Age | Commit message (Collapse) | Author | Files | Lines |
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Signed-off-by: Martin Brandenburg <martin@omnibond.com>
Signed-off-by: Mike Marshall <hubcap@omnibond.com>
|
|
This is a new userspace operation, which will be done if the client-core
version is greater than or equal to 2.9.6. This will provide a way to
implement optional features and to determine which features are
supported by the client-core. If the client-core version is older than
2.9.6, no optional features are supported and the op will not be done.
The intent is to allow protocol extensions without relying on the
client-core's current behavior of ignoring what it doesn't understand.
Signed-off-by: Martin Brandenburg <martin@omnibond.com>
|
|
This will support a upcoming request where two related values need to be
updated atomically.
This was done without a union in the OrangeFS server source already. Since
that will break the kernel protocol, it has been fixed there and done here
in a way that does not break the kernel protocol.
Signed-off-by: Martin Brandenburg <martin@omnibond.com>
|
|
Signed-off-by: Martin Brandenburg <martin@omnibond.com>
|
|
This has been dormant code for many years. Parts of it were removed from
the OrangeFS kernel code when it went into mainline. These bits were missed.
Now the readahead cache has been resurrected in the OrangeFS userspace
portions. It was renamed there, since it doesn't really have anything to do
with mmap specifically, so it will be renamed here.
Signed-off-by: Martin Brandenburg <martin@omnibond.com>
|
|
I have verified that there is nothing in the userspace daemon version we
are implementing this protocol against that ever looks at this field.
Signed-off-by: Martin Brandenburg <martin@omnibond.com>
Signed-off-by: Mike Marshall <hubcap@omnibond.com>
|
|
Signed-off-by: Martin Brandenburg <martin@omnibond.com>
Signed-off-by: Mike Marshall <hubcap@omnibond.com>
|
|
OrangeFS was formerly known as PVFS2 and retains the name in many places.
I leave the device /dev/pvfs2-req since this affects userspace.
I leave the filesystem type pvfs2 since this affects userspace. Further
the OrangeFS sysint library reads fstab for an entry of type pvfs2
independently of kernel mounts.
I leave extended attribute keys user.pvfs2 and system.pvfs2 as the
sysint library understands these.
I leave references to userspace binaries still named pvfs2.
I leave the filenames.
Signed-off-by: Yi Liu <yi9@clemson.edu>
[martin@omnibond.com: clairify above constraints and merge]
Signed-off-by: Martin Brandenburg <martin@omnibond.com>
Signed-off-by: Mike Marshall <hubcap@omnibond.com>
|
|
Also removes remnants of iox (readx/writex) which previously used
trailers, but no longer exist.
Signed-off-by: Martin Brandenburg <martin@omnibond.com>
Signed-off-by: Mike Marshall <hubcap@omnibond.com>
|
|
OrangeFS (formerly PVFS) is an lgpl licensed userspace networked parallel
file system. OrangeFS can be accessed through included system utilities,
user integration libraries, MPI-IO and can be used by the Hadoop
ecosystem as an alternative to the HDFS filesystem. OrangeFS is used
widely for parallel science, data analytics and engineering applications.
While applications often don't require Orangefs to be mounted into
the VFS, users do like to be able to access their files in the normal way.
The Orangefs kernel client allows Orangefs filesystems to be mounted as
a VFS. The kernel client communicates with a userspace daemon which in
turn communicates with the Orangefs server daemons that implement the
filesystem. The server daemons (there's almost always more than one)
need not be running on the same host as the kernel client.
Orangefs filesystems can also be mounted with FUSE, and we
ship code and instructions to facilitate that, but most of our users
report preferring to use our kernel module instead. Further, as an example
of a problem we can't solve with fuse, we have in the works a
not-yet-ready-for-prime-time version of a file_operations lock function
that accounts for the server daemons being distributed across more
than one running kernel.
Many people and organizations, including Clemson University,
Argonne National Laboratories and Acxiom Corporation have
helped to create what has become Orangefs over more than twenty
years. Some of the more recent contributors to the kernel client
include:
Mike Marshall
Christoph Hellwig
Randy Martin
Becky Ligon
Walt Ligon
Michael Moore
Rob Ross
Phil Carnes
Signed-off-by: Mike Marshall <hubcap@omnibond.com>
|