Age | Commit message (Collapse) | Author | Files | Lines |
|
that's the bulk of filesystem drivers dealing with inodes of their own
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Now that no one is using rw, remove it completely.
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
The rw parameter to direct_IO is redundant with iov_iter->type, and
treated slightly differently just about everywhere it's used: some users
do rw & WRITE, and others do rw == WRITE where they should be doing a
bitwise check. Simplify this with the new iov_iter_rw() helper, which
always returns either READ or WRITE.
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Most filesystems call through to these at some point, so we'll start
here.
Signed-off-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
All places outside of core VFS that checked ->read and ->write for being NULL or
called the methods directly are gone now, so NULL {read,write} with non-NULL
{read,write}_iter will do the right thing in all cases.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
|
|
struct kiocb now is a generic I/O container, so move it to fs.h.
Also do a #include diet for aio.h while we're at it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
According to a report from Yuxuan Shui, nilfs2 in kernel 3.19 got stuck
during recovery at mount time. The code path that caused the deadlock was
as follows:
nilfs_fill_super()
load_nilfs()
nilfs_salvage_orphan_logs()
* Do roll-forwarding, attach segment constructor for recovery,
and kick it.
nilfs_segctor_thread()
nilfs_segctor_thread_construct()
* A lock is held with nilfs_transaction_lock()
nilfs_segctor_do_construct()
nilfs_segctor_drop_written_files()
iput()
iput_final()
write_inode_now()
writeback_single_inode()
__writeback_single_inode()
do_writepages()
nilfs_writepage()
nilfs_construct_dsync_segment()
nilfs_transaction_lock() --> deadlock
This can happen if commit 7ef3ff2fea8b ("nilfs2: fix deadlock of segment
constructor over I_SYNC flag") is applied and roll-forward recovery was
performed at mount time. The roll-forward recovery can happen if datasync
write is done and the file system crashes immediately after that. For
instance, we can reproduce the issue with the following steps:
< nilfs2 is mounted on /nilfs (device: /dev/sdb1) >
# dd if=/dev/zero of=/nilfs/test bs=4k count=1 && sync
# dd if=/dev/zero of=/nilfs/test conv=notrunc oflag=dsync bs=4k
count=1 && reboot -nfh
< the system will immediately reboot >
# mount -t nilfs2 /dev/sdb1 /nilfs
The deadlock occurs because iput() can run segment constructor through
writeback_single_inode() if MS_ACTIVE flag is not set on sb->s_flags. The
above commit changed segment constructor so that it calls iput()
asynchronously for inodes with i_nlink == 0, but that change was
imperfect.
This fixes the another deadlock by deferring iput() in segment constructor
even for the case that mount is not finished, that is, for the case that
MS_ACTIVE flag is not set.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Reported-by: Yuxuan Shui <yshuiv7@gmail.com>
Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Each inode of nilfs2 stores a root node of a b-tree, and it turned out to
have a memory overrun issue:
Each b-tree node of nilfs2 stores a set of key-value pairs and the number
of them (in "bn_nchildren" member of nilfs_btree_node struct), as well as
a few other "bn_*" members.
Since the value of "bn_nchildren" is used for operations on the key-values
within the b-tree node, it can cause memory access overrun if a large
number is incorrectly set to "bn_nchildren".
For instance, nilfs_btree_node_lookup() function determines the range of
binary search with it, and too large "bn_nchildren" leads
nilfs_btree_node_get_key() in that function to overrun.
As for intermediate b-tree nodes, this is prevented by a sanity check
performed when each node is read from a drive, however, no sanity check
has been done for root nodes stored in inodes.
This patch fixes the issue by adding missing sanity check against b-tree
root nodes so that it's called when on-memory inodes are read from ifile,
inode metadata file.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pull backing device changes from Jens Axboe:
"This contains a cleanup of how the backing device is handled, in
preparation for a rework of the life time rules. In this part, the
most important change is to split the unrelated nommu mmap flags from
it, but also removing a backing_dev_info pointer from the
address_space (and inode), and a cleanup of other various minor bits.
Christoph did all the work here, I just fixed an oops with pages that
have a swap backing. Arnd fixed a missing export, and Oleg killed the
lustre backing_dev_info from staging. Last patch was from Al,
unexporting parts that are now no longer needed outside"
* 'for-3.20/bdi' of git://git.kernel.dk/linux-block:
Make super_blocks and sb_lock static
mtd: export new mtd_mmap_capabilities
fs: make inode_to_bdi() handle NULL inode
staging/lustre/llite: get rid of backing_dev_info
fs: remove default_backing_dev_info
fs: don't reassign dirty inodes to default_backing_dev_info
nfs: don't call bdi_unregister
ceph: remove call to bdi_unregister
fs: remove mapping->backing_dev_info
fs: export inode_to_bdi and use it in favor of mapping->backing_dev_info
nilfs2: set up s_bdi like the generic mount_bdev code
block_dev: get bdev inode bdi directly from the block device
block_dev: only write bdev inode on close
fs: introduce f_op->mmap_capabilities for nommu mmap support
fs: kill BDI_CAP_SWAP_BACKED
fs: deduplicate noop_backing_dev_info
|
|
Nobody uses it anymore.
[akpm@linux-foundation.org: fix filemap_xip.c]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Nilfs2 eventually hangs in a stress test with fsstress program. This
issue was caused by the following deadlock over I_SYNC flag between
nilfs_segctor_thread() and writeback_sb_inodes():
nilfs_segctor_thread()
nilfs_segctor_thread_construct()
nilfs_segctor_unlock()
nilfs_dispose_list()
iput()
iput_final()
evict()
inode_wait_for_writeback() * wait for I_SYNC flag
writeback_sb_inodes()
* set I_SYNC flag on inode->i_state
__writeback_single_inode()
do_writepages()
nilfs_writepages()
nilfs_construct_dsync_segment()
nilfs_segctor_sync()
* wait for completion of segment constructor
inode_sync_complete()
* clear I_SYNC flag after __writeback_single_inode() completed
writeback_sb_inodes() calls do_writepages() for dirty inodes after
setting I_SYNC flag on inode->i_state. do_writepages() in turn calls
nilfs_writepages(), which can run segment constructor and wait for its
completion. On the other hand, segment constructor calls iput(), which
can call evict() and wait for the I_SYNC flag on
inode_wait_for_writeback().
Since segment constructor doesn't know when I_SYNC will be set, it
cannot know whether iput() will block or not unless inode->i_nlink has a
non-zero count. We can prevent evict() from being called in iput() by
implementing sop->drop_inode(), but it's not preferable to leave inodes
with i_nlink == 0 for long periods because it even defers file
truncation and inode deallocation. So, this instead resolves the
deadlock by calling iput() asynchronously with a workqueue for inodes
with i_nlink == 0.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Now that we never use the backing_dev_info pointer in struct address_space
we can simply remove it and save 4 to 8 bytes in every inode.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
mapping->backing_dev_info will go away, so don't rely on it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Reviewed-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Same story as in commit 41080b5a2401 ("nfsd race fixes: ext2") (similar
ext2 fix) except that nilfs2 needs to use insert_inode_locked4() instead
of insert_inode_locked() and a bug of a check for dead inodes needs to
be fixed.
If nilfs_iget() is called from nfsd after nilfs_new_inode() calls
insert_inode_locked4(), nilfs_iget() will wait for unlock_new_inode() at
the end of nilfs_mkdir()/nilfs_create()/etc to unlock the inode.
If nilfs_iget() is called before nilfs_new_inode() calls
insert_inode_locked4(), it will create an in-core inode and read its
data from the on-disk inode. But, nilfs_iget() will find i_nlink equals
zero and fail at nilfs_read_inode_common(), which will lead it to call
iget_failed() and cleanly fail.
However, this sanity check doesn't work as expected for reused on-disk
inodes because they leave a non-zero value in i_mode field and it
hinders the test of i_nlink. This patch also fixes the issue by
removing the test on i_mode that nilfs2 doesn't need.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The iput() function tests whether its argument is NULL and then returns
immediately. Thus the test around the call is not needed.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch removes filemap_write_and_wait_range() from nilfs_sync_file(),
because it triggers a data segment construction by calling
nilfs_writepages() with WB_SYNC_ALL. A data segment construction does not
remove the inode from the i_dirty list and it does not clear the
NILFS_I_DIRTY flag. Therefore nilfs_inode_dirty() still returns true,
which leads to an unnecessary duplicate segment construction in
nilfs_sync_file().
A call to filemap_write_and_wait_range() is not needed, because NILFS2
does not rely on the generic writeback mechanisms. Instead it implements
its own mechanism to collect all dirty pages and write them into segments.
It is more efficient to initiate the segment construction directly in
nilfs_sync_file() without the detour over filemap_write_and_wait_range().
Additionally the lock of i_mutex is not needed, because all code blocks
that are protected by i_mutex are also protected by a NILFS transaction:
Function i_mutex nilfs_transaction
------------------------------------------------------
nilfs_ioctl_setflags: yes yes
nilfs_fiemap: yes no
nilfs_write_begin: yes yes
nilfs_write_end: yes yes
nilfs_lookup: yes no
nilfs_create: yes yes
nilfs_link: yes yes
nilfs_mknod: yes yes
nilfs_symlink: yes yes
nilfs_mkdir: yes yes
nilfs_unlink: yes yes
nilfs_rmdir: yes yes
nilfs_rename: yes yes
nilfs_setattr: yes yes
For nilfs_lookup() i_mutex is held for the parent directory, to protect it
from modification. The segment construction does not modify directory
inodes, so no lock is needed.
nilfs_fiemap() reads the block layout on the disk, by using
nilfs_bmap_lookup_contig(). This is already protected by bmap->b_sem.
Signed-off-by: Andreas Rohner <andreas.rohner@gmx.net>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Support for fdatasync() has been implemented in NILFS2 for a long time,
but whenever the corresponding inode is dirty the implementation falls
back to a full-flegded sync(). Since every write operation has to
update the modification time of the file, the inode will almost always
be dirty and fdatasync() will fall back to sync() most of the time. But
this fallback is only necessary for a change of the file size and not
for a change of the various timestamps.
This patch adds a new flag NILFS_I_INODE_SYNC to differentiate between
those two situations.
* If it is set the file size was changed and a full sync is necessary.
* If it is not set then only the timestamps were updated and
fdatasync() can go ahead.
There is already a similar flag I_DIRTY_DATASYNC on the VFS layer with
the exact same semantics. Unfortunately it cannot be used directly,
because NILFS2 doesn't implement write_inode() and doesn't clear the VFS
flags when inodes are written out. So the VFS writeback thread can
clear I_DIRTY_DATASYNC at any time without notifying NILFS2. So
I_DIRTY_DATASYNC has to be mapped onto NILFS_I_INODE_SYNC in
nilfs_update_inode().
Signed-off-by: Andreas Rohner <andreas.rohner@gmx.net>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Under normal circumstances nilfs_sync_fs() writes out the super block,
which causes a flush of the underlying block device. But this depends
on the THE_NILFS_SB_DIRTY flag, which is only set if the pointer to the
last segment crosses a segment boundary. So if only a small amount of
data is written before the call to nilfs_sync_fs(), no flush of the
block device occurs.
In the above case an additional call to blkdev_issue_flush() is needed.
To prevent unnecessary overhead, the new flag nilfs->ns_flushed_device
is introduced, which is cleared whenever new logs are written and set
whenever the block device is flushed. For convenience the function
nilfs_flush_device() is added, which contains the above logic.
Signed-off-by: Andreas Rohner <andreas.rohner@gmx.net>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This bug leads to reproducible silent data loss, despite the use of
msync(), sync() and a clean unmount of the file system. It is easily
reproducible with the following script:
----------------[BEGIN SCRIPT]--------------------
mkfs.nilfs2 -f /dev/sdb
mount /dev/sdb /mnt
dd if=/dev/zero bs=1M count=30 of=/mnt/testfile
umount /mnt
mount /dev/sdb /mnt
CHECKSUM_BEFORE="$(md5sum /mnt/testfile)"
/root/mmaptest/mmaptest /mnt/testfile 30 10 5
sync
CHECKSUM_AFTER="$(md5sum /mnt/testfile)"
umount /mnt
mount /dev/sdb /mnt
CHECKSUM_AFTER_REMOUNT="$(md5sum /mnt/testfile)"
umount /mnt
echo "BEFORE MMAP:\t$CHECKSUM_BEFORE"
echo "AFTER MMAP:\t$CHECKSUM_AFTER"
echo "AFTER REMOUNT:\t$CHECKSUM_AFTER_REMOUNT"
----------------[END SCRIPT]--------------------
The mmaptest tool looks something like this (very simplified, with
error checking removed):
----------------[BEGIN mmaptest]--------------------
data = mmap(NULL, file_size - file_offset, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, file_offset);
for (i = 0; i < write_count; ++i) {
memcpy(data + i * 4096, buf, sizeof(buf));
msync(data, file_size - file_offset, MS_SYNC))
}
----------------[END mmaptest]--------------------
The output of the script looks something like this:
BEFORE MMAP: 281ed1d5ae50e8419f9b978aab16de83 /mnt/testfile
AFTER MMAP: 6604a1c31f10780331a6850371b3a313 /mnt/testfile
AFTER REMOUNT: 281ed1d5ae50e8419f9b978aab16de83 /mnt/testfile
So it is clear, that the changes done using mmap() do not survive a
remount. This can be reproduced a 100% of the time. The problem was
introduced in commit 136e8770cd5d ("nilfs2: fix issue of
nilfs_set_page_dirty() for page at EOF boundary").
If the page was read with mpage_readpage() or mpage_readpages() for
example, then it has no buffers attached to it. In that case
page_has_buffers(page) in nilfs_set_page_dirty() will be false.
Therefore nilfs_set_file_dirty() is never called and the pages are never
collected and never written to disk.
This patch fixes the problem by also calling nilfs_set_file_dirty() if the
page has no buffers attached to it.
[akpm@linux-foundation.org: s/PAGE_SHIFT/PAGE_CACHE_SHIFT/]
Signed-off-by: Andreas Rohner <andreas.rohner@gmx.net>
Tested-by: Andreas Rohner <andreas.rohner@gmx.net>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs updates from Al Viro:
"Stuff in here:
- acct.c fixes and general rework of mnt_pin mechanism. That allows
to go for delayed-mntput stuff, which will permit mntput() on deep
stack without worrying about stack overflows - fs shutdown will
happen on shallow stack. IOW, we can do Eric's umount-on-rmdir
series without introducing tons of stack overflows on new mntput()
call chains it introduces.
- Bruce's d_splice_alias() patches
- more Miklos' rename() stuff.
- a couple of regression fixes (stable fodder, in the end of branch)
and a fix for API idiocy in iov_iter.c.
There definitely will be another pile, maybe even two. I'd like to
get Eric's series in this time, but even if we miss it, it'll go right
in the beginning of for-next in the next cycle - the tricky part of
prereqs is in this pile"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (40 commits)
fix copy_tree() regression
__generic_file_write_iter(): fix handling of sync error after DIO
switch iov_iter_get_pages() to passing maximal number of pages
fs: mark __d_obtain_alias static
dcache: d_splice_alias should detect loops
exportfs: update Exporting documentation
dcache: d_find_alias needn't recheck IS_ROOT && DCACHE_DISCONNECTED
dcache: remove unused d_find_alias parameter
dcache: d_obtain_alias callers don't all want DISCONNECTED
dcache: d_splice_alias should ignore DCACHE_DISCONNECTED
dcache: d_splice_alias mustn't create directory aliases
dcache: close d_move race in d_splice_alias
dcache: move d_splice_alias
namei: trivial fix to vfs_rename_dir comment
VFS: allow ->d_manage() to declare -EISDIR in rcu_walk mode.
cifs: support RENAME_NOREPLACE
hostfs: support rename flags
shmem: support RENAME_EXCHANGE
shmem: support RENAME_NOREPLACE
btrfs: add RENAME_NOREPLACE
...
|
|
This patch integrates creation of sysfs groups and
attributes into NILFS file system driver.
It was found the issue with nilfs_sysfs_{create/delete}_snapshot_group
functions by Michael L Semon <mlsemon35@gmail.com> in the first
version of the patch:
BUG: sleeping function called from invalid context at kernel/locking/mutex.c:579
in_atomic(): 1, irqs_disabled(): 0, pid: 32676, name: umount.nilfs2
2 locks held by umount.nilfs2/32676:
#0: (&type->s_umount_key#21){++++..}, at: [<790c18e2>] deactivate_super+0x37/0x58
#1: (&(&nilfs->ns_cptree_lock)->rlock){+.+...}, at: [<791bf659>] nilfs_put_root+0x23/0x5a
Preemption disabled at:[<791bf659>] nilfs_put_root+0x23/0x5a
CPU: 0 PID: 32676 Comm: umount.nilfs2 Not tainted 3.14.0+ #2
Hardware name: Dell Computer Corporation Dimension 2350/07W080, BIOS A01 12/17/2002
Call Trace:
dump_stack+0x4b/0x75
__might_sleep+0x111/0x16f
mutex_lock_nested+0x1e/0x3ad
kernfs_remove+0x12/0x26
sysfs_remove_dir+0x3d/0x62
kobject_del+0x13/0x38
nilfs_sysfs_delete_snapshot_group+0xb/0xd
nilfs_put_root+0x2a/0x5a
nilfs_detach_log_writer+0x1ab/0x2c1
nilfs_put_super+0x13/0x68
generic_shutdown_super+0x60/0xd1
kill_block_super+0x1d/0x60
deactivate_locked_super+0x22/0x3f
deactivate_super+0x3e/0x58
mntput_no_expire+0xe2/0x141
SyS_oldumount+0x70/0xa5
syscall_call+0x7/0xb
The reason of the issue was placement of
nilfs_sysfs_{create/delete}_snapshot_group() call under
nilfs->ns_cptree_lock protection. But this protection is unnecessary and
wrong solution. The second version of the patch fixes this issue.
[fengguang.wu@intel.com: nilfs_sysfs_create_mounted_snapshots_group can be static]
Reported-by: Michael L. Semon <mlsemon35@gmail.com>
Signed-off-by: Vyacheslav Dubeyko <Vyacheslav.Dubeyko@hgst.com>
Cc: Vyacheslav Dubeyko <slava@dubeyko.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Tested-by: Michael L. Semon <mlsemon35@gmail.com>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch adds creation of <snapshot> group for every mounted
snapshot in /sys/fs/nilfs2/<device>/mounted_snapshots group.
The group contains details about mounted snapshot:
(1) inodes_count - show number of inodes for snapshot.
(2) blocks_count - show number of blocks for snapshot.
Signed-off-by: Vyacheslav Dubeyko <Vyacheslav.Dubeyko@hgst.com>
Cc: Vyacheslav Dubeyko <slava@dubeyko.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Michael L. Semon <mlsemon35@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch adds creation of /sys/fs/nilfs2/<device>/mounted_snapshots
group.
The mounted_snapshots group contains group for every
mounted snapshot.
Signed-off-by: Vyacheslav Dubeyko <Vyacheslav.Dubeyko@hgst.com>
Cc: Vyacheslav Dubeyko <slava@dubeyko.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Michael L. Semon <mlsemon35@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch adds creation of /sys/fs/nilfs2/<device>/checkpoints
group.
The checkpoints group contains attributes that describe
details about volume's checkpoints:
(1) checkpoints_number - show number of checkpoints on volume.
(2) snapshots_number - show number of snapshots on volume.
(3) last_seg_checkpoint - show checkpoint number of the latest segment.
(4) next_checkpoint - show next checkpoint number.
Signed-off-by: Vyacheslav Dubeyko <Vyacheslav.Dubeyko@hgst.com>
Cc: Vyacheslav Dubeyko <slava@dubeyko.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Michael L. Semon <mlsemon35@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch adds creation of /sys/fs/nilfs2/<device>/segments
group.
The segments group contains attributes that describe
details about volume's segments:
(1) segments_number - show number of segments on volume.
(2) blocks_per_segment - show number of blocks in segment.
(3) clean_segments - show count of clean segments.
(4) dirty_segments - show count of dirty segments.
Signed-off-by: Vyacheslav Dubeyko <Vyacheslav.Dubeyko@hgst.com>
Cc: Vyacheslav Dubeyko <slava@dubeyko.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Michael L. Semon <mlsemon35@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch adds creation of /sys/fs/nilfs2/<device>/segctor
group.
The segctor group contains attributes that describe
segctor thread activity details:
(1) last_pseg_block - show start block number of the latest segment.
(2) last_seg_sequence - show sequence value of the latest segment.
(3) last_seg_checkpoint - show checkpoint number of the latest segment.
(4) current_seg_sequence - show segment sequence counter.
(5) current_last_full_seg - show index number of the latest full segment.
(6) next_full_seg - show index number of the full segment index
to be used next.
(7) next_pseg_offset - show offset of next partial segment in
the current full segment.
(8) next_checkpoint - show next checkpoint number.
(9) last_seg_write_time - show write time of the last segment
in human-readable format.
(10) last_seg_write_time_secs - show write time of the last segment
in seconds.
(11) last_nongc_write_time - show write time of the last segment
not for cleaner operation in human-readable format.
(12) last_nongc_write_time_secs - show write time of the last segment
not for cleaner operation in seconds.
(13) dirty_data_blocks_count - show number of dirty data blocks.
Signed-off-by: Vyacheslav Dubeyko <Vyacheslav.Dubeyko@hgst.com>
Cc: Vyacheslav Dubeyko <slava@dubeyko.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Michael L. Semon <mlsemon35@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch adds creation of /sys/fs/nilfs2/<device>/superblock
group.
The superblock group contains attributes that describe
superblock's details:
(1) sb_write_time - show previous write time of super block in
human-readable format.
(2) sb_write_time_secs - show previous write time of super block
in seconds.
(3) sb_write_count - show write count of super block.
(4) sb_update_frequency - show/set interval of periodical update
of superblock (in seconds). You can set preferable frequency of
superblock update by command:
echo <value> > /sys/fs/nilfs2/<device>/superblock/sb_update_frequency
Signed-off-by: Vyacheslav Dubeyko <Vyacheslav.Dubeyko@hgst.com>
Cc: Vyacheslav Dubeyko <slava@dubeyko.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Michael L. Semon <mlsemon35@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch adds creation of /sys/fs/nilfs2/<device> group.
The <device> group contains attributes that describe file
system partition's details:
(1) revision - show NILFS file system revision.
(2) blocksize - show volume block size in bytes.
(3) device_size - show volume size in bytes.
(4) free_blocks - show count of free blocks on volume.
(5) uuid - show volume's UUID.
(6) volume_name - show volume's name.
Signed-off-by: Vyacheslav Dubeyko <Vyacheslav.Dubeyko@hgst.com>
Cc: Vyacheslav Dubeyko <slava@dubeyko.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Michael L. Semon <mlsemon35@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patchset implements creation of sysfs groups and attributes with
the purpose to show NILFS2 volume details, internal state of the driver
and to manage internal state of NILFS2 driver.
Sysfs is a virtual file system that exports information about devices
and drivers from the kernel device model to user space, and is also used
for configuration. NILFS2 is a complex file system that has segctor
thread, GC thread, checkpoint/snapshot model and so on. Sysfs namespace
provides native and easy way for: (1) getting info and statistics about
volume state; (2) getting info and configuration of internal subsystems
(segctor thread); (3) snapshots management.
Suggested patchset provides basis for managing segctor thread behaviour
and manipulation by snapshots. Currently, it informs only about segctor
thread's internal parameters and about mounted snapshots. But sysfs
interface can provide easy and simple way for deep management of segctor
thread and snapshots.
This patchset provides opportunity to manage interval of periodical
update of superblock (in seconds). Default value is 10 seconds. Now a
user can increase this value by means of
nilfs2/<device>/superblock/sb_update_frequency attribute in the case of
necessity.
Also the patchset provides opportunity to get information easily about
key volumes's parameters (free blocks, superblock write count,
superblock update frequency, latest segment info, dirty data blocks
count, count of clean segments, count of dirty segments and so on) in
real time manner. Such information can be used in scripts for subtle
management of filesystem.
Implemented functionality creates such groups:
(1) /sys/fs/nilfs2 - root group
(2) /sys/fs/nilfs2/features - group contains attributes that describe NILFS
file system driver features
(3) /sys/fs/nilfs2/<device> - group contains attributes that describe file
system partition's details
(4) /sys/fs/nilfs2/<device>/superblock - group contains attributes that describe
superblock's details
(5) /sys/fs/nilfs2/<device>/segctor - group contains attributes that describe
segctor thread activity details
(6) /sys/fs/nilfs2/<device>/segments - group contains attributes that describe
details about volume's segments
(7) /sys/fs/nilfs2/<device>/checkpoints - group contains attributes that describe
details about volume's checkpoints
(8) /sys/fs/nilfs2/<device>/mounted_snapshots - group contains group for every
mounted snapshot
(9) /sys/fs/nilfs2/<device>/mounted_snapshots/<snapshot> - group contains
details about mounted snapshot
This patch (of 9):
This patch adds code of creation /sys/fs/nilfs2 group and
/sys/fs/nilfs2/features group.
The features group contains attributes that describe NILFS
file system driver features:
(1) revision - show current revision of NILFS file system driver.
There are two formats of timestamp output - seconds and human-readable
format. Every showed timestamp has two sysfs files (time-<xxx> and
time-<xxx>-secs). One sysfs file (time-<xxx>) shows time in
human-readable format. Another sysfs file (time-<xxx>-secs) shows time in
seconds.
It was reported by Michael Semon that timestamp output in human-readable
format should be changed from "2014-4-12 14:5:38" to "2014-04-12
14:05:38". Second version of the patch fixes this issue.
Reported-by: Michael L. Semon <mlsemon35@gmail.com>
Signed-off-by: Vyacheslav Dubeyko <Vyacheslav.Dubeyko@hgst.com>
Cc: Vyacheslav Dubeyko <slava@dubeyko.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There are a few d_obtain_alias callers that are using it to get the
root of a filesystem which may already have an alias somewhere else.
This is not the same as the filehandle-lookup case, and none of them
actually need DCACHE_DISCONNECTED set.
It isn't really a serious problem, but it would really be clearer if we
reserved DCACHE_DISCONNECTED for those cases where it's actually needed.
In the btrfs case this was causing a spurious printk from
nfsd/nfsfh.c:fh_verify when it found an unexpected DCACHE_DISCONNECTED
dentry. Josef worked around this by unsetting DCACHE_DISCONNECTED
manually in 3a0dfa6a12e "Btrfs: unset DCACHE_DISCONNECTED when mounting
default subvol", and this replaces that workaround.
Cc: Josef Bacik <jbacik@fb.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
all callers have iov_length(iter->iov, iter->nr_segs) == iov_iter_count(iter)
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
unmodified, for now
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
filemap_map_pages() is generic implementation of ->map_pages() for
filesystems who uses page cache.
It should be safe to use filemap_map_pages() for ->map_pages() if
filesystem use filemap_fault() for ->fault().
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ning Qu <quning@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 updates from Ted Ts'o:
"Major changes for 3.14 include support for the newly added ZERO_RANGE
and COLLAPSE_RANGE fallocate operations, and scalability improvements
in the jbd2 layer and in xattr handling when the extended attributes
spill over into an external block.
Other than that, the usual clean ups and minor bug fixes"
* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (42 commits)
ext4: fix premature freeing of partial clusters split across leaf blocks
ext4: remove unneeded test of ret variable
ext4: fix comment typo
ext4: make ext4_block_zero_page_range static
ext4: atomically set inode->i_flags in ext4_set_inode_flags()
ext4: optimize Hurd tests when reading/writing inodes
ext4: kill i_version support for Hurd-castrated file systems
ext4: each filesystem creates and uses its own mb_cache
fs/mbcache.c: doucple the locking of local from global data
fs/mbcache.c: change block and index hash chain to hlist_bl_node
ext4: Introduce FALLOC_FL_ZERO_RANGE flag for fallocate
ext4: refactor ext4_fallocate code
ext4: Update inode i_size after the preallocation
ext4: fix partial cluster handling for bigalloc file systems
ext4: delete path dealloc code in ext4_ext_handle_uninitialized_extents
ext4: only call sync_filesystm() when remounting read-only
fs: push sync_filesystem() down to the file system's remount_fs()
jbd2: improve error messages for inconsistent journal heads
jbd2: minimize region locked by j_list_lock in jbd2_journal_forget()
jbd2: minimize region locked by j_list_lock in journal_get_create_access()
...
|
|
Add code to check sizes of on-disk data of metadata files such as inode
size, segment usage size, DAT entry size, and checkpoint size. Although
these sizes are read from disk, the current implementation doesn't check
them.
If these sizes are not sane on disk, it can cause out-of-range access to
metadata or memory access overrun on metadata block buffers due to
overflow in sundry calculations.
Both lower limit and upper limit of metadata sizes are verified to
prevent these issues.
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Andreas Rohner <andreas.rohner@gmx.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add support for the FITRIM ioctl, which enables user space tools to
issue TRIM/DISCARD requests to the underlying device. Every clean
segment within the specified range will be discarded.
Signed-off-by: Andreas Rohner <andreas.rohner@gmx.net>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add nilfs_sufile_trim_fs(), which takes an fstrim_range structure and
calls blkdev_issue_discard for every clean segment in the specified
range. The range is truncated to file system block boundaries.
Signed-off-by: Andreas Rohner <andreas.rohner@gmx.net>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
With this ioctl the segment usage entries in the SUFILE can be updated
from userspace.
This is useful, because it allows the userspace GC to modify and update
segment usage entries for specific segments, which enables it to avoid
unnecessary write operations.
If a segment needs to be cleaned, but there is no or very little
reclaimable space in it, the cleaning operation basically degrades to a
useless moving operation. In the end the only thing that changes is the
location of the data and a timestamp in the segment usage information.
With this ioctl the GC can skip the cleaning and update the segment
usage entries directly instead.
This is basically a shortcut to cleaning the segment. It is still
necessary to read the segment summary information, but the writing of
the live blocks can be skipped if it's not worth it.
[konishi.ryusuke@lab.ntt.co.jp: add description of NILFS_IOCTL_SET_SUINFO ioctl]
Signed-off-by: Andreas Rohner <andreas.rohner@gmx.net>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Introduce nilfs_sufile_set_suinfo(), which expects an array of
nilfs_suinfo_update structures and updates the segment usage information
accordingly.
This is basically a helper function for the newly introduced
NILFS_IOCTL_SET_SUINFO ioctl.
[konishi.ryusuke@lab.ntt.co.jp: use put_bh() instead of brelse() because we know bh != NULL]
Signed-off-by: Andreas Rohner <andreas.rohner@gmx.net>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Reclaim will be leaving shadow entries in the page cache radix tree upon
evicting the real page. As those pages are found from the LRU, an
iput() can lead to the inode being freed concurrently. At this point,
reclaim must no longer install shadow pages because the inode freeing
code needs to ensure the page tree is really empty.
Add an address_space flag, AS_EXITING, that the inode freeing code sets
under the tree lock before doing the final truncate. Reclaim will check
for this flag before installing shadow pages.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Luigi Semenzato <semenzato@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Metin Doslu <metin@citusdata.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ozgun Erdogan <ozgun@citusdata.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <klamm@yandex-team.ru>
Cc: Ryan Mallon <rmallon@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Previously, the no-op "mount -o mount /dev/xxx" operation when the
file system is already mounted read-write causes an implied,
unconditional syncfs(). This seems pretty stupid, and it's certainly
documented or guaraunteed to do this, nor is it particularly useful,
except in the case where the file system was mounted rw and is getting
remounted read-only.
However, it's possible that there might be some file systems that are
actually depending on this behavior. In most file systems, it's
probably fine to only call sync_filesystem() when transitioning from
read-write to read-only, and there are some file systems where this is
not needed at all (for example, for a pseudo-filesystem or something
like romfs).
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: linux-fsdevel@vger.kernel.org
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Artem Bityutskiy <dedekind1@gmail.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Evgeniy Dushistov <dushistov@mail.ru>
Cc: Jan Kara <jack@suse.cz>
Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Cc: Anders Larsen <al@alarsen.net>
Cc: Phillip Lougher <phillip@squashfs.org.uk>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mikulas Patocka <mikulas@artax.karlin.mff.cuni.cz>
Cc: Petr Vandrovec <petr@vandrovec.name>
Cc: xfs@oss.sgi.com
Cc: linux-btrfs@vger.kernel.org
Cc: linux-cifs@vger.kernel.org
Cc: samba-technical@lists.samba.org
Cc: codalist@coda.cs.cmu.edu
Cc: linux-ext4@vger.kernel.org
Cc: linux-f2fs-devel@lists.sourceforge.net
Cc: fuse-devel@lists.sourceforge.net
Cc: cluster-devel@redhat.com
Cc: linux-mtd@lists.infradead.org
Cc: jfs-discussion@lists.sourceforge.net
Cc: linux-nfs@vger.kernel.org
Cc: linux-nilfs@vger.kernel.org
Cc: linux-ntfs-dev@lists.sourceforge.net
Cc: ocfs2-devel@oss.oracle.com
Cc: reiserfs-devel@vger.kernel.org
|
|
Pull core block IO changes from Jens Axboe:
"The major piece in here is the immutable bio_ve series from Kent, the
rest is fairly minor. It was supposed to go in last round, but
various issues pushed it to this release instead. The pull request
contains:
- Various smaller blk-mq fixes from different folks. Nothing major
here, just minor fixes and cleanups.
- Fix for a memory leak in the error path in the block ioctl code
from Christian Engelmayer.
- Header export fix from CaiZhiyong.
- Finally the immutable biovec changes from Kent Overstreet. This
enables some nice future work on making arbitrarily sized bios
possible, and splitting more efficient. Related fixes to immutable
bio_vecs:
- dm-cache immutable fixup from Mike Snitzer.
- btrfs immutable fixup from Muthu Kumar.
- bio-integrity fix from Nic Bellinger, which is also going to stable"
* 'for-3.14/core' of git://git.kernel.dk/linux-block: (44 commits)
xtensa: fixup simdisk driver to work with immutable bio_vecs
block/blk-mq-cpu.c: use hotcpu_notifier()
blk-mq: for_each_* macro correctness
block: Fix memory leak in rw_copy_check_uvector() handling
bio-integrity: Fix bio_integrity_verify segment start bug
block: remove unrelated header files and export symbol
blk-mq: uses page->list incorrectly
blk-mq: use __smp_call_function_single directly
btrfs: fix missing increment of bi_remaining
Revert "block: Warn and free bio if bi_end_io is not set"
block: Warn and free bio if bi_end_io is not set
blk-mq: fix initializing request's start time
block: blk-mq: don't export blk_mq_free_queue()
block: blk-mq: make blk_sync_queue support mq
block: blk-mq: support draining mq queue
dm cache: increment bi_remaining when bi_end_io is restored
block: fixup for generic bio chaining
block: Really silence spurious compiler warnings
block: Silence spurious compiler warnings
block: Kill bio_pair_split()
...
|
|
Add comments for ioctls in fs/nilfs2/ioctl.c file and describe NILFS2
specific ioctls in Documentation/filesystems/nilfs2.txt.
Signed-off-by: Vyacheslav Dubeyko <slava@dubeyko.com>
Reviewed-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Wenliang Fan <fanwlexca@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The local variable 'pos' in nilfs_ioctl_wrap_copy function can overflow if
a large number was passed to argv->v_index from userspace and the sum of
argv->v_index and argv->v_nmembs exceeds the maximum value of __u64 type
integer (= ~(__u64)0 = 18446744073709551615).
Here, argv->v_index is a 64-bit width argument to specify the start
position of target data items (such as segment number, checkpoint number,
or virtual block address of nilfs), and argv->v_nmembs gives the total
number of the items that userland programs (such as lssu, lscp, or
cleanerd) want to get information about, which also gives the maximum
element count of argv->v_base[] array.
nilfs_ioctl_wrap_copy() calls dofunc() repeatedly and increments the
position variable 'pos' at the end of each iteration if dofunc() itself
didn't update 'pos':
if (pos == ppos)
pos += n;
This patch prevents the overflow here by rejecting pairs of a start
position (argv->v_index) and a total count (argv->v_nmembs) which leads to
the overflow.
[konishi.ryusuke@lab.ntt.co.jp: fix signedness issue]
Signed-off-by: Wenliang Fan <fanwlexca@gmail.com>
Cc: Vyacheslav Dubeyko <slava@dubeyko.com>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There is a bug in the function nilfs_segctor_collect, which results in
active data being written to a segment, that is marked as clean. It is
possible, that this segment is selected for a later segment
construction, whereby the old data is overwritten.
The problem shows itself with the following kernel log message:
nilfs_sufile_do_cancel_free: segment 6533 must be clean
Usually a few hours later the file system gets corrupted:
NILFS: bad btree node (blocknr=8748107): level = 0, flags = 0x0, nchildren = 0
NILFS error (device sdc1): nilfs_bmap_last_key: broken bmap (inode number=114660)
The issue can be reproduced with a file system that is nearly full and
with the cleaner running, while some IO intensive task is running.
Although it is quite hard to reproduce.
This is what happens:
1. The cleaner starts the segment construction
2. nilfs_segctor_collect is called
3. sc_stage is on NILFS_ST_SUFILE and segments are freed
4. sc_stage is on NILFS_ST_DAT current segment is full
5. nilfs_segctor_extend_segments is called, which
allocates a new segment
6. The new segment is one of the segments freed in step 3
7. nilfs_sufile_cancel_freev is called and produces an error message
8. Loop around and the collection starts again
9. sc_stage is on NILFS_ST_SUFILE and segments are freed
including the newly allocated segment, which will contain active
data and can be allocated at a later time
10. A few hours later another segment construction allocates the
segment and causes file system corruption
This can be prevented by simply reordering the statements. If
nilfs_sufile_cancel_freev is called before nilfs_segctor_extend_segments
the freed segments are marked as dirty and cannot be allocated any more.
Signed-off-by: Andreas Rohner <andreas.rohner@gmx.net>
Reviewed-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Tested-by: Andreas Rohner <andreas.rohner@gmx.net>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Immutable biovecs are going to require an explicit iterator. To
implement immutable bvecs, a later patch is going to add a bi_bvec_done
member to this struct; for now, this patch effectively just renames
things.
Signed-off-by: Kent Overstreet <kmo@daterainc.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Ed L. Cashin" <ecashin@coraid.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Lars Ellenberg <drbd-dev@lists.linbit.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Yehuda Sadeh <yehuda@inktank.com>
Cc: Sage Weil <sage@inktank.com>
Cc: Alex Elder <elder@inktank.com>
Cc: ceph-devel@vger.kernel.org
Cc: Joshua Morris <josh.h.morris@us.ibm.com>
Cc: Philip Kelleher <pjk1939@linux.vnet.ibm.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Neil Brown <neilb@suse.de>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Mike Snitzer <snitzer@redhat.com>
Cc: dm-devel@redhat.com
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: linux390@de.ibm.com
Cc: Boaz Harrosh <bharrosh@panasas.com>
Cc: Benny Halevy <bhalevy@tonian.com>
Cc: "James E.J. Bottomley" <JBottomley@parallels.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Nicholas A. Bellinger" <nab@linux-iscsi.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Chris Mason <chris.mason@fusionio.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Jaegeuk Kim <jaegeuk.kim@samsung.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Dave Kleikamp <shaggy@kernel.org>
Cc: Joern Engel <joern@logfs.org>
Cc: Prasad Joshi <prasadjoshi.linux@gmail.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Ben Myers <bpm@sgi.com>
Cc: xfs@oss.sgi.com
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Guo Chao <yan@linux.vnet.ibm.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Asai Thambi S P <asamymuthupa@micron.com>
Cc: Selvan Mani <smani@micron.com>
Cc: Sam Bradshaw <sbradshaw@micron.com>
Cc: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Cc: "Roger Pau Monné" <roger.pau@citrix.com>
Cc: Jan Beulich <jbeulich@suse.com>
Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Cc: Ian Campbell <Ian.Campbell@citrix.com>
Cc: Sebastian Ott <sebott@linux.vnet.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Jerome Marchand <jmarchand@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Peng Tao <tao.peng@emc.com>
Cc: Andy Adamson <andros@netapp.com>
Cc: fanchaoting <fanchaoting@cn.fujitsu.com>
Cc: Jie Liu <jeff.liu@oracle.com>
Cc: Sunil Mushran <sunil.mushran@gmail.com>
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Namjae Jeon <namjae.jeon@samsung.com>
Cc: Pankaj Kumar <pankaj.km@samsung.com>
Cc: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Mel Gorman <mgorman@suse.de>6
|