgroup *cg, *cg2; cg = bpf_cgroup_acquire(cgrp_arg); // cg is PTR_TRUSTED and ref_obj_id > 0 bpf_kptr_xchg(&v->cgrp, cg); cg2 = v->cgrp; // This is new feature introduced by this patch. // cg2 is PTR_MAYBE_NULL | MEM_RCU. // When cg2 != NULL, it's a valid cgroup, but its percpu_ref could be zero if (cg2) bpf_cgroup_ancestor(cg2, level); // safe to do. } Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/bpf/20230303041446.3630-4-alexei.starovoitov@gmail.com
2023-02-02bpf: Add __bpf_kfunc tag for marking kernel functions as kfuncsDavid Vernet1-0/+8
kfuncs are functions defined in the kernel, which may be invoked by BPF programs. They may or may not also be used as regular kernel functions, implying that they may be static (in which case the compiler could e.g. inline it away, or elide one or more arguments), or it could have external linkage, but potentially be elided in an LTO build if a function is observed to never be used, and is stripped from the final kernel binary. This has already resulted in some issues, such as those discussed in [0] wherein changes in DWARF that identify when a parameter has been optimized out can break BTF encodings (and in general break the kfunc). [0]: https://lore.kernel.org/all/1675088985-20300-2-git-send-email-alan.maguire@oracle.com/ We therefore require some convenience macro that kfunc developers can use just add to their kfuncs, and which will prevent all of the above issues from happening. This is in contrast with what we have today, where some kfunc definitions have "noinline", some have "__used", and others are static and have neither. Note that longer term, this mechanism may be replaced by a macro that more closely resembles EXPORT_SYMBOL_GPL(), as described in [1]. For now, we're going with this shorter-term approach to fix existing issues in kfuncs. [1]: https://lore.kernel.org/lkml/Y9AFT4pTydKh+PD3@maniforge.lan/ Note as well that checkpatch complains about this patch with the following: ERROR: Macros with complex values should be enclosed in parentheses +#define __bpf_kfunc __used noinline There seems to be a precedent for using this pattern in other places such as compiler_types.h (see e.g. __randomize_layout and noinstr), so it seems appropriate. Signed-off-by: David Vernet <void@manifault.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Stanislav Fomichev <sdf@google.com> Link: https://lore.kernel.org/bpf/20230201173016.342758-2-void@manifault.com
2023-01-28bpf: btf: Add BTF_FMODEL_SIGNED_ARG flagIlya Leoshkevich1-5/+10
s390x eBPF JIT needs to know whether a function return value is signed and which function arguments are signed, in order to generate code compliant with the s390x ABI. Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com> Link: https://lore.kernel.org/r/20230128000650.1516334-26-iii@linux.ibm.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-08Merge "do not rely on ALLOW_ERROR_INJECTION for fmod_ret" into bpf-nextAlexei Starovoitov1-0/+2
Merge commit 5b481acab4ce ("bpf: do not rely on ALLOW_ERROR_INJECTION for fmod_ret") from hid tree into bpf-next. Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-07bpf: do not rely on ALLOW_ERROR_INJECTION for fmod_retBenjamin Tissoires1-0/+2
The current way of expressing that a non-bpf kernel component is willing to accept that bpf programs can be attached to it and that they can change the return value is to abuse ALLOW_ERROR_INJECTION. This is debated in the link below, and the result is that it is not a reasonable thing to do. Reuse the kfunc declaration structure to also tag the kernel functions we want to be fmodret. This way we can control from any subsystem which functions are being modified by bpf without touching the verifier. Link: https://lore.kernel.org/all/20221121104403.1545f9b5@gandalf.local.home/ Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/r/20221206145936.922196-2-benjamin.tissoires@redhat.com
2022-12-04bpf: Handle MEM_RCU type properlyYonghong Song1-0/+1
Commit 9bb00b2895cb ("bpf: Add kfunc bpf_rcu_read_lock/unlock()") introduced MEM_RCU and bpf_rcu_read_lock/unlock() support. In that commit, a rcu pointer is tagged with both MEM_RCU and PTR_TRUSTED so that it can be passed into kfuncs or helpers as an argument. Martin raised a good question in [1] such that the rcu pointer, although being able to accessing the object, might have reference count of 0. This might cause a problem if the rcu pointer is passed to a kfunc which expects trusted arguments where ref count should be greater than 0. This patch makes the following changes related to MEM_RCU pointer: - MEM_RCU pointer might be NULL (PTR_MAYBE_NULL). - Introduce KF_RCU so MEM_RCU ptr can be acquired with a KF_RCU tagged kfunc which assumes ref count of rcu ptr could be zero. - For mem access 'b = ptr->a', say 'ptr' is a MEM_RCU ptr, and 'a' is tagged with __rcu as well. Let us mark 'b' as MEM_RCU | PTR_MAYBE_NULL. [1] https://lore.kernel.org/bpf/ac70f574-4023-664e-b711-e0d3b18117fd@linux.dev/ Fixes: 9bb00b2895cb ("bpf: Add kfunc bpf_rcu_read_lock/unlock()") Signed-off-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/r/20221203184602.477272-1-yhs@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-21bpf: Add a kfunc to type cast from bpf uapi ctx to kernel ctxYonghong Song1-0/+5
Implement bpf_cast_to_kern_ctx() kfunc which does a type cast of a uapi ctx object to the corresponding kernel ctx. Previously if users want to access some data available in kctx but not in uapi ctx, bpf_probe_read_kernel() helper is needed. The introduction of bpf_cast_to_kern_ctx() allows direct memory access which makes code simpler and easier to understand. Signed-off-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/r/20221120195432.3113982-1-yhs@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-20bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncsDavid Vernet1-24/+41
Kfuncs currently support specifying the KF_TRUSTED_ARGS flag to signal to the verifier that it should enforce that a BPF program passes it a "safe", trusted pointer. Currently, "safe" means that the pointer is either PTR_TO_CTX, or is refcounted. There may be cases, however, where the kernel passes a BPF program a safe / trusted pointer to an object that the BPF program wishes to use as a kptr, but because the object does not yet have a ref_obj_id from the perspective of the verifier, the program would be unable to pass it to a KF_ACQUIRE | KF_TRUSTED_ARGS kfunc. The solution is to expand the set of pointers that are considered trusted according to KF_TRUSTED_ARGS, so that programs can invoke kfuncs with these pointers without getting rejected by the verifier. There is already a PTR_UNTRUSTED flag that is set in some scenarios, such as when a BPF program reads a kptr directly from a map without performing a bpf_kptr_xchg() call. These pointers of course can and should be rejected by the verifier. Unfortunately, however, PTR_UNTRUSTED does not cover all the cases for safety that need to be addressed to adequately protect kfuncs. Specifically, pointers obtained by a BPF program "walking" a struct are _not_ considered PTR_UNTRUSTED according to BPF. For example, say that we were to add a kfunc called bpf_task_acquire(), with KF_ACQUIRE | KF_TRUSTED_ARGS, to acquire a struct task_struct *. If we only used PTR_UNTRUSTED to signal that a task was unsafe to pass to a kfunc, the verifier would mistakenly allow the following unsafe BPF program to be loaded: SEC("tp_btf/task_newtask") int BPF_PROG(unsafe_acquire_task, struct task_struct *task, u64 clone_flags) { struct task_struct *acquired, *nested; nested = task->last_wakee; /* Would not be rejected by the verifier. */ acquired = bpf_task_acquire(nested); if (!acquired) return 0; bpf_task_release(acquired); return 0; } To address this, this patch defines a new type flag called PTR_TRUSTED which tracks whether a PTR_TO_BTF_ID pointer is safe to pass to a KF_TRUSTED_ARGS kfunc or a BPF helper function. PTR_TRUSTED pointers are passed directly from the kernel as a tracepoint or struct_ops callback argument. Any nested pointer that is obtained from walking a PTR_TRUSTED pointer is no longer PTR_TRUSTED. From the example above, the struct task_struct *task argument is PTR_TRUSTED, but the 'nested' pointer obtained from 'task->last_wakee' is not PTR_TRUSTED. A subsequent patch will add kfuncs for storing a task kfunc as a kptr, and then another patch will add selftests to validate. Signed-off-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/r/20221120051004.3605026-3-void@manifault.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-18bpf: Rewrite kfunc argument handlingKumar Kartikeya Dwivedi1-1/+30
As we continue to add more features, argument types, kfunc flags, and different extensions to kfuncs, the code to verify the correctness of the kfunc prototype wrt the passed in registers has become ad-hoc and ugly to read. To make life easier, and make a very clear split between different stages of argument processing, move all the code into verifier.c and refactor into easier to read helpers and functions. This also makes sharing code within the verifier easier with kfunc argument processing. This will be more and more useful in later patches as we are now moving to implement very core BPF helpers as kfuncs, to keep them experimental before baking into UAPI. Remove all kfunc related bits now from btf_check_func_arg_match, as users have been converted away to refactored kfunc argument handling. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221118015614.2013203-12-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-18bpf: Verify ownership relationships for user BTF typesKumar Kartikeya Dwivedi1-0/+1
Ensure that there can be no ownership cycles among different types by way of having owning objects that can hold some other type as their element. For instance, a map value can only hold allocated objects, but these are allowed to have another bpf_list_head. To prevent unbounded recursion while freeing resources, elements of bpf_list_head in local kptrs can never have a bpf_list_head which are part of list in a map value. Later patches will verify this by having dedicated BTF selftests. Also, to make runtime destruction easier, once btf_struct_metas is fully populated, we can stash the metadata of the value type directly in the metadata of the list_head fields, as that allows easier access to the value type's layout to destruct it at runtime from the btf_field entry of the list head itself. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221118015614.2013203-8-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-18bpf: Recognize lock and list fields in allocated objectsKumar Kartikeya Dwivedi1-0/+35
Allow specifying bpf_spin_lock, bpf_list_head, bpf_list_node fields in a allocated object. Also update btf_struct_access to reject direct access to these special fields. A bpf_list_head allows implementing map-in-map style use cases, where an allocated object with bpf_list_head is linked into a list in a map value. This would require embedding a bpf_list_node, support for which is also included. The bpf_spin_lock is used to protect the bpf_list_head and other data. While we strictly don't require to hold a bpf_spin_lock while touching the bpf_list_head in such objects, as when have access to it, we have complete ownership of the object, the locking constraint is still kept and may be conditionally lifted in the future. Note that the specification of such types can be done just like map values, e.g.: struct bar { struct bpf_list_node node; }; struct foo { struct bpf_spin_lock lock; struct bpf_list_head head __contains(bar, node); struct bpf_list_node node; }; struct map_value { struct bpf_spin_lock lock; struct bpf_list_head head __contains(foo, node); }; To recognize such types in user BTF, we build a btf_struct_metas array of metadata items corresponding to each BTF ID. This is done once during the btf_parse stage to avoid having to do it each time during the verification process's requirement to inspect the metadata. Moreover, the computed metadata needs to be passed to some helpers in future patches which requires allocating them and storing them in the BTF that is pinned by the program itself, so that valid access can be assumed to such data during program runtime. A key thing to note is that once a btf_struct_meta is available for a type, both the btf_record and btf_field_offs should be available. It is critical that btf_field_offs is available in case special fields are present, as we extensively rely on special fields being zeroed out in map values and allocated objects in later patches. The code ensures that by bailing out in case of errors and ensuring both are available together. If the record is not available, the special fields won't be recognized, so not having both is also fine (in terms of being a verification error and not a runtime bug). Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221118015614.2013203-7-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-04bpf: Refactor map->off_arr handlingKumar Kartikeya Dwivedi1-0/+1
Refactor map->off_arr handling into generic functions that can work on their own without hardcoding map specific code. The btf_fields_offs structure is now returned from btf_parse_field_offs, which can be reused later for types in program BTF. All functions like copy_map_value, zero_map_value call generic underlying functions so that they can also be reused later for copying to values allocated in programs which encode specific fields. Later, some helper functions will also require access to this btf_field_offs structure to be able to skip over special fields at runtime. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221103191013.1236066-9-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-04bpf: Consolidate spin_lock, timer management into btf_recordKumar Kartikeya Dwivedi1-1/+2
Now that kptr_off_tab has been refactored into btf_record, and can hold more than one specific field type, accomodate bpf_spin_lock and bpf_timer as well. While they don't require any more metadata than offset, having all special fields in one place allows us to share the same code for allocated user defined types and handle both map values and these allocated objects in a similar fashion. As an optimization, we still keep spin_lock_off and timer_off offsets in the btf_record structure, just to avoid having to find the btf_field struct each time their offset is needed. This is mostly needed to manipulate such objects in a map value at runtime. It's ok to hardcode just one offset as more than one field is disallowed. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221103191013.1236066-8-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-04bpf: Refactor kptr_off_tab into btf_recordKumar Kartikeya Dwivedi1-2/+1
To prepare the BPF verifier to handle special fields in both map values and program allocated types coming from program BTF, we need to refactor the kptr_off_tab handling code into something more generic and reusable across both cases to avoid code duplication. Later patches also require passing this data to helpers at runtime, so that they can work on user defined types, initialize them, destruct them, etc. The main observation is that both map values and such allocated types point to a type in program BTF, hence they can be handled similarly. We can prepare a field metadata table for both cases and store them in struct bpf_map or struct btf depending on the use case. Hence, refactor the code into generic btf_record and btf_field member structs. The btf_record represents the fields of a specific btf_type in user BTF. The cnt indicates the number of special fields we successfully recognized, and field_mask is a bitmask of fields that were found, to enable quick determination of availability of a certain field. Subsequently, refactor the rest of the code to work with these generic types, remove assumptions about kptr and kptr_off_tab, rename variables to more meaningful names, etc. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221103191013.1236066-7-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-11-04bpf: Allow specifying volatile type modifier for kptrsKumar Kartikeya Dwivedi1-0/+5
This is useful in particular to mark the pointer as volatile, so that compiler treats each load and store to the field as a volatile access. The alternative is having to define and use READ_ONCE and WRITE_ONCE in the BPF program. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Acked-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/r/20221103191013.1236066-3-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-09-22btf: Allow dynamic pointer parameters in kfuncsRoberto Sassu1-0/+9
Allow dynamic pointers (struct bpf_dynptr_kern *) to be specified as parameters in kfuncs. Also, ensure that dynamic pointers passed as argument are valid and initialized, are a pointer to the stack, and of the type local. More dynamic pointer types can be supported in the future. To properly detect whether a parameter is of the desired type, introduce the stringify_struct() macro to compare the returned structure name with the desired name. In addition, protect against structure renames, by halting the build with BUILD_BUG_ON(), so that developers have to revisit the code. To check if a dynamic pointer passed to the kfunc is valid and initialized, and if its type is local, export the existing functions is_dynptr_reg_valid_init() and is_dynptr_type_expected(). Cc: Joanne Koong <joannelkoong@gmail.com> Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com> Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com> Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20220920075951.929132-5-roberto.sassu@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-09-07bpf/verifier: allow kfunc to return an allocated memBenjamin Tissoires1-0/+10
For drivers (outside of network), the incoming data is not statically defined in a struct. Most of the time the data buffer is kzalloc-ed and thus we can not rely on eBPF and BTF to explore the data. This commit allows to return an arbitrary memory, previously allocated by the driver. An interesting extra point is that the kfunc can mark the exported memory region as read only or read/write. So, when a kfunc is not returning a pointer to a struct but to a plain type, we can consider it is a valid allocated memory assuming that: - one of the arguments is either called rdonly_buf_size or rdwr_buf_size - and this argument is a const from the caller point of view We can then use this parameter as the size of the allocated memory. The memory is either read-only or read-write based on the name of the size parameter. Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com> Link: https://lore.kernel.org/r/20220906151303.2780789-7-benjamin.tissoires@redhat.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-08-10bpf: add destructive kfunc flagArtem Savkov1-1/+2
Add KF_DESTRUCTIVE flag for destructive functions. Functions with this flag set will require CAP_SYS_BOOT capabilities. Signed-off-by: Artem Savkov <asavkov@redhat.com> Link: https://lore.kernel.org/r/20220810065905.475418-2-asavkov@redhat.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-08-09btf: Add a new kfunc flag which allows to mark a function to be sleepableBenjamin Tissoires1-0/+1
This allows to declare a kfunc as sleepable and prevents its use in a non sleepable program. Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com> Co-developed-by: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220805214821.1058337-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-07-22bpf: Add support for forcing kfunc args to be trustedKumar Kartikeya Dwivedi1-0/+32
Teach the verifier to detect a new KF_TRUSTED_ARGS kfunc flag, which means each pointer argument must be trusted, which we define as a pointer that is referenced (has non-zero ref_obj_id) and also needs to have its offset unchanged, similar to how release functions expect their argument. This allows a kfunc to receive pointer arguments unchanged from the result of the acquire kfunc. This is required to ensure that kfunc that operate on some object only work on acquired pointers and not normal PTR_TO_BTF_ID with same type which can be obtained by pointer walking. The restrictions applied to release arguments also apply to trusted arguments. This implies that strict type matching (not deducing type by recursively following members at offset) and OBJ_RELEASE offset checks (ensuring they are zero) are used for trusted pointer arguments. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20220721134245.2450-5-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-07-22bpf: Switch to new kfunc flags infrastructureKumar Kartikeya Dwivedi1-23/+10
Instead of populating multiple sets to indicate some attribute and then researching the same BTF ID in them, prepare a single unified BTF set which indicates whether a kfunc is allowed to be called, and also its attributes if any at the same time. Now, only one call is needed to perform the lookup for both kfunc availability and its attributes. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20220721134245.2450-4-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-06-07bpf: Add btf enum64 supportYonghong Song1-0/+28
Currently, BTF only supports upto 32bit enum value with BTF_KIND_ENUM. But in kernel, some enum indeed has 64bit values, e.g., in uapi bpf.h, we have enum { BPF_F_INDEX_MASK = 0xffffffffULL, BPF_F_CURRENT_CPU = BPF_F_INDEX_MASK, BPF_F_CTXLEN_MASK = (0xfffffULL << 32), }; In this case, BTF_KIND_ENUM will encode the value of BPF_F_CTXLEN_MASK as 0, which certainly is incorrect. This patch added a new btf kind, BTF_KIND_ENUM64, which permits 64bit value to cover the above use case. The BTF_KIND_ENUM64 has the following three fields followed by the common type: struct bpf_enum64 { __u32 nume_off; __u32 val_lo32; __u32 val_hi32; }; Currently, btf type section has an alignment of 4 as all element types are u32. Representing the value with __u64 will introduce a pad for bpf_enum64 and may also introduce misalignment for the 64bit value. Hence, two members of val_hi32 and val_lo32 are chosen to avoid these issues. The kflag is also introduced for BTF_KIND_ENUM and BTF_KIND_ENUM64 to indicate whether the value is signed or unsigned. The kflag intends to provide consistent output of BTF C fortmat with the original source code. For example, the original BTF_KIND_ENUM bit value is 0xffffffff. The format C has two choices, printing out 0xffffffff or -1 and current libbpf prints out as unsigned value. But if the signedness is preserved in btf, the value can be printed the same as the original source code. The kflag value 0 means unsigned values, which is consistent to the default by libbpf and should also cover most cases as well. The new BTF_KIND_ENUM64 is intended to support the enum value represented as 64bit value. But it can represent all BTF_KIND_ENUM values as well. The compiler ([1]) and pahole will generate BTF_KIND_ENUM64 only if the value has to be represented with 64 bits. In addition, a static inline function btf_kind_core_compat() is introduced which will be used later when libbpf relo_core.c changed. Here the kernel shares the same relo_core.c with libbpf. [1] https://reviews.llvm.org/D124641 Acked-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/r/20220607062600.3716578-1-yhs@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-04-26bpf: Teach verifier about kptr_get kfunc helpersKumar Kartikeya Dwivedi1-0/+2
We introduce a new style of kfunc helpers, namely *_kptr_get, where they take pointer to the map value which points to a referenced kernel pointer contained in the map. Since this is referenced, only bpf_kptr_xchg from BPF side and xchg from kernel side is allowed to change the current value, and each pointer that resides in that location would be referenced, and RCU protected (this must be kept in mind while adding kernel types embeddable as reference kptr in BPF maps). This means that if do the load of the pointer value in an RCU read section, and find a live pointer, then as long as we hold RCU read lock, it won't be freed by a parallel xchg + release operation. This allows us to implement a safe refcount increment scheme. Hence, enforce that first argument of all such kfunc is a proper PTR_TO_MAP_VALUE pointing at the right offset to referenced pointer. For the rest of the arguments, they are subjected to typical kfunc argument checks, hence allowing some flexibility in passing more intent into how the reference should be taken. For instance, in case of struct nf_conn, it is not freed until RCU grace period ends, but can still be reused for another tuple once refcount has dropped to zero. Hence, a bpf_ct_kptr_get helper not only needs to call refcount_inc_not_zero, but also do a tuple match after incrementing the reference, and when it fails to match it, put the reference again and return NULL. This can be implemented easily if we allow passing additional parameters to the bpf_ct_kptr_get kfunc, like a struct bpf_sock_tuple * and a tuple__sz pair. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220424214901.2743946-9-memxor@gmail.com
2022-04-26bpf: Wire up freeing of referenced kptrKumar Kartikeya Dwivedi1-0/+2
A destructor kfunc can be defined as void func(type *), where type may be void or any other pointer type as per convenience. In this patch, we ensure that the type is sane and capture the function pointer into off_desc of ptr_off_tab for the specific pointer offset, with the invariant that the dtor pointer is always set when 'kptr_ref' tag is applied to the pointer's pointee type, which is indicated by the flag BPF_MAP_VALUE_OFF_F_REF. Note that only BTF IDs whose destructor kfunc is registered, thus become the allowed BTF IDs for embedding as referenced kptr. Hence it serves the purpose of finding dtor kfunc BTF ID, as well acting as a check against the whitelist of allowed BTF IDs for this purpose. Finally, wire up the actual freeing of the referenced pointer if any at all available offsets, so that no references are leaked after the BPF map goes away and the BPF program previously moved the ownership a referenced pointer into it. The behavior is similar to BPF timers, where bpf_map_{update,delete}_elem will free any existing referenced kptr. The same case is with LRU map's bpf_lru_push_free/htab_lru_push_free functions, which are extended to reset unreferenced and free referenced kptr. Note that unlike BPF timers, kptr is not reset or freed when map uref drops to zero. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20220424214901.2743946-8-memxor@gmail.com