Age | Commit message (Collapse) | Author | Files | Lines |
|
Now that we have the infrastructure to track the max possible height of
each btree type, we can create a separate slab cache for cursors of each
type of btree. For smaller indices like the free space btrees, this
means that we can pack more cursors into a slab page, improving slab
utilization.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Add code for all five btree types so that we can compute the absolute
maximum possible btree height for each btree type. This is a setup for
the next patch, which makes every btree type have its own cursor cache.
The functions are exported so that we can have xfs_db report the
absolute maximum btree heights for each btree type, rather than making
everyone run their own ad-hoc computations.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|
Which will eventually completely replace the agno in it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
|
|
We currently pass an agno from the AG reservation functions to the
individual feature accounting functions, which in future may have to
do perag lookups to access per-AG state. Instead, pre-emptively
plumb the perag through from the highest AG reservation layer to the
feature callouts so they won't have to look it up again.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
|
|
Add support for btree staging cursors for the refcount btrees. This
is needed both for online repair and also to convert xfs_repair to use
btree bulk loading.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
|
|
Pass a tranaction pointer through to all helpers that calculate the
per-AG block reservation. Online repair will use this to reinitialize
per-ag reservations while it still holds all the AG headers locked to
the repair transaction.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
|
|
The xfs_btree_cur.bc_private.a.dfops field is only ever initialized
by the refcountbt cursor init function. The only caller of that
function with a non-NULL dfops is from deferred completion context,
which already has attached to ->t_dfops.
In addition to that, the only actual reference of a.dfops is the
cursor duplication function, which means the field is effectively
unused.
Remove the dfops field from the bc_private.a union. Any future users
can acquire the dfops from the transaction. This patch does not
change behavior.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/
This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:
for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done
And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:
$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}
/^ \* This program is free software/ {
hdr = 2.0;
next
}
/any later version./ {
tag = "GPL-2.0+"
next
}
/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}
/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}
/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}
// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}
END { }
$
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
We need to use the actual AG length when making per-AG reservations,
since we could otherwise end up reserving more blocks out of the last
AG than there are actual blocks.
Complained-about-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
To gracefully handle the situation where a CoW operation turns a
single refcount extent into a lot of tiny ones and then run out of
space when a tree split has to happen, use the per-AG reserved block
pool to pre-allocate all the space we'll ever need for a maximal
btree. For a 4K block size, this only costs an overhead of 0.3% of
available disk space.
When reflink is enabled, we have an unfortunate problem with rmap --
since we can share a block billions of times, this means that the
reverse mapping btree can expand basically infinitely. When an AG is
so full that there are no free blocks with which to expand the rmapbt,
the filesystem will shut down hard.
This is rather annoying to the user, so use the AG reservation code to
reserve a "reasonable" amount of space for rmap. We'll prevent
reflinks and CoW operations if we think we're getting close to
exhausting an AG's free space rather than shutting down, but this
permanent reservation should be enough for "most" users. Hopefully.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
[hch@lst.de: ensure that we invalidate the freed btree buffer]
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
Start constructing the refcount btree implementation by establishing
the on-disk format and everything needed to read, write, and
manipulate the refcount btree blocks.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|