Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull hardening updates from Kees Cook:
"Beyond some specific LoadPin, UBSAN, and fortify features, there are
other fixes scattered around in various subsystems where maintainers
were okay with me carrying them in my tree or were non-responsive but
the patches were reviewed by others:
- Replace 0-length and 1-element arrays with flexible arrays in
various subsystems (Paulo Miguel Almeida, Stephen Rothwell, Kees
Cook)
- randstruct: Disable Clang 15 support (Eric Biggers)
- GCC plugins: Drop -std=gnu++11 flag (Sam James)
- strpbrk(): Refactor to use strchr() (Andy Shevchenko)
- LoadPin LSM: Allow root filesystem switching when non-enforcing
- fortify: Use dynamic object size hints when available
- ext4: Fix CFI function prototype mismatch
- Nouveau: Fix DP buffer size arguments
- hisilicon: Wipe entire crypto DMA pool on error
- coda: Fully allocate sig_inputArgs
- UBSAN: Improve arm64 trap code reporting
- copy_struct_from_user(): Add minimum bounds check on kernel buffer
size"
* tag 'hardening-v6.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
randstruct: disable Clang 15 support
uaccess: Add minimum bounds check on kernel buffer size
arm64: Support Clang UBSAN trap codes for better reporting
coda: Avoid partial allocation of sig_inputArgs
gcc-plugins: drop -std=gnu++11 to fix GCC 13 build
lib/string: Use strchr() in strpbrk()
crypto: hisilicon: Wipe entire pool on error
net/i40e: Replace 0-length array with flexible array
io_uring: Replace 0-length array with flexible array
ext4: Fix function prototype mismatch for ext4_feat_ktype
i915/gvt: Replace one-element array with flexible-array member
drm/nouveau/disp: Fix nvif_outp_acquire_dp() argument size
LoadPin: Allow filesystem switch when not enforcing
LoadPin: Move pin reporting cleanly out of locking
LoadPin: Refactor sysctl initialization
LoadPin: Refactor read-only check into a helper
ARM: ixp4xx: Replace 0-length arrays with flexible arrays
fortify: Use __builtin_dynamic_object_size() when available
rxrpc: replace zero-lenth array with DECLARE_FLEX_ARRAY() helper
|
|
Pull fsverity updates from Eric Biggers:
"Fix the longstanding implementation limitation that fsverity was only
supported when the Merkle tree block size, filesystem block size, and
PAGE_SIZE were all equal.
Specifically, add support for Merkle tree block sizes less than
PAGE_SIZE, and make ext4 support fsverity on filesystems where the
filesystem block size is less than PAGE_SIZE.
Effectively, this means that fsverity can now be used on systems with
non-4K pages, at least on ext4. These changes have been tested using
the verity group of xfstests, newly updated to cover the new code
paths.
Also update fs/verity/ to support verifying data from large folios.
There's also a similar patch for fs/crypto/, to support decrypting
data from large folios, which I'm including in here to avoid a merge
conflict between the fscrypt and fsverity branches"
* tag 'fsverity-for-linus' of git://git.kernel.org/pub/scm/fs/fsverity/linux:
fscrypt: support decrypting data from large folios
fsverity: support verifying data from large folios
fsverity.rst: update git repo URL for fsverity-utils
ext4: allow verity with fs block size < PAGE_SIZE
fs/buffer.c: support fsverity in block_read_full_folio()
f2fs: simplify f2fs_readpage_limit()
ext4: simplify ext4_readpage_limit()
fsverity: support enabling with tree block size < PAGE_SIZE
fsverity: support verification with tree block size < PAGE_SIZE
fsverity: replace fsverity_hash_page() with fsverity_hash_block()
fsverity: use EFBIG for file too large to enable verity
fsverity: store log2(digest_size) precomputed
fsverity: simplify Merkle tree readahead size calculation
fsverity: use unsigned long for level_start
fsverity: remove debug messages and CONFIG_FS_VERITY_DEBUG
fsverity: pass pos and size to ->write_merkle_tree_block
fsverity: optimize fsverity_cleanup_inode() on non-verity files
fsverity: optimize fsverity_prepare_setattr() on non-verity files
fsverity: optimize fsverity_file_open() on non-verity files
|
|
Pull fscrypt updates from Eric Biggers:
"Simplify the implementation of the test_dummy_encryption mount option
by adding the 'test dummy key' on-demand"
* tag 'fscrypt-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/linux:
fscrypt: clean up fscrypt_add_test_dummy_key()
fs/super.c: stop calling fscrypt_destroy_keyring() from __put_super()
f2fs: stop calling fscrypt_add_test_dummy_key()
ext4: stop calling fscrypt_add_test_dummy_key()
fscrypt: add the test dummy encryption key on-demand
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping
Pull vfs idmapping updates from Christian Brauner:
- Last cycle we introduced the dedicated struct mnt_idmap type for
mount idmapping and the required infrastucture in 256c8aed2b42 ("fs:
introduce dedicated idmap type for mounts"). As promised in last
cycle's pull request message this converts everything to rely on
struct mnt_idmap.
Currently we still pass around the plain namespace that was attached
to a mount. This is in general pretty convenient but it makes it easy
to conflate namespaces that are relevant on the filesystem with
namespaces that are relevant on the mount level. Especially for
non-vfs developers without detailed knowledge in this area this was a
potential source for bugs.
This finishes the conversion. Instead of passing the plain namespace
around this updates all places that currently take a pointer to a
mnt_userns with a pointer to struct mnt_idmap.
Now that the conversion is done all helpers down to the really
low-level helpers only accept a struct mnt_idmap argument instead of
two namespace arguments.
Conflating mount and other idmappings will now cause the compiler to
complain loudly thus eliminating the possibility of any bugs. This
makes it impossible for filesystem developers to mix up mount and
filesystem idmappings as they are two distinct types and require
distinct helpers that cannot be used interchangeably.
Everything associated with struct mnt_idmap is moved into a single
separate file. With that change no code can poke around in struct
mnt_idmap. It can only be interacted with through dedicated helpers.
That means all filesystems are and all of the vfs is completely
oblivious to the actual implementation of idmappings.
We are now also able to extend struct mnt_idmap as we see fit. For
example, we can decouple it completely from namespaces for users that
don't require or don't want to use them at all. We can also extend
the concept of idmappings so we can cover filesystem specific
requirements.
In combination with the vfs{g,u}id_t work we finished in v6.2 this
makes this feature substantially more robust and thus difficult to
implement wrong by a given filesystem and also protects the vfs.
- Enable idmapped mounts for tmpfs and fulfill a longstanding request.
A long-standing request from users had been to make it possible to
create idmapped mounts for tmpfs. For example, to share the host's
tmpfs mount between multiple sandboxes. This is a prerequisite for
some advanced Kubernetes cases. Systemd also has a range of use-cases
to increase service isolation. And there are more users of this.
However, with all of the other work going on this was way down on the
priority list but luckily someone other than ourselves picked this
up.
As usual the patch is tiny as all the infrastructure work had been
done multiple kernel releases ago. In addition to all the tests that
we already have I requested that Rodrigo add a dedicated tmpfs
testsuite for idmapped mounts to xfstests. It is to be included into
xfstests during the v6.3 development cycle. This should add a slew of
additional tests.
* tag 'fs.idmapped.v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping: (26 commits)
shmem: support idmapped mounts for tmpfs
fs: move mnt_idmap
fs: port vfs{g,u}id helpers to mnt_idmap
fs: port fs{g,u}id helpers to mnt_idmap
fs: port i_{g,u}id_into_vfs{g,u}id() to mnt_idmap
fs: port i_{g,u}id_{needs_}update() to mnt_idmap
quota: port to mnt_idmap
fs: port privilege checking helpers to mnt_idmap
fs: port inode_owner_or_capable() to mnt_idmap
fs: port inode_init_owner() to mnt_idmap
fs: port acl to mnt_idmap
fs: port xattr to mnt_idmap
fs: port ->permission() to pass mnt_idmap
fs: port ->fileattr_set() to pass mnt_idmap
fs: port ->set_acl() to pass mnt_idmap
fs: port ->get_acl() to pass mnt_idmap
fs: port ->tmpfile() to pass mnt_idmap
fs: port ->rename() to pass mnt_idmap
fs: port ->mknod() to pass mnt_idmap
fs: port ->mkdir() to pass mnt_idmap
...
|
|
Syzbot reported a hung task problem:
==================================================================
INFO: task syz-executor232:5073 blocked for more than 143 seconds.
Not tainted 6.2.0-rc2-syzkaller-00024-g512dee0c00ad #0
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:syz-exec232 state:D stack:21024 pid:5073 ppid:5072 flags:0x00004004
Call Trace:
<TASK>
context_switch kernel/sched/core.c:5244 [inline]
__schedule+0x995/0xe20 kernel/sched/core.c:6555
schedule+0xcb/0x190 kernel/sched/core.c:6631
__wait_on_freeing_inode fs/inode.c:2196 [inline]
find_inode_fast+0x35a/0x4c0 fs/inode.c:950
iget_locked+0xb1/0x830 fs/inode.c:1273
__ext4_iget+0x22e/0x3ed0 fs/ext4/inode.c:4861
ext4_xattr_inode_iget+0x68/0x4e0 fs/ext4/xattr.c:389
ext4_xattr_inode_dec_ref_all+0x1a7/0xe50 fs/ext4/xattr.c:1148
ext4_xattr_delete_inode+0xb04/0xcd0 fs/ext4/xattr.c:2880
ext4_evict_inode+0xd7c/0x10b0 fs/ext4/inode.c:296
evict+0x2a4/0x620 fs/inode.c:664
ext4_orphan_cleanup+0xb60/0x1340 fs/ext4/orphan.c:474
__ext4_fill_super fs/ext4/super.c:5516 [inline]
ext4_fill_super+0x81cd/0x8700 fs/ext4/super.c:5644
get_tree_bdev+0x400/0x620 fs/super.c:1282
vfs_get_tree+0x88/0x270 fs/super.c:1489
do_new_mount+0x289/0xad0 fs/namespace.c:3145
do_mount fs/namespace.c:3488 [inline]
__do_sys_mount fs/namespace.c:3697 [inline]
__se_sys_mount+0x2d3/0x3c0 fs/namespace.c:3674
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7fa5406fd5ea
RSP: 002b:00007ffc7232f968 EFLAGS: 00000202 ORIG_RAX: 00000000000000a5
RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fa5406fd5ea
RDX: 0000000020000440 RSI: 0000000020000000 RDI: 00007ffc7232f970
RBP: 00007ffc7232f970 R08: 00007ffc7232f9b0 R09: 0000000000000432
R10: 0000000000804a03 R11: 0000000000000202 R12: 0000000000000004
R13: 0000555556a7a2c0 R14: 00007ffc7232f9b0 R15: 0000000000000000
</TASK>
==================================================================
The problem is that the inode contains an xattr entry with ea_inum of 15
when cleaning up an orphan inode <15>. When evict inode <15>, the reference
counting of the corresponding EA inode is decreased. When EA inode <15> is
found by find_inode_fast() in __ext4_iget(), it is found that the EA inode
holds the I_FREEING flag and waits for the EA inode to complete deletion.
As a result, when inode <15> is being deleted, we wait for inode <15> to
complete the deletion, resulting in an infinite loop and triggering Hung
Task. To solve this problem, we only need to check whether the ino of EA
inode and parent is the same before getting EA inode.
Link: https://syzkaller.appspot.com/bug?extid=77d6fcc37bbb92f26048
Reported-by: syzbot+77d6fcc37bbb92f26048@syzkaller.appspotmail.com
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20230110133436.996350-1-libaokun1@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
When mounting a crafted ext4 image, s_journal_inum may change after journal
replay, which is obviously unreasonable because we have successfully loaded
and replayed the journal through the old s_journal_inum. And the new
s_journal_inum bypasses some of the checks in ext4_get_journal(), which
may trigger a null pointer dereference problem. So if s_journal_inum
changes after the journal replay, we ignore the change, and rewrite the
current journal_inum to the superblock.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216541
Reported-by: Luís Henriques <lhenriques@suse.de>
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20230107032126.4165860-3-libaokun1@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
In ext4_fill_super(), EXT4_ORPHAN_FS flag is cleared after
ext4_orphan_cleanup() is executed. Therefore, when __ext4_iget() is
called to get an inode whose i_nlink is 0 when the flag exists, no error
is returned. If the inode is a special inode, a null pointer dereference
may occur. If the value of i_nlink is 0 for any inodes (except boot loader
inodes) got by using the EXT4_IGET_SPECIAL flag, the current file system
is corrupted. Therefore, make the ext4_iget() function return an error if
it gets such an abnormal special inode.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=199179
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216541
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216539
Reported-by: Luís Henriques <lhenriques@suse.de>
Suggested-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20230107032126.4165860-2-libaokun1@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG),
indirect call targets are validated against the expected function
pointer prototype to make sure the call target is valid to help mitigate
ROP attacks. If they are not identical, there is a failure at run time,
which manifests as either a kernel panic or thread getting killed.
ext4_feat_ktype was setting the "release" handler to "kfree", which
doesn't have a matching function prototype. Add a simple wrapper
with the correct prototype.
This was found as a result of Clang's new -Wcast-function-type-strict
flag, which is more sensitive than the simpler -Wcast-function-type,
which only checks for type width mismatches.
Note that this code is only reached when ext4 is a loadable module and
it is being unloaded:
CFI failure at kobject_put+0xbb/0x1b0 (target: kfree+0x0/0x180; expected type: 0x7c4aa698)
...
RIP: 0010:kobject_put+0xbb/0x1b0
...
Call Trace:
<TASK>
ext4_exit_sysfs+0x14/0x60 [ext4]
cleanup_module+0x67/0xedb [ext4]
Fixes: b99fee58a20a ("ext4: create ext4_feat kobject dynamically")
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: stable@vger.kernel.org
Build-tested-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lore.kernel.org/r/20230103234616.never.915-kees@kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20230104210908.gonna.388-kees@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
Variables are assigned first and then used. Initialization is not required.
Signed-off-by: XU pengfei <xupengfei@nfschina.com>
Link: https://lore.kernel.org/r/20230104055229.3663-1-xupengfei@nfschina.com
|
|
If ENOMEM fails when the extent is splitting, we need to restore the length
of the split extent.
In the ext4_split_extent_at function, only in ext4_ext_create_new_leaf will
it alloc memory and change the shape of the extent tree,even if an ENOMEM
is returned at this time, the extent tree is still self-consistent, Just
restore the split extent lens in the function ext4_split_extent_at.
ext4_split_extent_at
ext4_ext_insert_extent
ext4_ext_create_new_leaf
1)ext4_ext_split
ext4_find_extent
2)ext4_ext_grow_indepth
ext4_find_extent
Signed-off-by: zhanchengbin <zhanchengbin1@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20230103022812.130603-1-zhanchengbin1@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
The ea block expansion need to access s_root while it is
already set as NULL when umount is triggered. Refuse this
request to avoid panic.
Reported-by: syzbot+2dacb8f015bf1420155f@syzkaller.appspotmail.com
Link: https://syzkaller.appspot.com/bug?id=3613786cb88c93aa1c6a279b1df6a7b201347d08
Link: https://lore.kernel.org/r/20230103014517.495275-3-jun.nie@linaro.org
Cc: stable@kernel.org
Signed-off-by: Jun Nie <jun.nie@linaro.org>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
Copy ea data from inode entry when expanding ea block if possible.
Then remove the ea entry if expansion success. Thus memcpy to a
temporary buffer may be avoided.
If the expansion fails, we do not need to recovery the removed ea
entry neither in this way.
Reported-by: syzbot+2dacb8f015bf1420155f@syzkaller.appspotmail.com
Link: https://syzkaller.appspot.com/bug?id=3613786cb88c93aa1c6a279b1df6a7b201347d08
Link: https://lore.kernel.org/r/20230103014517.495275-2-jun.nie@linaro.org
Cc: stable@kernel.org
Signed-off-by: Jun Nie <jun.nie@linaro.org>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
ext4_update_backup_sb checks for err having some value
after unlocking buffer. But err has not been updated
till that point in any code which will lead execution
of the code in question.
Signed-off-by: Tanmay Bhushan <007047221b@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221230141858.3828-1-007047221b@gmail.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
In the dio write path, we only take shared inode lock for the case of
aligned overwriting initialized blocks inside EOF. But for overwriting
preallocated blocks, it may only need to split unwritten extents, this
procedure has been protected under i_data_sem lock, it's safe to
release the exclusive inode lock and take shared inode lock.
This could give a significant speed up for multi-threaded writes. Test
on Intel Xeon Gold 6140 and nvme SSD with below fio parameters.
direct=1
ioengine=libaio
iodepth=10
numjobs=10
runtime=60
rw=randwrite
size=100G
And the test result are:
Before:
bs=4k IOPS=11.1k, BW=43.2MiB/s
bs=16k IOPS=11.1k, BW=173MiB/s
bs=64k IOPS=11.2k, BW=697MiB/s
After:
bs=4k IOPS=41.4k, BW=162MiB/s
bs=16k IOPS=41.3k, BW=646MiB/s
bs=64k IOPS=13.5k, BW=843MiB/s
Signed-off-by: Zhang Yi <yi.zhang@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221226062015.3479416-1-yi.zhang@huaweicloud.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
Replace direct modifications to vma->vm_flags with calls to modifier
functions to be able to track flag changes and to keep vma locking
correctness.
[akpm@linux-foundation.org: fix drivers/misc/open-dice.c, per Hyeonggon Yoo]
Link: https://lkml.kernel.org/r/20230126193752.297968-5-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Sebastian Reichel <sebastian.reichel@collabora.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjun Roy <arjunroy@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Minchan Kim <minchan@google.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Oskolkov <posk@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Punit Agrawal <punit.agrawal@bytedance.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Soheil Hassas Yeganeh <soheil@google.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
If commit interval is 0, it means using default value.
Fixes: 6e47a3cc68fc ("ext4: get rid of super block and sbi from handle_mount_ops()")
Signed-off-by: Wang Jianjian <wangjianjian3@huawei.com>
Link: https://lore.kernel.org/r/20221219015128.876717-1-wangjianjian3@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
To avoid 'sparse' warnings about missing endianness conversions, don't
store native endianness values into struct ext4_fc_tl. Instead, use a
separate struct type, ext4_fc_tl_mem.
Fixes: dcc5827484d6 ("ext4: factor out ext4_fc_get_tl()")
Cc: Ye Bin <yebin10@huawei.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221217050212.150665-1-ebiggers@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
Refactor the in-inode and xattr block consistency checking, and report
more fine-grained reports of the consistency problems. Also add more
consistency checks for ea_inode number.
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Link: https://lore.kernel.org/r/20221214200818.870087-1-tytso@mit.edu
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
Now that fs/crypto/ adds the test dummy encryption key on-demand when
it's needed, there's no need for individual filesystems to call
fscrypt_add_test_dummy_key(). Remove the call to it from ext4.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20230208062107.199831-3-ebiggers@kernel.org
|
|
Use try_cmpxchg instead of cmpxchg (*ptr, old, new) == old in
ext4_update_bh_state. x86 CMPXCHG instruction returns success in ZF flag,
so this change saves a compare after cmpxchg (and related move instruction
in front of cmpxchg).
Also, try_cmpxchg implicitly assigns old *ptr value to "old" when cmpxchg
fails. There is no need to re-read the value in the loop.
No functional change intended.
Link: https://lkml.kernel.org/r/20221102071147.6642-1-ubizjak@gmail.com
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "Convert writepage_t to use a folio".
More folioisation. I split out the mpage work from everything else
because it completely dominated the patch, but some implementations I just
converted outright.
This patch (of 2):
We always write back an entire folio, but that's currently passed as the
head page. Convert all filesystems that use write_cache_pages() to expect
a folio instead of a page.
Link: https://lkml.kernel.org/r/20230126201255.1681189-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20230126201255.1681189-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Convert the function to use folios throughout. This is in preparation for
the removal of find_get_pages_range_tag(). Now supports large folios.
This change removes 11 calls to compound_head().
Link: https://lkml.kernel.org/r/20230104211448.4804-11-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Try to make the filesystem-level decryption functions in fs/crypto/
aware of large folios. This includes making fscrypt_decrypt_bio()
support the case where the bio contains large folios, and making
fscrypt_decrypt_pagecache_blocks() take a folio instead of a page.
There's no way to actually test this with large folios yet, but I've
tested that this doesn't cause any regressions.
Note that this patch just handles *decryption*, not encryption which
will be a little more difficult.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: https://lore.kernel.org/r/20230127224202.355629-1-ebiggers@kernel.org
|
|
With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG),
indirect call targets are validated against the expected function
pointer prototype to make sure the call target is valid to help mitigate
ROP attacks. If they are not identical, there is a failure at run time,
which manifests as either a kernel panic or thread getting killed.
ext4_feat_ktype was setting the "release" handler to "kfree", which
doesn't have a matching function prototype. Add a simple wrapper
with the correct prototype.
This was found as a result of Clang's new -Wcast-function-type-strict
flag, which is more sensitive than the simpler -Wcast-function-type,
which only checks for type width mismatches.
Note that this code is only reached when ext4 is a loadable module and
it is being unloaded:
CFI failure at kobject_put+0xbb/0x1b0 (target: kfree+0x0/0x180; expected type: 0x7c4aa698)
...
RIP: 0010:kobject_put+0xbb/0x1b0
...
Call Trace:
<TASK>
ext4_exit_sysfs+0x14/0x60 [ext4]
cleanup_module+0x67/0xedb [ext4]
Fixes: b99fee58a20a ("ext4: create ext4_feat kobject dynamically")
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: stable@vger.kernel.org
Build-tested-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lore.kernel.org/r/20230103234616.never.915-kees@kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20230104210908.gonna.388-kees@kernel.org
|
|
Commit f3bbac32475b ("ext4: deal with legacy signed xattr name hash
values") added a hashing function for the legacy case of having the
xattr hash calculated using a signed 'char' type. It left the unsigned
case alone, since it's all implicitly handled by the '-funsigned-char'
compiler option.
However, there's been some noise about back-porting it all into stable
kernels that lack the '-funsigned-char', so let's just make that at
least possible by making the whole 'this uses unsigned char' very
explicit in the code itself. Whether such a back-port is really
warranted or not, I'll leave to others, but at least together with this
change it is technically sensible.
Also, add a 'pr_warn_once()' for reporting the "hey, signedness for this
hash calculation has changed" issue. Hopefully it never triggers except
for that xfstests generic/454 test-case, but even if it does it's just
good information to have.
If for no other reason than "we can remove the legacy signed hash code
entirely if nobody ever sees the message any more".
Cc: Sasha Levin <sashal@kernel.org>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Andreas Dilger <adilger@dilger.ca>
Cc: Theodore Ts'o <tytso@mit.edu>,
Cc: Jason Donenfeld <Jason@zx2c4.com>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We potentially have old hashes of the xattr names generated on systems
with signed 'char' types. Now that everybody uses '-funsigned-char',
those hashes will no longer match.
This only happens if you use xattrs names that have the high bit set,
which probably doesn't happen in practice, but the xfstest generic/454
shows it.
Instead of adding a new "signed xattr hash filesystem" bit and having to
deal with all the possible combinations, just calculate the hash both
ways if the first one fails, and always generate new hashes with the
proper unsigned char version.
Reported-by: kernel test robot <oliver.sang@intel.com>
Link: https://lore.kernel.org/oe-lkp/202212291509.704a11c9-oliver.sang@intel.com
Link: https://lore.kernel.org/all/CAHk-=whUNjwqZXa-MH9KMmc_CpQpoFKFjAB9ZKHuu=TbsouT4A@mail.gmail.com/
Exposed-by: 3bc753c06dd0 ("kbuild: treat char as always unsigned")
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Andreas Dilger <adilger@dilger.ca>
Cc: Theodore Ts'o <tytso@mit.edu>,
Cc: Jason Donenfeld <Jason@zx2c4.com>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert mext_page_double_lock() to use folios. This change saves 146
bytes of kernel text. It also removes 6 calls to compound_head() and 2
calls to folio_file_page().
Link: https://lkml.kernel.org/r/20221207181009.4016-1-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Now that the needed changes have been made to fs/buffer.c, ext4 is ready
to support the verity feature when the filesystem block size is less
than the page size. So remove the mount-time check that prevented this.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Tested-by: Ojaswin Mujoo <ojaswin@linux.ibm.com>
Link: https://lore.kernel.org/r/20221223203638.41293-12-ebiggers@kernel.org
|
|
Now that the implementation of FS_IOC_ENABLE_VERITY has changed to not
involve reading back Merkle tree blocks that were previously written,
there is no need for ext4_readpage_limit() to allow for this case.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Tested-by: Ojaswin Mujoo <ojaswin@linux.ibm.com>
Link: https://lore.kernel.org/r/20221223203638.41293-9-ebiggers@kernel.org
|
|
fsverity_operations::write_merkle_tree_block is passed the index of the
block to write and the log base 2 of the block size. However, all
implementations of it use these parameters only to calculate the
position and the size of the block, in bytes.
Therefore, make ->write_merkle_tree_block take 'pos' and 'size'
parameters instead of 'index' and 'log_blocksize'.
Suggested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Dave Chinner <dchinner@redhat.com>
Link: https://lore.kernel.org/r/20221214224304.145712-5-ebiggers@kernel.org
|
|
Due to several bugs caused by timers being re-armed after they are
shutdown and just before they are freed, a new state of timers was added
called "shutdown". After a timer is set to this state, then it can no
longer be re-armed.
The following script was run to find all the trivial locations where
del_timer() or del_timer_sync() is called in the same function that the
object holding the timer is freed. It also ignores any locations where
the timer->function is modified between the del_timer*() and the free(),
as that is not considered a "trivial" case.
This was created by using a coccinelle script and the following
commands:
$ cat timer.cocci
@@
expression ptr, slab;
identifier timer, rfield;
@@
(
- del_timer(&ptr->timer);
+ timer_shutdown(&ptr->timer);
|
- del_timer_sync(&ptr->timer);
+ timer_shutdown_sync(&ptr->timer);
)
... when strict
when != ptr->timer
(
kfree_rcu(ptr, rfield);
|
kmem_cache_free(slab, ptr);
|
kfree(ptr);
)
$ spatch timer.cocci . > /tmp/t.patch
$ patch -p1 < /tmp/t.patch
Link: https://lore.kernel.org/lkml/20221123201306.823305113@linutronix.de/
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Pavel Machek <pavel@ucw.cz> [ LED ]
Acked-by: Kalle Valo <kvalo@kernel.org> [ wireless ]
Acked-by: Paolo Abeni <pabeni@redhat.com> [ networking ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- More userfaultfs work from Peter Xu
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying
- Some filemap cleanups from Vishal Moola
- David Hildenbrand added the ability to selftest anon memory COW
handling
- Some cpuset simplifications from Liu Shixin
- Addition of vmalloc tracing support by Uladzislau Rezki
- Some pagecache folioifications and simplifications from Matthew
Wilcox
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use
it
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword.
This series should have been in the non-MM tree, my bad
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages
- Peter Xu utilized the PTE marker code for handling swapin errors
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand
- zram support for multiple compression streams from Sergey Senozhatsky
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations
- Vishal Moola removed the try_to_release_page() wrapper
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range()
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages()
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines
- Many singleton patches, as usual
* tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (313 commits)
mm/hugetlb: set head flag before setting compound_order in __prep_compound_gigantic_folio
mm: mmu_gather: allow more than one batch of delayed rmaps
mm: fix typo in struct pglist_data code comment
kmsan: fix memcpy tests
mm: add cond_resched() in swapin_walk_pmd_entry()
mm: do not show fs mm pc for VM_LOCKONFAULT pages
selftests/vm: ksm_functional_tests: fixes for 32bit
selftests/vm: cow: fix compile warning on 32bit
selftests/vm: madv_populate: fix missing MADV_POPULATE_(READ|WRITE) definitions
mm/gup_test: fix PIN_LONGTERM_TEST_READ with highmem
mm,thp,rmap: fix races between updates of subpages_mapcount
mm: memcg: fix swapcached stat accounting
mm: add nodes= arg to memory.reclaim
mm: disable top-tier fallback to reclaim on proactive reclaim
selftests: cgroup: make sure reclaim target memcg is unprotected
selftests: cgroup: refactor proactive reclaim code to reclaim_until()
mm: memcg: fix stale protection of reclaim target memcg
mm/mmap: properly unaccount memory on mas_preallocate() failure
omfs: remove ->writepage
jfs: remove ->writepage
...
|
|
git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt
Pull fsverity updates from Eric Biggers:
"The main change this cycle is to stop using the PG_error flag to track
verity failures, and instead just track failures at the bio level.
This follows a similar fscrypt change that went into 6.1, and it is a
step towards freeing up PG_error for other uses.
There's also one other small cleanup"
* tag 'fsverity-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt:
fsverity: simplify fsverity_get_digest()
fsverity: stop using PG_error to track error status
|