summaryrefslogtreecommitdiff
path: root/fs/btrfs
AgeCommit message (Collapse)AuthorFilesLines
2024-07-12Merge tag 'for-6.10-rc7-tag' of ↵Linus Torvalds3-29/+97
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "Fix a regression in extent map shrinker behaviour. In the past weeks we got reports from users that there are huge latency spikes or freezes. This was bisected to newly added shrinker of extent maps (it was added to fix a build up of the structures in memory). I'm assuming that the freezes would happen to many users after release so I'd like to get it merged now so it's in 6.10. Although the diff size is not small the changes are relatively straightforward, the reporters verified the fixes and we did testing on our side. The fixes: - adjust behaviour under memory pressure and check lock or scheduling conditions, bail out if needed - synchronize tracking of the scanning progress so inode ranges are not skipped or work duplicated - do a delayed iput when scanning a root so evicting an inode does not slow things down in case of lots of dirty data, also fix lockdep warning, a deadlock could happen when writing the dirty data would need to start a transaction" * tag 'for-6.10-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: avoid races when tracking progress for extent map shrinking btrfs: stop extent map shrinker if reschedule is needed btrfs: use delayed iput during extent map shrinking
2024-07-11btrfs: avoid races when tracking progress for extent map shrinkingFilipe Manana3-21/+66
We store the progress (root and inode numbers) of the extent map shrinker in fs_info without any synchronization but we can have multiple tasks calling into the shrinker during memory allocations when there's enough memory pressure for example. This can result in a task A reading fs_info->extent_map_shrinker_last_ino after another task B updates it, and task A reading fs_info->extent_map_shrinker_last_root before task B updates it, making task A see an odd state that isn't necessarily harmful but may make it skip certain inode ranges or do more work than necessary by going over the same inodes again. These unprotected accesses would also trigger warnings from tools like KCSAN. So add a lock to protect access to these progress fields. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: stop extent map shrinker if reschedule is neededFilipe Manana1-8/+31
The extent map shrinker can be called in a variety of contexts where we are under memory pressure, and of them is when a task is trying to allocate memory. For this reason the shrinker is typically called with a value of struct shrink_control::nr_to_scan that is much smaller than what we return in the nr_cached_objects callback of struct super_operations (fs/btrfs/super.c:btrfs_nr_cached_objects()), so that the shrinker does not take a long time and cause high latencies. However we can still take a lot of time in the shrinker even for a limited amount of nr_to_scan: 1) When traversing the red black tree that tracks open inodes in a root, as for example with millions of open inodes we get a deep tree which takes time searching for an inode; 2) Iterating over the extent map tree, which is a red black tree, of an inode when doing the rb_next() calls and when removing an extent map from the tree, since often that requires rebalancing the red black tree; 3) When trying to write lock an inode's extent map tree we may wait for a significant amount of time, because there's either another task about to do IO and searching for an extent map in the tree or inserting an extent map in the tree, and we can have thousands or even millions of extent maps for an inode. Furthermore, there can be concurrent calls to the shrinker so the lock might be busy simply because there is already another task shrinking extent maps for the same inode; 4) We often reschedule if we need to, which further increases latency. So improve on this by stopping the extent map shrinking code whenever we need to reschedule and make it skip an inode if we can't immediately lock its extent map tree. Reported-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com> Reported-by: Andrea Gelmini <andrea.gelmini@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CABXGCsMmmb36ym8hVNGTiU8yfUS_cGvoUmGCcBrGWq9OxTrs+A@mail.gmail.com/ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: use delayed iput during extent map shrinkingFilipe Manana1-1/+1
When putting an inode during extent map shrinking we're doing a standard iput() but that may take a long time in case the inode is dirty and we are doing the final iput that triggers eviction - the VFS will have to wait for writeback before calling the btrfs evict callback (see fs/inode.c:evict()). This slows down the task running the shrinker which may have been triggered while updating some tree for example, meaning locks are held as well as an open transaction handle. Also if the iput() ends up triggering eviction and the inode has no links anymore, then we trigger item truncation which requires flushing delayed items, space reservation to start a transaction and that may trigger the space reclaim task and wait for it, resulting in deadlocks in case the reclaim task needs for example to commit a transaction and the shrinker is being triggered from a path holding a transaction handle. Syzbot reported such a case with the following stack traces: ====================================================== WARNING: possible circular locking dependency detected 6.10.0-rc2-syzkaller-00010-g2ab795141095 #0 Not tainted ------------------------------------------------------ kswapd0/111 is trying to acquire lock: ffff88801eae4610 (sb_internal#3){.+.+}-{0:0}, at: btrfs_commit_inode_delayed_inode+0x110/0x330 fs/btrfs/delayed-inode.c:1275 but task is already holding lock: ffffffff8dd3a9a0 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0xa88/0x1970 mm/vmscan.c:6924 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (fs_reclaim){+.+.}-{0:0}: __fs_reclaim_acquire mm/page_alloc.c:3783 [inline] fs_reclaim_acquire+0x102/0x160 mm/page_alloc.c:3797 might_alloc include/linux/sched/mm.h:334 [inline] slab_pre_alloc_hook mm/slub.c:3890 [inline] slab_alloc_node mm/slub.c:3980 [inline] kmem_cache_alloc_lru_noprof+0x58/0x2f0 mm/slub.c:4019 btrfs_alloc_inode+0x118/0xb20 fs/btrfs/inode.c:8411 alloc_inode+0x5d/0x230 fs/inode.c:261 iget5_locked fs/inode.c:1235 [inline] iget5_locked+0x1c9/0x2c0 fs/inode.c:1228 btrfs_iget_locked fs/btrfs/inode.c:5590 [inline] btrfs_iget_path fs/btrfs/inode.c:5607 [inline] btrfs_iget+0xfb/0x230 fs/btrfs/inode.c:5636 create_reloc_inode+0x403/0x820 fs/btrfs/relocation.c:3911 btrfs_relocate_block_group+0x471/0xe60 fs/btrfs/relocation.c:4114 btrfs_relocate_chunk+0x143/0x450 fs/btrfs/volumes.c:3373 __btrfs_balance fs/btrfs/volumes.c:4157 [inline] btrfs_balance+0x211a/0x3f00 fs/btrfs/volumes.c:4534 btrfs_ioctl_balance fs/btrfs/ioctl.c:3675 [inline] btrfs_ioctl+0x12ed/0x8290 fs/btrfs/ioctl.c:4742 __do_compat_sys_ioctl+0x2c3/0x330 fs/ioctl.c:1007 do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline] __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386 do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411 entry_SYSENTER_compat_after_hwframe+0x84/0x8e -> #2 (btrfs_trans_num_extwriters){++++}-{0:0}: join_transaction+0x164/0xf40 fs/btrfs/transaction.c:315 start_transaction+0x427/0x1a70 fs/btrfs/transaction.c:700 btrfs_rebuild_free_space_tree+0xaa/0x480 fs/btrfs/free-space-tree.c:1323 btrfs_start_pre_rw_mount+0x218/0xf60 fs/btrfs/disk-io.c:2999 open_ctree+0x41ab/0x52e0 fs/btrfs/disk-io.c:3554 btrfs_fill_super fs/btrfs/super.c:946 [inline] btrfs_get_tree_super fs/btrfs/super.c:1863 [inline] btrfs_get_tree+0x11e9/0x1b90 fs/btrfs/super.c:2089 vfs_get_tree+0x8f/0x380 fs/super.c:1780 fc_mount+0x16/0xc0 fs/namespace.c:1125 btrfs_get_tree_subvol fs/btrfs/super.c:2052 [inline] btrfs_get_tree+0xa53/0x1b90 fs/btrfs/super.c:2090 vfs_get_tree+0x8f/0x380 fs/super.c:1780 do_new_mount fs/namespace.c:3352 [inline] path_mount+0x6e1/0x1f10 fs/namespace.c:3679 do_mount fs/namespace.c:3692 [inline] __do_sys_mount fs/namespace.c:3898 [inline] __se_sys_mount fs/namespace.c:3875 [inline] __ia32_sys_mount+0x295/0x320 fs/namespace.c:3875 do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline] __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386 do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411 entry_SYSENTER_compat_after_hwframe+0x84/0x8e -> #1 (btrfs_trans_num_writers){++++}-{0:0}: join_transaction+0x148/0xf40 fs/btrfs/transaction.c:314 start_transaction+0x427/0x1a70 fs/btrfs/transaction.c:700 btrfs_rebuild_free_space_tree+0xaa/0x480 fs/btrfs/free-space-tree.c:1323 btrfs_start_pre_rw_mount+0x218/0xf60 fs/btrfs/disk-io.c:2999 open_ctree+0x41ab/0x52e0 fs/btrfs/disk-io.c:3554 btrfs_fill_super fs/btrfs/super.c:946 [inline] btrfs_get_tree_super fs/btrfs/super.c:1863 [inline] btrfs_get_tree+0x11e9/0x1b90 fs/btrfs/super.c:2089 vfs_get_tree+0x8f/0x380 fs/super.c:1780 fc_mount+0x16/0xc0 fs/namespace.c:1125 btrfs_get_tree_subvol fs/btrfs/super.c:2052 [inline] btrfs_get_tree+0xa53/0x1b90 fs/btrfs/super.c:2090 vfs_get_tree+0x8f/0x380 fs/super.c:1780 do_new_mount fs/namespace.c:3352 [inline] path_mount+0x6e1/0x1f10 fs/namespace.c:3679 do_mount fs/namespace.c:3692 [inline] __do_sys_mount fs/namespace.c:3898 [inline] __se_sys_mount fs/namespace.c:3875 [inline] __ia32_sys_mount+0x295/0x320 fs/namespace.c:3875 do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline] __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386 do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411 entry_SYSENTER_compat_after_hwframe+0x84/0x8e -> #0 (sb_internal#3){.+.+}-{0:0}: check_prev_add kernel/locking/lockdep.c:3134 [inline] check_prevs_add kernel/locking/lockdep.c:3253 [inline] validate_chain kernel/locking/lockdep.c:3869 [inline] __lock_acquire+0x2478/0x3b30 kernel/locking/lockdep.c:5137 lock_acquire kernel/locking/lockdep.c:5754 [inline] lock_acquire+0x1b1/0x560 kernel/locking/lockdep.c:5719 percpu_down_read include/linux/percpu-rwsem.h:51 [inline] __sb_start_write include/linux/fs.h:1655 [inline] sb_start_intwrite include/linux/fs.h:1838 [inline] start_transaction+0xbc1/0x1a70 fs/btrfs/transaction.c:694 btrfs_commit_inode_delayed_inode+0x110/0x330 fs/btrfs/delayed-inode.c:1275 btrfs_evict_inode+0x960/0xe80 fs/btrfs/inode.c:5291 evict+0x2ed/0x6c0 fs/inode.c:667 iput_final fs/inode.c:1741 [inline] iput.part.0+0x5a8/0x7f0 fs/inode.c:1767 iput+0x5c/0x80 fs/inode.c:1757 btrfs_scan_root fs/btrfs/extent_map.c:1118 [inline] btrfs_free_extent_maps+0xbd3/0x1320 fs/btrfs/extent_map.c:1189 super_cache_scan+0x409/0x550 fs/super.c:227 do_shrink_slab+0x44f/0x11c0 mm/shrinker.c:435 shrink_slab+0x18a/0x1310 mm/shrinker.c:662 shrink_one+0x493/0x7c0 mm/vmscan.c:4790 shrink_many mm/vmscan.c:4851 [inline] lru_gen_shrink_node+0x89f/0x1750 mm/vmscan.c:4951 shrink_node mm/vmscan.c:5910 [inline] kswapd_shrink_node mm/vmscan.c:6720 [inline] balance_pgdat+0x1105/0x1970 mm/vmscan.c:6911 kswapd+0x5ea/0xbf0 mm/vmscan.c:7180 kthread+0x2c1/0x3a0 kernel/kthread.c:389 ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 other info that might help us debug this: Chain exists of: sb_internal#3 --> btrfs_trans_num_extwriters --> fs_reclaim Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(btrfs_trans_num_extwriters); lock(fs_reclaim); rlock(sb_internal#3); *** DEADLOCK *** 2 locks held by kswapd0/111: #0: ffffffff8dd3a9a0 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0xa88/0x1970 mm/vmscan.c:6924 #1: ffff88801eae40e0 (&type->s_umount_key#62){++++}-{3:3}, at: super_trylock_shared fs/super.c:562 [inline] #1: ffff88801eae40e0 (&type->s_umount_key#62){++++}-{3:3}, at: super_cache_scan+0x96/0x550 fs/super.c:196 stack backtrace: CPU: 0 PID: 111 Comm: kswapd0 Not tainted 6.10.0-rc2-syzkaller-00010-g2ab795141095 #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:114 check_noncircular+0x31a/0x400 kernel/locking/lockdep.c:2187 check_prev_add kernel/locking/lockdep.c:3134 [inline] check_prevs_add kernel/locking/lockdep.c:3253 [inline] validate_chain kernel/locking/lockdep.c:3869 [inline] __lock_acquire+0x2478/0x3b30 kernel/locking/lockdep.c:5137 lock_acquire kernel/locking/lockdep.c:5754 [inline] lock_acquire+0x1b1/0x560 kernel/locking/lockdep.c:5719 percpu_down_read include/linux/percpu-rwsem.h:51 [inline] __sb_start_write include/linux/fs.h:1655 [inline] sb_start_intwrite include/linux/fs.h:1838 [inline] start_transaction+0xbc1/0x1a70 fs/btrfs/transaction.c:694 btrfs_commit_inode_delayed_inode+0x110/0x330 fs/btrfs/delayed-inode.c:1275 btrfs_evict_inode+0x960/0xe80 fs/btrfs/inode.c:5291 evict+0x2ed/0x6c0 fs/inode.c:667 iput_final fs/inode.c:1741 [inline] iput.part.0+0x5a8/0x7f0 fs/inode.c:1767 iput+0x5c/0x80 fs/inode.c:1757 btrfs_scan_root fs/btrfs/extent_map.c:1118 [inline] btrfs_free_extent_maps+0xbd3/0x1320 fs/btrfs/extent_map.c:1189 super_cache_scan+0x409/0x550 fs/super.c:227 do_shrink_slab+0x44f/0x11c0 mm/shrinker.c:435 shrink_slab+0x18a/0x1310 mm/shrinker.c:662 shrink_one+0x493/0x7c0 mm/vmscan.c:4790 shrink_many mm/vmscan.c:4851 [inline] lru_gen_shrink_node+0x89f/0x1750 mm/vmscan.c:4951 shrink_node mm/vmscan.c:5910 [inline] kswapd_shrink_node mm/vmscan.c:6720 [inline] balance_pgdat+0x1105/0x1970 mm/vmscan.c:6911 kswapd+0x5ea/0xbf0 mm/vmscan.c:7180 kthread+0x2c1/0x3a0 kernel/kthread.c:389 ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> So fix this by using btrfs_add_delayed_iput() so that the final iput is delegated to the cleaner kthread. Link: https://lore.kernel.org/linux-btrfs/000000000000892280061a344581@google.com/ Reported-by: syzbot+3dad89b3993a4b275e72@syzkaller.appspotmail.com Fixes: 956a17d9d050 ("btrfs: add a shrinker for extent maps") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-04Merge tag 'for-6.10-rc6-tag' of ↵Linus Torvalds5-9/+38
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - fix folio refcounting when releasing them (encoded write, dummy extent buffer) - fix out of bounds read when checking qgroup inherit data - fix how configurable chunk size is handled in zoned mode - in the ref-verify tool, fix uninitialized return value when checking extent owner ref and simple quota are not enabled * tag 'for-6.10-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: fix folio refcount in __alloc_dummy_extent_buffer() btrfs: fix folio refcount in btrfs_do_encoded_write() btrfs: fix uninitialized return value in the ref-verify tool btrfs: always do the basic checks for btrfs_qgroup_inherit structure btrfs: zoned: fix calc_available_free_space() for zoned mode
2024-07-04btrfs: fix folio refcount in __alloc_dummy_extent_buffer()Boris Burkov1-1/+1
Another improper use of __folio_put() in an error path after freshly allocating pages/folios which returns them with the refcount initialized to 1. The refactor from __free_pages() -> __folio_put() (instead of folio_put) removed a refcount decrement found in __free_pages() and folio_put but absent from __folio_put(). Fixes: 13df3775efca ("btrfs: cleanup metadata page pointer usage") CC: stable@vger.kernel.org # 6.8+ Tested-by: Ed Tomlinson <edtoml@gmail.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-04btrfs: fix folio refcount in btrfs_do_encoded_write()Boris Burkov1-1/+1
The conversion to folios switched __free_page() to __folio_put() in the error path in btrfs_do_encoded_write(). However, this gets the page refcounting wrong. If we do hit that error path (I reproduced by modifying btrfs_do_encoded_write to pretend to always fail in a way that jumps to out_folios and running the fstests case btrfs/281), then we always hit the following BUG freeing the folio: BUG: Bad page state in process btrfs pfn:40ab0b page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x61be5 pfn:0x40ab0b flags: 0x5ffff0000000000(node=0|zone=2|lastcpupid=0x1ffff) raw: 05ffff0000000000 0000000000000000 dead000000000122 0000000000000000 raw: 0000000000061be5 0000000000000000 00000001ffffffff 0000000000000000 page dumped because: nonzero _refcount Call Trace: <TASK> dump_stack_lvl+0x3d/0xe0 bad_page+0xea/0xf0 free_unref_page+0x8e1/0x900 ? __mem_cgroup_uncharge+0x69/0x90 __folio_put+0xe6/0x190 btrfs_do_encoded_write+0x445/0x780 ? current_time+0x25/0xd0 btrfs_do_write_iter+0x2cc/0x4b0 btrfs_ioctl_encoded_write+0x2b6/0x340 It turns out __free_page() decreases the page reference count while __folio_put() does not. Switch __folio_put() to folio_put() which decreases the folio reference count first. Fixes: 400b172b8cdc ("btrfs: compression: migrate compression/decompression paths to folios") Tested-by: Ed Tomlinson <edtoml@gmail.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-02btrfs: fix uninitialized return value in the ref-verify toolFilipe Manana1-2/+7
In the ref-verify tool, when processing the inline references of an extent item, we may end up returning with uninitialized return value, because: 1) The 'ret' variable is not initialized if there are no inline extent references ('ptr' == 'end' before the while loop starts); 2) If we find an extent owner inline reference we don't initialize 'ret'. So fix these cases by initializing 'ret' to 0 when declaring the variable and set it to -EINVAL if we find an extent owner inline references and simple quotas are not enabled (as well as print an error message). Reported-by: Mirsad Todorovac <mtodorovac69@gmail.com> Link: https://lore.kernel.org/linux-btrfs/59b40ebe-c824-457d-8b24-0bbca69d472b@gmail.com/ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-02btrfs: always do the basic checks for btrfs_qgroup_inherit structureQu Wenruo1-2/+8
[BUG] Syzbot reports the following regression detected by KASAN: BUG: KASAN: slab-out-of-bounds in btrfs_qgroup_inherit+0x42e/0x2e20 fs/btrfs/qgroup.c:3277 Read of size 8 at addr ffff88814628ca50 by task syz-executor318/5171 CPU: 0 PID: 5171 Comm: syz-executor318 Not tainted 6.10.0-rc2-syzkaller-00010-g2ab795141095 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/02/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114 print_address_description mm/kasan/report.c:377 [inline] print_report+0x169/0x550 mm/kasan/report.c:488 kasan_report+0x143/0x180 mm/kasan/report.c:601 btrfs_qgroup_inherit+0x42e/0x2e20 fs/btrfs/qgroup.c:3277 create_pending_snapshot+0x1359/0x29b0 fs/btrfs/transaction.c:1854 create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1922 btrfs_commit_transaction+0xf20/0x3740 fs/btrfs/transaction.c:2382 create_snapshot+0x6a1/0x9e0 fs/btrfs/ioctl.c:875 btrfs_mksubvol+0x58f/0x710 fs/btrfs/ioctl.c:1029 btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1075 __btrfs_ioctl_snap_create+0x387/0x4b0 fs/btrfs/ioctl.c:1340 btrfs_ioctl_snap_create_v2+0x1f2/0x3a0 fs/btrfs/ioctl.c:1422 btrfs_ioctl+0x99e/0xc60 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:907 [inline] __se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7fcbf1992509 RSP: 002b:00007fcbf1928218 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007fcbf1a1f618 RCX: 00007fcbf1992509 RDX: 0000000020000280 RSI: 0000000050009417 RDI: 0000000000000003 RBP: 00007fcbf1a1f610 R08: 00007ffea1298e97 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007fcbf19eb660 R13: 00000000200002b8 R14: 00007fcbf19e60c0 R15: 0030656c69662f2e </TASK> And it also pinned it down to commit b5357cb268c4 ("btrfs: qgroup: do not check qgroup inherit if qgroup is disabled"). [CAUSE] That offending commit skips the whole qgroup inherit check if qgroup is not enabled. But that also skips the very basic checks like num_ref_copies/num_excl_copies and the structure size checks. Meaning if a qgroup enable/disable race is happening at the background, and we pass a btrfs_qgroup_inherit structure when the qgroup is disabled, the check would be completely skipped. Then at the time of transaction commitment, qgroup is re-enabled and btrfs_qgroup_inherit() is going to use the incorrect structure and causing the above KASAN error. [FIX] Make btrfs_qgroup_check_inherit() only skip the source qgroup checks. So that even if invalid btrfs_qgroup_inherit structure is passed in, we can still reject invalid ones no matter if qgroup is enabled or not. Furthermore we do already have an extra safety inside btrfs_qgroup_inherit(), which would just ignore invalid qgroup sources, so even if we only skip the qgroup source check we're still safe. Reported-by: syzbot+a0d1f7e26910be4dc171@syzkaller.appspotmail.com Fixes: b5357cb268c4 ("btrfs: qgroup: do not check qgroup inherit if qgroup is disabled") Reviewed-by: Boris Burkov <boris@bur.io> Reviewed-by: Jeongjun Park <aha310510@gmail.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-02btrfs: zoned: fix calc_available_free_space() for zoned modeNaohiro Aota1-3/+21
calc_available_free_space() returns the total size of metadata (or system) block groups, which can be allocated from unallocated disk space. The logic is wrong on zoned mode in two places. First, the calculation of data_chunk_size is wrong. We always allocate one zone as one chunk, and no partial allocation of a zone. So, we should use zone_size (= data_sinfo->chunk_size) as it is. Second, the result "avail" may not be zone aligned. Since we always allocate one zone as one chunk on zoned mode, returning non-zone size aligned bytes will result in less pressure on the async metadata reclaim process. This is serious for the nearly full state with a large zone size device. Allowing over-commit too much will result in less async reclaim work and end up in ENOSPC. We can align down to the zone size to avoid that. Fixes: cb6cbab79055 ("btrfs: adjust overcommit logic when very close to full") CC: stable@vger.kernel.org # 6.9 Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-01Merge tag 'for-6.10-rc6-tag' of ↵Linus Torvalds1-2/+11
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fix from David Sterba: "A fixup for a recent fix that prevents an infinite loop during block group reclaim. Unfortunately it introduced an unsafe way of updating block group list and could race with relocation. This could be hit on fast devices when relocation/balance does not have enough space" * tag 'for-6.10-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: fix adding block group to a reclaim list and the unused list during reclaim
2024-07-01btrfs: fix adding block group to a reclaim list and the unused list during ↵Naohiro Aota1-2/+11
reclaim There is a potential parallel list adding for retrying in btrfs_reclaim_bgs_work and adding to the unused list. Since the block group is removed from the reclaim list and it is on a relocation work, it can be added into the unused list in parallel. When that happens, adding it to the reclaim list will corrupt the list head and trigger list corruption like below. Fix it by taking fs_info->unused_bgs_lock. [177.504][T2585409] BTRFS error (device nullb1): error relocating ch= unk 2415919104 [177.514][T2585409] list_del corruption. next->prev should be ff1100= 0344b119c0, but was ff11000377e87c70. (next=3Dff110002390cd9c0) [177.529][T2585409] ------------[ cut here ]------------ [177.537][T2585409] kernel BUG at lib/list_debug.c:65! [177.545][T2585409] Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI [177.555][T2585409] CPU: 9 PID: 2585409 Comm: kworker/u128:2 Tainted: G W 6.10.0-rc5-kts #1 [177.568][T2585409] Hardware name: Supermicro SYS-520P-WTR/X12SPW-TF, BIOS 1.2 02/14/2022 [177.579][T2585409] Workqueue: events_unbound btrfs_reclaim_bgs_work[btrfs] [177.589][T2585409] RIP: 0010:__list_del_entry_valid_or_report.cold+0x70/0x72 [177.624][T2585409] RSP: 0018:ff11000377e87a70 EFLAGS: 00010286 [177.633][T2585409] RAX: 000000000000006d RBX: ff11000344b119c0 RCX:0000000000000000 [177.644][T2585409] RDX: 000000000000006d RSI: 0000000000000008 RDI:ffe21c006efd0f40 [177.655][T2585409] RBP: ff110002e0509f78 R08: 0000000000000001 R09:ffe21c006efd0f08 [177.665][T2585409] R10: ff11000377e87847 R11: 0000000000000000 R12:ff110002390cd9c0 [177.676][T2585409] R13: ff11000344b119c0 R14: ff110002e0508000 R15:dffffc0000000000 [177.687][T2585409] FS: 0000000000000000(0000) GS:ff11000fec880000(0000) knlGS:0000000000000000 [177.700][T2585409] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [177.709][T2585409] CR2: 00007f06bc7b1978 CR3: 0000001021e86005 CR4:0000000000771ef0 [177.720][T2585409] DR0: 0000000000000000 DR1: 0000000000000000 DR2:0000000000000000 [177.731][T2585409] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7:0000000000000400 [177.742][T2585409] PKRU: 55555554 [177.748][T2585409] Call Trace: [177.753][T2585409] <TASK> [177.759][T2585409] ? __die_body.cold+0x19/0x27 [177.766][T2585409] ? die+0x2e/0x50 [177.772][T2585409] ? do_trap+0x1ea/0x2d0 [177.779][T2585409] ? __list_del_entry_valid_or_report.cold+0x70/0x72 [177.788][T2585409] ? do_error_trap+0xa3/0x160 [177.795][T2585409] ? __list_del_entry_valid_or_report.cold+0x70/0x72 [177.805][T2585409] ? handle_invalid_op+0x2c/0x40 [177.812][T2585409] ? __list_del_entry_valid_or_report.cold+0x70/0x72 [177.820][T2585409] ? exc_invalid_op+0x2d/0x40 [177.827][T2585409] ? asm_exc_invalid_op+0x1a/0x20 [177.834][T2585409] ? __list_del_entry_valid_or_report.cold+0x70/0x72 [177.843][T2585409] btrfs_delete_unused_bgs+0x3d9/0x14c0 [btrfs] There is a similar retry_list code in btrfs_delete_unused_bgs(), but it is safe, AFAICS. Since the block group was in the unused list, the used bytes should be 0 when it was added to the unused list. Then, it checks block_group->{used,reserved,pinned} are still 0 under the block_group->lock. So, they should be still eligible for the unused list, not the reclaim list. The reason it is safe there it's because because we're holding space_info->groups_sem in write mode. That means no other task can allocate from the block group, so while we are at deleted_unused_bgs() it's not possible for other tasks to allocate and deallocate extents from the block group, so it can't be added to the unused list or the reclaim list by anyone else. The bug can be reproduced by btrfs/166 after a few rounds. In practice this can be hit when relocation cannot find more chunk space and ends with ENOSPC. Reported-by: Shinichiro Kawasaki <shinichiro.kawasaki@wdc.com> Suggested-by: Johannes Thumshirn <Johannes.Thumshirn@wdc.com> Fixes: 4eb4e85c4f81 ("btrfs: retry block group reclaim without infinite loop") CC: stable@vger.kernel.org # 5.15+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-06-27Merge tag 'for-6.10-rc5-tag' of ↵Linus Torvalds4-28/+45
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - fix quota root leak after quota disable failure - fix condition when checking if a zone can be added as free - allocate inode in NOFS context during logging or tree-log replay - handle raid-stripe-tree lookup correctly during scrub * tag 'for-6.10-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: qgroup: fix quota root leak after quota disable failure btrfs: scrub: handle RST lookup error correctly btrfs: zoned: fix initial free space detection btrfs: use NOFS context when getting inodes during logging and log replay
2024-06-25btrfs: qgroup: fix quota root leak after quota disable failureFilipe Manana1-2/+2
If during the quota disable we fail when cleaning the quota tree or when deleting the root from the root tree, we jump to the 'out' label without ever dropping the reference on the quota root, resulting in a leak of the root since fs_info->quota_root is no longer pointing to the root (we have set it to NULL just before those steps). Fix this by always doing a btrfs_put_root() call under the 'out' label. This is a problem that exists since qgroups were first added in 2012 by commit bed92eae26cc ("Btrfs: qgroup implementation and prototypes"), but back then we missed a kfree on the quota root and free_extent_buffer() calls on its root and commit root nodes, since back then roots were not yet reference counted. Reviewed-by: Boris Burkov <boris@bur.io> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-06-25btrfs: scrub: handle RST lookup error correctlyQu Wenruo1-10/+14
[BUG] When running btrfs/060 with forced RST feature, it would crash the following ASSERT() inside scrub_read_endio(): ASSERT(sector_nr < stripe->nr_sectors); Before that, we would have tree dump from btrfs_get_raid_extent_offset(), as we failed to find the RST entry for the range. [CAUSE] Inside scrub_submit_extent_sector_read() every time we allocated a new bbio we immediately called btrfs_map_block() to make sure there was some RST range covering the scrub target. But if btrfs_map_block() fails, we immediately call endio for the bbio, while the bbio is newly allocated, it's completely empty. Then inside scrub_read_endio(), we go through the bvecs to find the sector number (as bi_sector is no longer reliable if the bio is submitted to lower layers). And since the bio is empty, such bvecs iteration would not find any sector matching the sector, and return sector_nr == stripe->nr_sectors, triggering the ASSERT(). [FIX] Instead of calling btrfs_map_block() after allocating a new bbio, call btrfs_map_block() first. Since our only objective of calling btrfs_map_block() is only to update stripe_len, there is really no need to do that after btrfs_alloc_bio(). This new timing would avoid the problem of handling empty bbio completely, and in fact fixes a possible race window for the old code, where if the submission thread is the only owner of the pending_io, the scrub would never finish (since we didn't decrease the pending_io counter). Although the root cause of RST lookup failure still needs to be addressed. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-06-25btrfs: zoned: fix initial free space detectionNaohiro Aota1-1/+1
When creating a new block group, it calls btrfs_add_new_free_space() to add the entire block group range into the free space accounting. __btrfs_add_free_space_zoned() checks if size == block_group->length to detect the initial free space adding, and proceed that case properly. However, if the zone_capacity == zone_size and the over-write speed is fast enough, the entire zone can be over-written within one transaction. That confuses __btrfs_add_free_space_zoned() to handle it as an initial free space accounting. As a result, that block group becomes a strange state: 0 used bytes, 0 zone_unusable bytes, but alloc_offset == zone_capacity (no allocation anymore). The initial free space accounting can properly be checked by checking alloc_offset too. Fixes: 98173255bddd ("btrfs: zoned: calculate free space from zone capacity") CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-06-25btrfs: use NOFS context when getting inodes during logging and log replayFilipe Manana1-15/+28
During inode logging (and log replay too), we are holding a transaction handle and we often need to call btrfs_iget(), which will read an inode from its subvolume btree if it's not loaded in memory and that results in allocating an inode with GFP_KERNEL semantics at the btrfs_alloc_inode() callback - and this may recurse into the filesystem in case we are under memory pressure and attempt to commit the current transaction, resulting in a deadlock since the logging (or log replay) task is holding a transaction handle open. Syzbot reported this with the following stack traces: WARNING: possible circular locking dependency detected 6.10.0-rc2-syzkaller-00361-g061d1af7b030 #0 Not tainted ------------------------------------------------------ syz-executor.1/9919 is trying to acquire lock: ffffffff8dd3aac0 (fs_reclaim){+.+.}-{0:0}, at: might_alloc include/linux/sched/mm.h:334 [inline] ffffffff8dd3aac0 (fs_reclaim){+.+.}-{0:0}, at: slab_pre_alloc_hook mm/slub.c:3891 [inline] ffffffff8dd3aac0 (fs_reclaim){+.+.}-{0:0}, at: slab_alloc_node mm/slub.c:3981 [inline] ffffffff8dd3aac0 (fs_reclaim){+.+.}-{0:0}, at: kmem_cache_alloc_lru_noprof+0x58/0x2f0 mm/slub.c:4020 but task is already holding lock: ffff88804b569358 (&ei->log_mutex){+.+.}-{3:3}, at: btrfs_log_inode+0x39c/0x4660 fs/btrfs/tree-log.c:6481 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&ei->log_mutex){+.+.}-{3:3}: __mutex_lock_common kernel/locking/mutex.c:608 [inline] __mutex_lock+0x175/0x9c0 kernel/locking/mutex.c:752 btrfs_log_inode+0x39c/0x4660 fs/btrfs/tree-log.c:6481 btrfs_log_inode_parent+0x8cb/0x2a90 fs/btrfs/tree-log.c:7079 btrfs_log_dentry_safe+0x59/0x80 fs/btrfs/tree-log.c:7180 btrfs_sync_file+0x9c1/0xe10 fs/btrfs/file.c:1959 vfs_fsync_range+0x141/0x230 fs/sync.c:188 generic_write_sync include/linux/fs.h:2794 [inline] btrfs_do_write_iter+0x584/0x10c0 fs/btrfs/file.c:1705 new_sync_write fs/read_write.c:497 [inline] vfs_write+0x6b6/0x1140 fs/read_write.c:590 ksys_write+0x12f/0x260 fs/read_write.c:643 do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline] __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386 do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411 entry_SYSENTER_compat_after_hwframe+0x84/0x8e -> #2 (btrfs_trans_num_extwriters){++++}-{0:0}: join_transaction+0x164/0xf40 fs/btrfs/transaction.c:315 start_transaction+0x427/0x1a70 fs/btrfs/transaction.c:700 btrfs_commit_super+0xa1/0x110 fs/btrfs/disk-io.c:4170 close_ctree+0xcb0/0xf90 fs/btrfs/disk-io.c:4324 generic_shutdown_super+0x159/0x3d0 fs/super.c:642 kill_anon_super+0x3a/0x60 fs/super.c:1226 btrfs_kill_super+0x3b/0x50 fs/btrfs/super.c:2096 deactivate_locked_super+0xbe/0x1a0 fs/super.c:473 deactivate_super+0xde/0x100 fs/super.c:506 cleanup_mnt+0x222/0x450 fs/namespace.c:1267 task_work_run+0x14e/0x250 kernel/task_work.c:180 resume_user_mode_work include/linux/resume_user_mode.h:50 [inline] exit_to_user_mode_loop kernel/entry/common.c:114 [inline] exit_to_user_mode_prepare include/linux/entry-common.h:328 [inline] __syscall_exit_to_user_mode_work kernel/entry/common.c:207 [inline] syscall_exit_to_user_mode+0x278/0x2a0 kernel/entry/common.c:218 __do_fast_syscall_32+0x80/0x120 arch/x86/entry/common.c:389 do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411 entry_SYSENTER_compat_after_hwframe+0x84/0x8e -> #1 (btrfs_trans_num_writers){++++}-{0:0}: __lock_release kernel/locking/lockdep.c:5468 [inline] lock_release+0x33e/0x6c0 kernel/locking/lockdep.c:5774 percpu_up_read include/linux/percpu-rwsem.h:99 [inline] __sb_end_write include/linux/fs.h:1650 [inline] sb_end_intwrite include/linux/fs.h:1767 [inline] __btrfs_end_transaction+0x5ca/0x920 fs/btrfs/transaction.c:1071 btrfs_commit_inode_delayed_inode+0x228/0x330 fs/btrfs/delayed-inode.c:1301 btrfs_evict_inode+0x960/0xe80 fs/btrfs/inode.c:5291 evict+0x2ed/0x6c0 fs/inode.c:667 iput_final fs/inode.c:1741 [inline] iput.part.0+0x5a8/0x7f0 fs/inode.c:1767 iput+0x5c/0x80 fs/inode.c:1757 dentry_unlink_inode+0x295/0x480 fs/dcache.c:400 __dentry_kill+0x1d0/0x600 fs/dcache.c:603 dput.part.0+0x4b1/0x9b0 fs/dcache.c:845 dput+0x1f/0x30 fs/dcache.c:835 ovl_stack_put+0x60/0x90 fs/overlayfs/util.c:132 ovl_destroy_inode+0xc6/0x190 fs/overlayfs/super.c:182 destroy_inode+0xc4/0x1b0 fs/inode.c:311 iput_final fs/inode.c:1741 [inline] iput.part.0+0x5a8/0x7f0 fs/inode.c:1767 iput+0x5c/0x80 fs/inode.c:1757 dentry_unlink_inode+0x295/0x480 fs/dcache.c:400 __dentry_kill+0x1d0/0x600 fs/dcache.c:603 shrink_kill fs/dcache.c:1048 [inline] shrink_dentry_list+0x140/0x5d0 fs/dcache.c:1075 prune_dcache_sb+0xeb/0x150 fs/dcache.c:1156 super_cache_scan+0x32a/0x550 fs/super.c:221 do_shrink_slab+0x44f/0x11c0 mm/shrinker.c:435 shrink_slab_memcg mm/shrinker.c:548 [inline] shrink_slab+0xa87/0x1310 mm/shrinker.c:626 shrink_one+0x493/0x7c0 mm/vmscan.c:4790 shrink_many mm/vmscan.c:4851 [inline] lru_gen_shrink_node+0x89f/0x1750 mm/vmscan.c:4951 shrink_node mm/vmscan.c:5910 [inline] kswapd_shrink_node mm/vmscan.c:6720 [inline] balance_pgdat+0x1105/0x1970 mm/vmscan.c:6911 kswapd+0x5ea/0xbf0 mm/vmscan.c:7180 kthread+0x2c1/0x3a0 kernel/kthread.c:389 ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 -> #0 (fs_reclaim){+.+.}-{0:0}: check_prev_add kernel/locking/lockdep.c:3134 [inline] check_prevs_add kernel/locking/lockdep.c:3253 [inline] validate_chain kernel/locking/lockdep.c:3869 [inline] __lock_acquire+0x2478/0x3b30 kernel/locking/lockdep.c:5137 lock_acquire kernel/locking/lockdep.c:5754 [inline] lock_acquire+0x1b1/0x560 kernel/locking/lockdep.c:5719 __fs_reclaim_acquire mm/page_alloc.c:3801 [inline] fs_reclaim_acquire+0x102/0x160 mm/page_alloc.c:3815 might_alloc include/linux/sched/mm.h:334 [inline] slab_pre_alloc_hook mm/slub.c:3891 [inline] slab_alloc_node mm/slub.c:3981 [inline] kmem_cache_alloc_lru_noprof+0x58/0x2f0 mm/slub.c:4020 btrfs_alloc_inode+0x118/0xb20 fs/btrfs/inode.c:8411 alloc_inode+0x5d/0x230 fs/inode.c:261 iget5_locked fs/inode.c:1235 [inline] iget5_locked+0x1c9/0x2c0 fs/inode.c:1228 btrfs_iget_locked fs/btrfs/inode.c:5590 [inline] btrfs_iget_path fs/btrfs/inode.c:5607 [inline] btrfs_iget+0xfb/0x230 fs/btrfs/inode.c:5636 add_conflicting_inode fs/btrfs/tree-log.c:5657 [inline] copy_inode_items_to_log+0x1039/0x1e30 fs/btrfs/tree-log.c:5928 btrfs_log_inode+0xa48/0x4660 fs/btrfs/tree-log.c:6592 log_new_delayed_dentries fs/btrfs/tree-log.c:6363 [inline] btrfs_log_inode+0x27dd/0x4660 fs/btrfs/tree-log.c:6718 btrfs_log_all_parents fs/btrfs/tree-log.c:6833 [inline] btrfs_log_inode_parent+0x22ba/0x2a90 fs/btrfs/tree-log.c:7141 btrfs_log_dentry_safe+0x59/0x80 fs/btrfs/tree-log.c:7180 btrfs_sync_file+0x9c1/0xe10 fs/btrfs/file.c:1959 vfs_fsync_range+0x141/0x230 fs/sync.c:188 generic_write_sync include/linux/fs.h:2794 [inline] btrfs_do_write_iter+0x584/0x10c0 fs/btrfs/file.c:1705 do_iter_readv_writev+0x504/0x780 fs/read_write.c:741 vfs_writev+0x36f/0xde0 fs/read_write.c:971 do_pwritev+0x1b2/0x260 fs/read_write.c:1072 __do_compat_sys_pwritev2 fs/read_write.c:1218 [inline] __se_compat_sys_pwritev2 fs/read_write.c:1210 [inline] __ia32_compat_sys_pwritev2+0x121/0x1b0 fs/read_write.c:1210 do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline] __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386 do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411 entry_SYSENTER_compat_after_hwframe+0x84/0x8e other info that might help us debug this: Chain exists of: fs_reclaim --> btrfs_trans_num_extwriters --> &ei->log_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&ei->log_mutex); lock(btrfs_trans_num_extwriters); lock(&ei->log_mutex); lock(fs_reclaim); *** DEADLOCK *** 7 locks held by syz-executor.1/9919: #0: ffff88802be20420 (sb_writers#23){.+.+}-{0:0}, at: do_pwritev+0x1b2/0x260 fs/read_write.c:1072 #1: ffff888065c0f8f0 (&sb->s_type->i_mutex_key#33){++++}-{3:3}, at: inode_lock include/linux/fs.h:791 [inline] #1: ffff888065c0f8f0 (&sb->s_type->i_mutex_key#33){++++}-{3:3}, at: btrfs_inode_lock+0xc8/0x110 fs/btrfs/inode.c:385 #2: ffff888065c0f778 (&ei->i_mmap_lock){++++}-{3:3}, at: btrfs_inode_lock+0xee/0x110 fs/btrfs/inode.c:388 #3: ffff88802be20610 (sb_internal#4){.+.+}-{0:0}, at: btrfs_sync_file+0x95b/0xe10 fs/btrfs/file.c:1952 #4: ffff8880546323f0 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0x430/0xf40 fs/btrfs/transaction.c:290 #5: ffff888054632418 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0x430/0xf40 fs/btrfs/transaction.c:290 #6: ffff88804b569358 (&ei->log_mutex){+.+.}-{3:3}, at: btrfs_log_inode+0x39c/0x4660 fs/btrfs/tree-log.c:6481 stack backtrace: CPU: 2 PID: 9919 Comm: syz-executor.1 Not tainted 6.10.0-rc2-syzkaller-00361-g061d1af7b030 #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:114 check_noncircular+0x31a/0x400 kernel/locking/lockdep.c:2187 check_prev_add kernel/locking/lockdep.c:3134 [inline] check_prevs_add kernel/locking/lockdep.c:3253 [inline] validate_chain kernel/locking/lockdep.c:3869 [inline] __lock_acquire+0x2478/0x3b30 kernel/locking/lockdep.c:5137 lock_acquire kernel/locking/lockdep.c:5754 [inline] lock_acquire+0x1b1/0x560 kernel/locking/lockdep.c:5719 __fs_reclaim_acquire mm/page_alloc.c:3801 [inline] fs_reclaim_acquire+0x102/0x160 mm/page_alloc.c:3815 might_alloc include/linux/sched/mm.h:334 [inline] slab_pre_alloc_hook mm/slub.c:3891 [inline] slab_alloc_node mm/slub.c:3981 [inline] kmem_cache_alloc_lru_noprof+0x58/0x2f0 mm/slub.c:4020 btrfs_alloc_inode+0x118/0xb20 fs/btrfs/inode.c:8411 alloc_inode+0x5d/0x230 fs/inode.c:261 iget5_locked fs/inode.c:1235 [inline] iget5_locked+0x1c9/0x2c0 fs/inode.c:1228 btrfs_iget_locked fs/btrfs/inode.c:5590 [inline] btrfs_iget_path fs/btrfs/inode.c:5607 [inline] btrfs_iget+0xfb/0x230 fs/btrfs/inode.c:5636 add_conflicting_inode fs/btrfs/tree-log.c:5657 [inline] copy_inode_items_to_log+0x1039/0x1e30 fs/btrfs/tree-log.c:5928 btrfs_log_inode+0xa48/0x4660 fs/btrfs/tree-log.c:6592 log_new_delayed_dentries fs/btrfs/tree-log.c:6363 [inline] btrfs_log_inode+0x27dd/0x4660 fs/btrfs/tree-log.c:6718 btrfs_log_all_parents fs/btrfs/tree-log.c:6833 [inline] btrfs_log_inode_parent+0x22ba/0x2a90 fs/btrfs/tree-log.c:7141 btrfs_log_dentry_safe+0x59/0x80 fs/btrfs/tree-log.c:7180 btrfs_sync_file+0x9c1/0xe10 fs/btrfs/file.c:1959 vfs_fsync_range+0x141/0x230 fs/sync.c:188 generic_write_sync include/linux/fs.h:2794 [inline] btrfs_do_write_iter+0x584/0x10c0 fs/btrfs/file.c:1705 do_iter_readv_writev+0x504/0x780 fs/read_write.c:741 vfs_writev+0x36f/0xde0 fs/read_write.c:971 do_pwritev+0x1b2/0x260 fs/read_write.c:1072 __do_compat_sys_pwritev2 fs/read_write.c:1218 [inline] __se_compat_sys_pwritev2 fs/read_write.c:1210 [inline] __ia32_compat_sys_pwritev2+0x121/0x1b0 fs/read_write.c:1210 do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline] __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386 do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411 entry_SYSENTER_compat_after_hwframe+0x84/0x8e RIP: 0023:0xf7334579 Code: b8 01 10 06 03 (...) RSP: 002b:00000000f5f265ac EFLAGS: 00000292 ORIG_RAX: 000000000000017b RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00000000200002c0 RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000000000000000 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000292 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 Fix this by ensuring we are under a NOFS scope whenever we call btrfs_iget() during inode logging and log replay. Reported-by: syzbot+8576cfa84070dce4d59b@syzkaller.appspotmail.com Link: https://lore.kernel.org/linux-btrfs/000000000000274a3a061abbd928@google.com/ Fixes: 712e36c5f2a7 ("btrfs: use GFP_KERNEL in btrfs_alloc_inode") Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-06-20Merge tag 'for-6.10-rc4-tag' of ↵Linus Torvalds2-3/+12
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - fix potential infinite loop when doing block grou reclaim - fix crash on emulated zoned device and NOCOW files * tag 'for-6.10-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: zoned: allocate dummy checksums for zoned NODATASUM writes btrfs: retry block group reclaim without infinite loop
2024-06-13btrfs: zoned: allocate dummy checksums for zoned NODATASUM writesJohannes Thumshirn1-1/+3
Shin'ichiro reported that when he's running fstests' test-case btrfs/167 on emulated zoned devices, he's seeing the following NULL pointer dereference in 'btrfs_zone_finish_endio()': Oops: general protection fault, probably for non-canonical address 0xdffffc0000000011: 0000 [#1] PREEMPT SMP KASAN NOPTI KASAN: null-ptr-deref in range [0x0000000000000088-0x000000000000008f] CPU: 4 PID: 2332440 Comm: kworker/u80:15 Tainted: G W 6.10.0-rc2-kts+ #4 Hardware name: Supermicro Super Server/X11SPi-TF, BIOS 3.3 02/21/2020 Workqueue: btrfs-endio-write btrfs_work_helper [btrfs] RIP: 0010:btrfs_zone_finish_endio.part.0+0x34/0x160 [btrfs] RSP: 0018:ffff88867f107a90 EFLAGS: 00010206 RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffffff893e5534 RDX: 0000000000000011 RSI: 0000000000000004 RDI: 0000000000000088 RBP: 0000000000000002 R08: 0000000000000001 R09: ffffed1081696028 R10: ffff88840b4b0143 R11: ffff88834dfff600 R12: ffff88840b4b0000 R13: 0000000000020000 R14: 0000000000000000 R15: ffff888530ad5210 FS: 0000000000000000(0000) GS:ffff888e3f800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f87223fff38 CR3: 00000007a7c6a002 CR4: 00000000007706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <TASK> ? __die_body.cold+0x19/0x27 ? die_addr+0x46/0x70 ? exc_general_protection+0x14f/0x250 ? asm_exc_general_protection+0x26/0x30 ? do_raw_read_unlock+0x44/0x70 ? btrfs_zone_finish_endio.part.0+0x34/0x160 [btrfs] btrfs_finish_one_ordered+0x5d9/0x19a0 [btrfs] ? __pfx_lock_release+0x10/0x10 ? do_raw_write_lock+0x90/0x260 ? __pfx_do_raw_write_lock+0x10/0x10 ? __pfx_btrfs_finish_one_ordered+0x10/0x10 [btrfs] ? _raw_write_unlock+0x23/0x40 ? btrfs_finish_ordered_zoned+0x5a9/0x850 [btrfs] ? lock_acquire+0x435/0x500 btrfs_work_helper+0x1b1/0xa70 [btrfs] ? __schedule+0x10a8/0x60b0 ? __pfx___might_resched+0x10/0x10 process_one_work+0x862/0x1410 ? __pfx_lock_acquire+0x10/0x10 ? __pfx_process_one_work+0x10/0x10 ? assign_work+0x16c/0x240 worker_thread+0x5e6/0x1010 ? __pfx_worker_thread+0x10/0x10 kthread+0x2c3/0x3a0 ? trace_irq_enable.constprop.0+0xce/0x110 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x31/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Enabling CONFIG_BTRFS_ASSERT revealed the following assertion to trigger: assertion failed: !list_empty(&ordered->list), in fs/btrfs/zoned.c:1815 This indicates, that we're missing the checksums list on the ordered_extent. As btrfs/167 is doing a NOCOW write this is to be expected. Further analysis with drgn confirmed the assumption: >>> inode = prog.crashed_thread().stack_trace()[11]['ordered'].inode >>> btrfs_inode = drgn.container_of(inode, "struct btrfs_inode", \ "vfs_inode") >>> print(btrfs_inode.flags) (u32)1 As zoned emulation mode simulates conventional zones on regular devices, we cannot use zone-append for writing. But we're only attaching dummy checksums if we're doing a zone-append write. So for NOCOW zoned data writes on conventional zones, also attach a dummy checksum. Reported-by: Shinichiro Kawasaki <shinichiro.kawasaki@wdc.com> Fixes: cbfce4c7fbde ("btrfs: optimize the logical to physical mapping for zoned writes") CC: Naohiro Aota <Naohiro.Aota@wdc.com> # 6.6+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-06-13btrfs: retry block group reclaim without infinite loopBoris Burkov1-2/+9
If inc_block_group_ro systematically fails (e.g. due to ETXTBUSY from swap) or btrfs_relocate_chunk systematically fails (from lack of space), then this worker becomes an infinite loop. At the very least, this strands the cleaner thread, but can also result in hung tasks/RCU stalls on PREEMPT_NONE kernels and if the reclaim_bgs_lock mutex is not contended. I believe the best long term fix is to manage reclaim via work queue, where we queue up a relocation on the triggering condition and re-queue on failure. In the meantime, this is an easy fix to apply to avoid the immediate pain. Fixes: 7e2718099438 ("btrfs: reinsert BGs failed to reclaim") CC: stable@vger.kernel.org # 6.6+ Signed-off-by: Boris Burkov <boris@bur.io> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-06-08Merge tag 'for-6.10-rc2-tag' of ↵Linus Torvalds3-44/+43
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - fix handling of folio private changes. The private value holds pointer to our extent buffer structure representing a metadata range. Release and create of the range was not properly synchronized when updating the private bit which ended up in double folio_put, leading to all sorts of breakage - fix a crash, reported as duplicate key in metadata, but caused by a race of fsync and size extending write. Requires prealloc target range + fsync and other conditions (log tree state, timing) - fix leak of qgroup extent records after transaction abort * tag 'for-6.10-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: protect folio::private when attaching extent buffer folios btrfs: fix leak of qgroup extent records after transaction abort btrfs: fix crash on racing fsync and size-extending write into prealloc
2024-06-06btrfs: protect folio::private when attaching extent buffer foliosQu Wenruo1-29/+31
[BUG] Since v6.8 there are rare kernel crashes reported by various people, the common factor is bad page status error messages like this: BUG: Bad page state in process kswapd0 pfn:d6e840 page: refcount:0 mapcount:0 mapping:000000007512f4f2 index:0x2796c2c7c pfn:0xd6e840 aops:btree_aops ino:1 flags: 0x17ffffe0000008(uptodate|node=0|zone=2|lastcpupid=0x3fffff) page_type: 0xffffffff() raw: 0017ffffe0000008 dead000000000100 dead000000000122 ffff88826d0be4c0 raw: 00000002796c2c7c 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: non-NULL mapping [CAUSE] Commit 09e6cef19c9f ("btrfs: refactor alloc_extent_buffer() to allocate-then-attach method") changes the sequence when allocating a new extent buffer. Previously we always called grab_extent_buffer() under mapping->i_private_lock, to ensure the safety on modification on folio::private (which is a pointer to extent buffer for regular sectorsize). This can lead to the following race: Thread A is trying to allocate an extent buffer at bytenr X, with 4 4K pages, meanwhile thread B is trying to release the page at X + 4K (the second page of the extent buffer at X). Thread A | Thread B -----------------------------------+------------------------------------- | btree_release_folio() | | This is for the page at X + 4K, | | Not page X. | | alloc_extent_buffer() | |- release_extent_buffer() |- filemap_add_folio() for the | | |- atomic_dec_and_test(eb->refs) | page at bytenr X (the first | | | | page). | | | | Which returned -EEXIST. | | | | | | | |- filemap_lock_folio() | | | | Returned the first page locked. | | | | | | | |- grab_extent_buffer() | | | | |- atomic_inc_not_zero() | | | | | Returned false | | | | |- folio_detach_private() | | |- folio_detach_private() for X | |- folio_test_private() | | |- folio_test_private() | Returned true | | | Returned true |- folio_put() | |- folio_put() Now there are two puts on the same folio at folio X, leading to refcount underflow of the folio X, and eventually causing the BUG_ON() on the page->mapping. The condition is not that easy to hit: - The release must be triggered for the middle page of an eb If the release is on the same first page of an eb, page lock would kick in and prevent the race. - folio_detach_private() has a very small race window It's only between folio_test_private() and folio_clear_private(). That's exactly when mapping->i_private_lock is used to prevent such race, and commit 09e6cef19c9f ("btrfs: refactor alloc_extent_buffer() to allocate-then-attach method") screwed that up. At that time, I thought the page lock would kick in as filemap_release_folio() also requires the page to be locked, but forgot the filemap_release_folio() only locks one page, not all pages of an extent buffer. [FIX] Move all the code requiring i_private_lock into attach_eb_folio_to_filemap(), so that everything is done with proper lock protection. Furthermore to prevent future problems, add an extra lockdep_assert_locked() to ensure we're holding the proper lock. To reproducer that is able to hit the race (takes a few minutes with instrumented code inserting delays to alloc_extent_buffer()): #!/bin/sh drop_caches () { while(true); do echo 3 > /proc/sys/vm/drop_caches echo 1 > /proc/sys/vm/compact_memory done } run_tar () { while(true); do for x in `seq 1 80` ; do tar cf /dev/zero /mnt > /dev/null & done wait done } mkfs.btrfs -f -d single -m single /dev/vda mount -o noatime /dev/vda /mnt # create 200,000 files, 1K each ./simoop -n 200000 -E -f 1k /mnt drop_caches & (run_tar) Reported-by: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/linux-btrfs/CAHk-=wgt362nGfScVOOii8cgKn2LVVHeOvOA7OBwg1OwbuJQcw@mail.gmail.com/ Reported-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com> Link: https://lore.kernel.org/lkml/CABXGCsPktcHQOvKTbPaTwegMExije=Gpgci5NW=hqORo-s7diA@mail.gmail.com/ Reported-by: Toralf Förster <toralf.foerster@gmx.de> Link: https://lore.kernel.org/linux-btrfs/e8b3311c-9a75-4903-907f-fc0f7a3fe423@gmx.de/ Reported-by: syzbot+f80b066392366b4af85e@syzkaller.appspotmail.com Fixes: 09e6cef19c9f ("btrfs: refactor alloc_extent_buffer() to allocate-then-attach method") CC: stable@vger.kernel.org # 6.8+ CC: Chris Mason <clm@fb.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-06-05Merge tag 'for-6.10-rc2-tag' of ↵Linus Torvalds3-0/+57
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fix from David Sterba: "A fix for fast fsync that needs to handle errors during writes after some COW failure so it does not lead to an inconsistent state" * tag 'for-6.10-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: ensure fast fsync waits for ordered extents after a write failure
2024-06-05btrfs: fix leak of qgroup extent records after transaction abortFilipe Manana1-9/+1
Qgroup extent records are created when delayed ref heads are created and then released after accounting extents at btrfs_qgroup_account_extents(), called during the transaction commit path. If a transaction is aborted we free the qgroup records by calling btrfs_qgroup_destroy_extent_records() at btrfs_destroy_delayed_refs(), unless we don't have delayed references. We are incorrectly assuming that no delayed references means we don't have qgroup extents records. We can currently have no delayed references because we ran them all during a transaction commit and the transaction was aborted after that due to some error in the commit path. So fix this by ensuring we btrfs_qgroup_destroy_extent_records() at btrfs_destroy_delayed_refs() even if we don't have any delayed references. Reported-by: syzbot+0fecc032fa134afd49df@syzkaller.appspotmail.com Link: https://lore.kernel.org/linux-btrfs/0000000000004e7f980619f91835@google.com/ Fixes: 81f7eb00ff5b ("btrfs: destroy qgroup extent records on transaction abort") CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-06-05btrfs: fix crash on racing fsync and size-extending write into preallocOmar Sandoval1-6/+11
We have been seeing crashes on duplicate keys in btrfs_set_item_key_safe(): BTRFS critical (device vdb): slot 4 key (450 108 8192) new key (450 108 8192) ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.c:2620! invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 3139 Comm: xfs_io Kdump: loaded Not tainted 6.9.0 #6 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:btrfs_set_item_key_safe+0x11f/0x290 [btrfs] With the following stack trace: #0 btrfs_set_item_key_safe (fs/btrfs/ctree.c:2620:4) #1 btrfs_drop_extents (fs/btrfs/file.c:411:4) #2 log_one_extent (fs/btrfs/tree-log.c:4732:9) #3 btrfs_log_changed_extents (fs/btrfs/tree-log.c:4955:9) #4 btrfs_log_inode (fs/btrfs/tree-log.c:6626:9) #5 btrfs_log_inode_parent (fs/btrfs/tree-log.c:7070:8) #6 btrfs_log_dentry_safe (fs/btrfs/tree-log.c:7171:8) #7 btrfs_sync_file (fs/btrfs/file.c:1933:8) #8 vfs_fsync_range (fs/sync.c:188:9) #9 vfs_fsync (fs/sync.c:202:9) #10 do_fsync (fs/sync.c:212:9) #11 __do_sys_fdatasync (fs/sync.c:225:9) #12 __se_sys_fdatasync (fs/sync.c:223:1) #13 __x64_sys_fdatasync (fs/sync.c:223:1) #14 do_syscall_x64 (arch/x86/entry/common.c:52:14) #15 do_syscall_64 (arch/x86/entry/common.c:83:7) #16 entry_SYSCALL_64+0xaf/0x14c (arch/x86/entry/entry_64.S:121) So we're logging a changed extent from fsync, which is splitting an extent in the log tree. But this split part already exists in the tree, triggering the BUG(). This is the state of the log tree at the time of the crash, dumped with drgn (https://github.com/osandov/drgn/blob/main/contrib/btrfs_tree.py) to get more details than btrfs_print_leaf() gives us: >>> print_extent_buffer(prog.crashed_thread().stack_trace()[0]["eb"]) leaf 33439744 level 0 items 72 generation 9 owner 18446744073709551610 leaf 33439744 flags 0x100000000000000 fs uuid e5bd3946-400c-4223-8923-190ef1f18677 chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da item 0 key (450 INODE_ITEM 0) itemoff 16123 itemsize 160 generation 7 transid 9 size 8192 nbytes 8473563889606862198 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 204 flags 0x10(PREALLOC) atime 1716417703.220000000 (2024-05-22 15:41:43) ctime 1716417704.983333333 (2024-05-22 15:41:44) mtime 1716417704.983333333 (2024-05-22 15:41:44) otime 17592186044416.000000000 (559444-03-08 01:40:16) item 1 key (450 INODE_REF 256) itemoff 16110 itemsize 13 index 195 namelen 3 name: 193 item 2 key (450 XATTR_ITEM 1640047104) itemoff 16073 itemsize 37 location key (0 UNKNOWN.0 0) type XATTR transid 7 data_len 1 name_len 6 name: user.a data a item 3 key (450 EXTENT_DATA 0) itemoff 16020 itemsize 53 generation 9 type 1 (regular) extent data disk byte 303144960 nr 12288 extent data offset 0 nr 4096 ram 12288 extent compression 0 (none) item 4 key (450 EXTENT_DATA 4096) itemoff 15967 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 4096 nr 8192 item 5 key (450 EXTENT_DATA 8192) itemoff 15914 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 8192 nr 4096 ... So the real problem happened earlier: notice that items 4 (4k-12k) and 5 (8k-12k) overlap. Both are prealloc extents. Item 4 straddles i_size and item 5 starts at i_size. Here is the state of the filesystem tree at the time of the crash: >>> root = prog.crashed_thread().stack_trace()[2]["inode"].root >>> ret, nodes, slots = btrfs_search_slot(root, BtrfsKey(450, 0, 0)) >>> print_extent_buffer(nodes[0]) leaf 30425088 level 0 items 184 generation 9 owner 5 leaf 30425088 flags 0x100000000000000 fs uuid e5bd3946-400c-4223-8923-190ef1f18677 chunk uuid d58cb17e-6d02-494a-829a-18b7d8a399da ... item 179 key (450 INODE_ITEM 0) itemoff 4907 itemsize 160 generation 7 transid 7 size 4096 nbytes 12288 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 6 flags 0x10(PREALLOC) atime 1716417703.220000000 (2024-05-22 15:41:43) ctime 1716417703.220000000 (2024-05-22 15:41:43) mtime 1716417703.220000000 (2024-05-22 15:41:43) otime 1716417703.220000000 (2024-05-22 15:41:43) item 180 key (450 INODE_REF 256) itemoff 4894 itemsize 13 index 195 namelen 3 name: 193 item 181 key (450 XATTR_ITEM 1640047104) itemoff 4857 itemsize 37 location key (0 UNKNOWN.0 0) type XATTR transid 7 data_len 1 name_len 6 name: user.a data a item 182 key (450 EXTENT_DATA 0) itemoff 4804 itemsize 53 generation 9 type 1 (regular) extent data disk byte 303144960 nr 12288 extent data offset 0 nr 8192 ram 12288 extent compression 0 (none) item 183 key (450 EXTENT_DATA 8192) itemoff 4751 itemsize 53 generation 9 type 2 (prealloc) prealloc data disk byte 303144960 nr 12288 prealloc data offset 8192 nr 4096 Item 5 in the log tree corresponds to item 183 in the filesystem tree, but nothing matches item 4. Furthermore, item 183 is the last item in the leaf. btrfs_log_prealloc_extents() is responsible for logging prealloc extents beyond i_size. It first truncates any previously logged prealloc extents that start beyond i_size. Then, it walks the filesystem tree and copies the prealloc extent items to the log tree. If it hits the end of a leaf, then it calls btrfs_next_leaf(), which unlocks the tree and does another search. However, while the filesystem tree is unlocked, an ordered extent completion may modify the tree. In particular, it may insert an extent item that overlaps with an extent item that was already copied to the log tree. This may manifest in several ways depending on the exact scenario, including an EEXIST error that is silently translated to a full sync, overlapping items in the log tree, or this crash. This particular crash is triggered by the following sequence of events: - Initially, the file has i_size=4k, a regular extent from 0-4k, and a prealloc extent beyond i_size from 4k-12k. The prealloc extent item is the last item in its B-tree leaf. - The file is fsync'd, which copies its inode item and both extent items to the log tree. - An xattr is set on the file, which sets the BTRFS_INODE_COPY_EVERYTHING flag. - The range 4k-8k in the file is written using direct I/O. i_size is extended to 8k, but the ordered extent is still in flight. - The file is fsync'd. Since BTRFS_INODE_COPY_EVERYTHING is set, this calls copy_inode_items_to_log(), which calls btrfs_log_prealloc_extents(). - btrfs_log_prealloc_extents() finds the 4k-12k prealloc extent in the filesystem tree. Since it starts before i_size, it skips it. Since it is the last item in its B-tree leaf, it calls btrfs_next_leaf(). - btrfs_next_leaf() unlocks the path. - The ordered extent completion runs, which converts the 4k-8k part of the prealloc extent to written and inserts the remaining prealloc part from 8k-12k. - btrfs_next_leaf() does a search and finds the new prealloc extent 8k-12k. - btrfs_log_prealloc_extents() copies the 8k-12k prealloc extent into the log tree. Note that it overlaps with the 4k-12k prealloc extent that was copied to the log tree by the first fsync. - fsync calls btrfs_log_changed_extents(), which tries to log the 4k-8k extent that was written. - This tries to drop the range 4k-8k in the log tree, which requires adjusting the start of the 4k-12k prealloc extent in the log tree to 8k. - btrfs_set_item_key_safe() sees that there is already an extent starting at 8k in the log tree and calls BUG(). Fix this by detecting when we're about to insert an overlapping file extent item in the log tree and truncating the part that would overlap. CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-28btrfs: ensure fast fsync waits for ordered extents after a write failureFilipe Manana3-0/+57
If a write path in COW mode fails, either before submitting a bio for the new extents or an actual IO error happens, we can end up allowing a fast fsync to log file extent items that point to unwritten extents. This is because dropping the extent maps happens when completing ordered extents, at btrfs_finish_one_ordered(), and the completion of an ordered extent is executed in a work queue. This can result in a fast fsync to start logging file extent items based on existing extent maps before the ordered extents complete, therefore resulting in a log that has file extent items that point to unwritten extents, resulting in a corrupt file if a crash happens after and the log tree is replayed the next time the fs is mounted. This can happen for both direct IO writes and buffered writes. For example consider a direct IO write, in COW mode, that fails at btrfs_dio_submit_io() because btrfs_extract_ordered_extent() returned an error: 1) We call btrfs_finish_ordered_extent() with the 'uptodate' parameter set to false, meaning an error happened; 2) That results in marking the ordered extent with the BTRFS_ORDERED_IOERR flag; 3) btrfs_finish_ordered_extent() queues the completion of the ordered extent - so that btrfs_finish_one_ordered() will be executed later in a work queue. That function will drop extent maps in the range when it's executed, since the extent maps point to unwritten locations (signaled by the BTRFS_ORDERED_IOERR flag); 4) After calling btrfs_finish_ordered_extent() we keep going down the write path and unlock the inode; 5) After that a fast fsync starts and locks the inode; 6) Before the work queue executes btrfs_finish_one_ordered(), the fsync task sees the extent maps that point to the unwritten locations and logs file extent items based on them - it does not know they are unwritten, and the fast fsync path does not wait for ordered extents to complete, which is an intentional behaviour in order to reduce latency. For the buffered write case, here's one example: 1) A fast fsync begins, and it starts by flushing delalloc and waiting for the writeback to complete by calling filemap_fdatawait_range(); 2) Flushing the dellaloc created a new extent map X; 3) During the writeback some IO error happened, and at the end io callback (end_bbio_data_write()) we call btrfs_finish_ordered_extent(), which sets the BTRFS_ORDERED_IOERR flag in the ordered extent and queues its completion; 4) After queuing the ordered extent completion, the end io callback clears the writeback flag from all pages (or folios), and from that moment the fast fsync can proceed; 5) The fast fsync proceeds sees extent map X and logs a file extent item based on extent map X, resulting in a log that points to an unwritten data extent - because the ordered extent completion hasn't run yet, it happens only after the logging. To fix this make btrfs_finish_ordered_extent() set the inode flag BTRFS_INODE_NEEDS_FULL_SYNC in case an error happened for a COW write, so that a fast fsync will wait for ordered extent completion. Note that this issues of using extent maps that point to unwritten locations can not happen for reads, because in read paths we start by locking the extent range and wait for any ordered extents in the range to complete before looking for extent maps. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-24Merge tag 'for-6.10-tag' of ↵Linus Torvalds5-12/+45
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull more btrfs updates from David Sterba: "A few more updates, mostly stability fixes or user visible changes: - fix race in zoned mode during device replace that can lead to use-after-free - update return codes and lower message levels for quota rescan where it's causing false alerts - fix unexpected qgroup id reuse under some conditions - fix condition when looking up extent refs - add option norecovery (removed in 6.8), the intended replacements haven't been used and some aplications still rely on the old one - build warning fixes" * tag 'for-6.10-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: re-introduce 'norecovery' mount option btrfs: fix end of tree detection when searching for data extent ref btrfs: scrub: initialize ret in scrub_simple_mirror() to fix compilation warning btrfs: zoned: fix use-after-free due to race with dev replace btrfs: qgroup: fix qgroup id collision across mounts btrfs: qgroup: update rescan message levels and error codes
2024-05-21Merge tag 'pull-bd_inode-1' of ↵Linus Torvalds3-5/+5
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull bdev bd_inode updates from Al Viro: "Replacement of bdev->bd_inode with sane(r) set of primitives by me and Yu Kuai" * tag 'pull-bd_inode-1' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: RIP ->bd_inode dasd_format(): killing the last remaining user of ->bd_inode nilfs_attach_log_writer(): use ->bd_mapping->host instead of ->bd_inode block/bdev.c: use the knowledge of inode/bdev coallocation gfs2: more obvious initializations of mapping->host fs/buffer.c: massage the remaining users of ->bd_inode to ->bd_mapping blk_ioctl_{discard,zeroout}(): we only want ->bd_inode->i_mapping here... grow_dev_folio(): we only want ->bd_inode->i_mapping there use ->bd_mapping instead of ->bd_inode->i_mapping block_device: add a pointer to struct address_space (page cache of bdev) missing helpers: bdev_unhash(), bdev_drop() block: move two helpers into bdev.c block2mtd: prevent direct access of bd_inode dm-vdo: use bdev_nr_bytes(bdev) instead of i_size_read(bdev->bd_inode) blkdev_write_iter(): saner way to get inode and bdev bcachefs: remove dead function bdev_sectors() ext4: remove block_device_ejected() erofs_buf: store address_space instead of inode erofs: switch erofs_bread() to passing offset instead of block number
2024-05-21Merge tag 'pull-set_blocksize' of ↵Linus Torvalds2-6/+9
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull vfs blocksize updates from Al Viro: "This gets rid of bogus set_blocksize() uses, switches it over to be based on a 'struct file *' and verifies that the caller has the device opened exclusively" * tag 'pull-set_blocksize' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: make set_blocksize() fail unless block device is opened exclusive set_blocksize(): switch to passing struct file * btrfs_get_bdev_and_sb(): call set_blocksize() only for exclusive opens swsusp: don't bother with setting block size zram: don't bother with reopening - just use O_EXCL for open swapon(2): open swap with O_EXCL swapon(2)/swapoff(2): don't bother with block size pktcdvd: sort set_blocksize() calls out bcache_register(): don't bother with set_blocksize()
2024-05-21btrfs: re-introduce 'norecovery' mount optionQu Wenruo1-0/+8
Although 'norecovery' mount option was marked as deprecated for a long time and a warning message was printed during the deprecation window, it's still actively utilized by several projects that need a safer way to mount a btrfs without any writes. Furthermore this 'norecovery' mount option is supported by other major filesystems, which makes it less clear what's our motivation to remove it. Re-introduce the 'norecovery' mount option, and output a message to recommend 'rescue=nologreplay' option. Link: https://lore.kernel.org/linux-btrfs/ZkxZT0J-z0GYvfy8@gardel-login/#t Link: https://github.com/systemd/systemd/pull/32892 Link: https://bugzilla.suse.com/show_bug.cgi?id=1222429 Reported-by: Lennart Poettering <lennart@poettering.net> Reported-by: Jiri Slaby <jslaby@suse.com> Fixes: a1912f712188 ("btrfs: remove code for inode_cache and recovery mount options") CC: stable@vger.kernel.org # 6.8+ Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-15btrfs: fix end of tree detection when searching for data extent refFilipe Manana1-1/+1
At lookup_extent_data_ref() we are incorrectly checking if we are at the last slot of the last leaf in the extent tree. We are returning -ENOENT if btrfs_next_leaf() returns a value greater than 1, but btrfs_next_leaf() never returns anything greater than 1: 1) It returns < 0 on error; 2) 0 if there is a next leaf (or a new item was added to the end of the current leaf after releasing the path); 3) 1 if there are no more leaves (and no new items were added to the last leaf after releasing the path). So fix this by checking if the return value is greater than zero instead of being greater than one. Fixes: 1618aa3c2e01 ("btrfs: simplify return variables in lookup_extent_data_ref()") Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-15btrfs: scrub: initialize ret in scrub_simple_mirror() to fix compilation warningLu Yao1-1/+1
The following error message is displayed: ../fs/btrfs/scrub.c:2152:9: error: ‘ret’ may be used uninitialized in this function [-Werror=maybe-uninitialized]" Compiler version: gcc version: (Debian 10.2.1-6) 10.2.1 20210110 Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: Lu Yao <yaolu@kylinos.cn> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-15btrfs: zoned: fix use-after-free due to race with dev replaceFilipe Manana1-3/+10
While loading a zone's info during creation of a block group, we can race with a device replace operation and then trigger a use-after-free on the device that was just replaced (source device of the replace operation). This happens because at btrfs_load_zone_info() we extract a device from the chunk map into a local variable and then use the device while not under the protection of the device replace rwsem. So if there's a device replace operation happening when we extract the device and that device is the source of the replace operation, we will trigger a use-after-free if before we finish using the device the replace operation finishes and frees the device. Fix this by enlarging the critical section under the protection of the device replace rwsem so that all uses of the device are done inside the critical section. CC: stable@vger.kernel.org # 6.1.x: 15c12fcc50a1: btrfs: zoned: introduce a zone_info struct in btrfs_load_block_group_zone_info CC: stable@vger.kernel.org # 6.1.x: 09a46725cc84: btrfs: zoned: factor out per-zone logic from btrfs_load_block_group_zone_info CC: stable@vger.kernel.org # 6.1.x: 9e0e3e74dc69: btrfs: zoned: factor out single bg handling from btrfs_load_block_group_zone_info CC: stable@vger.kernel.org # 6.1.x: 87463f7e0250: btrfs: zoned: factor out DUP bg handling from btrfs_load_block_group_zone_info CC: stable@vger.kernel.org # 6.1.x Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-15btrfs: qgroup: fix qgroup id collision across mountsBoris Burkov1-0/+20
If we delete subvolumes whose ID is the largest in the filesystem, then unmount and mount again, then btrfs_init_root_free_objectid on the tree_root will select a subvolid smaller than that one and thus allow reusing it. If we are also using qgroups (and particularly squotas) it is possible to delete the subvol without deleting the qgroup. In that case, we will be able to create a new subvol whose id already has a level 0 qgroup. This will result in re-using that qgroup which would then lead to incorrect accounting. Fixes: 6ed05643ddb1 ("btrfs: create qgroup earlier in snapshot creation") CC: stable@vger.kernel.org # 6.7+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-15btrfs: qgroup: update rescan message levels and error codesDavid Sterba1-7/+5
On filesystems without enabled quotas there's still a warning message in the logs when rescan is called. In that case it's not a problem that should be reported, rescan can be called unconditionally. Change the error code to ENOTCONN which is used for 'quotas not enabled' elsewhere. Remove message (also a warning) when rescan is called during an ongoing rescan, this brings no useful information and the error code is sufficient. Change message levels to debug for now, they can be removed eventually. CC: stable@vger.kernel.org # 6.6+ Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-15Merge tag 'net-next-6.10' of ↵Linus Torvalds1-4/+4
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next Pull networking updates from Jakub Kicinski: "Core & protocols: - Complete rework of garbage collection of AF_UNIX sockets. AF_UNIX is prone to forming reference count cycles due to fd passing functionality. New method based on Tarjan's Strongly Connected Components algorithm should be both faster and remove a lot of workarounds we accumulated over the years. - Add TCP fraglist GRO support, allowing chaining multiple TCP packets and forwarding them together. Useful for small switches / routers which lack basic checksum offload in some scenarios (e.g. PPPoE). - Support using SMP threads for handling packet backlog i.e. packet processing from software interfaces and old drivers which don't use NAPI. This helps move the processing out of the softirq jumble. - Continue work of converting from rtnl lock to RCU protection. Don't require rtnl lock when reading: IPv6 routing FIB, IPv6 address labels, netdev threaded NAPI sysfs files, bonding driver's sysfs files, MPLS devconf, IPv4 FIB rules, netns IDs, tcp metrics, TC Qdiscs, neighbor entries, ARP entries via ioctl(SIOCGARP), a lot of the link information available via rtnetlink. - Small optimizations from Eric to UDP wake up handling, memory accounting, RPS/RFS implementation, TCP packet sizing etc. - Allow direct page recycling in the bulk API used by XDP, for +2% PPS. - Support peek with an offset on TCP sockets. - Add MPTCP APIs for querying last time packets were received/sent/acked and whether MPTCP "upgrade" succeeded on a TCP socket. - Add intra-node communication shortcut to improve SMC performance. - Add IPv6 (and IPv{4,6}-over-IPv{4,6}) support to the GTP protocol driver. - Add HSR-SAN (RedBOX) mode of operation to the HSR protocol driver. - Add reset reasons for tracing what caused a TCP reset to be sent. - Introduce direction attribute for xfrm (IPSec) states. State can be used either for input or output packet processing. Things we sprinkled into general kernel code: - Add bitmap_{read,write}(), bitmap_size(), expose BYTES_TO_BITS(). This required touch-ups and renaming of a few existing users. - Add Endian-dependent __counted_by_{le,be} annotations. - Make building selftests "quieter" by printing summaries like "CC object.o" rather than full commands with all the arguments. Netfilter: - Use GFP_KERNEL to clone elements, to deal better with OOM situations and avoid failures in the .commit step. BPF: - Add eBPF JIT for ARCv2 CPUs. - Support attaching kprobe BPF programs through kprobe_multi link in a session mode, meaning, a BPF program is attached to both function entry and return, the entry program can decide if the return program gets executed and the entry program can share u64 cookie value with return program. "Session mode" is a common use-case for tetragon and bpftrace. - Add the ability to specify and retrieve BPF cookie for raw tracepoint programs in order to ease migration from classic to raw tracepoints. - Add an internal-only BPF per-CPU instruction for resolving per-CPU memory addresses and implement support in x86, ARM64 and RISC-V JITs. This allows inlining functions which need to access per-CPU state. - Optimize x86 BPF JIT's emit_mov_imm64, and add support for various atomics in bpf_arena which can be JITed as a single x86 instruction. Support BPF arena on ARM64. - Add a new bpf_wq API for deferring events and refactor process-context bpf_timer code to keep common code where possible. - Harden the BPF verifier's and/or/xor value tracking. - Introduce crypto kfuncs to let BPF programs call kernel crypto APIs. - Support bpf_tail_call_static() helper for BPF programs with GCC 13. - Add bpf_preempt_{disable,enable}() kfuncs in order to allow a BPF program to have code sections where preemption is disabled. Driver API: - Skip software TC processing completely if all installed rules are marked as HW-only, instead of checking the HW-only flag rule by rule. - Add support for configuring PoE (Power over Ethernet), similar to the already existing support for PoDL (Power over Data Line) config. - Initial bits of a queue control API, for now allowing a single queue to be reset without disturbing packet flow to other queues. - Common (ethtool) statistics for hardware timestamping. Tests and tooling: - Remove the need to create a config file to run the net forwarding tests so that a naive "make run_tests" can exercise them. - Define a method of writing tests which require an external endpoint to communicate with (to send/receive data towards the test machine). Add a few such tests. - Create a shared code library for writing Python tests. Expose the YAML Netlink library from tools/ to the tests for easy Netlink access. - Move netfilter tests under net/, extend them, separate performance tests from correctness tests, and iron out issues found by running them "on every commit". - Refactor BPF selftests to use common network helpers. - Further work filling in YAML definitions of Netlink messages for: nftables, team driver, bonding interfaces, vlan interfaces, VF info, TC u32 mark, TC police action. - Teach Python YAML Netlink to decode attribute policies. - Extend the definition of the "indexed array" construct in the specs to cover arrays of scalars rather than just nests. - Add hyperlinks between definitions in generated Netlink docs. Drivers: - Make sure unsupported flower control flags are rejected by drivers, and make more drivers report errors directly to the application rather than dmesg (large number of driver changes from Asbjørn Sloth Tønnesen). - Ethernet high-speed NICs: - Broadcom (bnxt): - support multiple RSS contexts and steering traffic to them - support XDP metadata - make page pool allocations more NUMA aware - Intel (100G, ice, idpf): - extract datapath code common among Intel drivers into a library - use fewer resources in switchdev by sharing queues with the PF - add PFCP filter support - add Ethernet filter support - use a spinlock instead of HW lock in PTP clock ops - support 5 layer Tx scheduler topology - nVidia/Mellanox: - 800G link modes and 100G SerDes speeds - per-queue IRQ coalescing configuration - Marvell Octeon: - support offloading TC packet mark action - Ethernet NICs consumer, embedded and virtual: - stop lying about skb->truesize in USB Ethernet drivers, it messes up TCP memory calculations - Google cloud vNIC: - support changing ring size via ethtool - support ring reset using the queue control API - VirtIO net: - expose flow hash from RSS to XDP - per-queue statistics - add selftests - Synopsys (stmmac): - support controllers which require an RX clock signal from the MII bus to perform their hardware initialization - TI: - icssg_prueth: support ICSSG-based Ethernet on AM65x SR1.0 devices - icssg_prueth: add SW TX / RX Coalescing based on hrtimers - cpsw: minimal XDP support - Renesas (ravb): - support describing the MDIO bus - Realtek (r8169): - add support for RTL8168M - Microchip Sparx5: - matchall and flower actions mirred and redirect - Ethernet switches: - nVidia/Mellanox: - improve events processing performance - Marvell: - add support for MV88E6250 family internal PHYs - Microchip: - add DCB and DSCP mapping support for KSZ switches - vsc73xx: convert to PHYLINK - Realtek: - rtl8226b/rtl8221b: add C45 instances and SerDes switching - Many driver changes related to PHYLIB and PHYLINK deprecated API cleanup - Ethernet PHYs: - Add a new driver for Airoha EN8811H 2.5 Gigabit PHY. - micrel: lan8814: add support for PPS out and external timestamp trigger - WiFi: - Disable Wireless Extensions (WEXT) in all Wi-Fi 7 devices drivers. Modern devices can only be configured using nl80211. - mac80211/cfg80211 - handle color change per link for WiFi 7 Multi-Link Operation - Intel (iwlwifi): - don't support puncturing in 5 GHz - support monitor mode on passive channels - BZ-W device support - P2P with HE/EHT support - re-add support for firmware API 90 - provide channel survey information for Automatic Channel Selection - MediaTek (mt76): - mt7921 LED control - mt7925 EHT radiotap support - mt7920e PCI support - Qualcomm (ath11k): - P2P support for QCA6390, WCN6855 and QCA2066 - support hibernation - ieee80211-freq-limit Device Tree property support - Qualcomm (ath12k): - refactoring in preparation of multi-link support - suspend and hibernation support - ACPI support - debugfs support, including dfs_simulate_radar support - RealTek: - rtw88: RTL8723CS SDIO device support - rtw89: RTL8922AE Wi-Fi 7 PCI device support - rtw89: complete features of new WiFi 7 chip 8922AE including BT-coexistence and Wake-on-WLAN - rtw89: use BIOS ACPI settings to set TX power and channels - rtl8xxxu: enable Management Frame Protection (MFP) support - Bluetooth: - support for Intel BlazarI and Filmore Peak2 (BE201) - support for MediaTek MT7921S SDIO - initial support for Intel PCIe BT driver - remove HCI_AMP support" * tag 'net-next-6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1827 commits) selftests: netfilter: fix packetdrill conntrack testcase net: gro: fix napi_gro_cb zeroed alignment Bluetooth: btintel_pcie: Refactor and code cleanup Bluetooth: btintel_pcie: Fix warning reported by sparse Bluetooth: hci_core: Fix not handling hdev->le_num_of_adv_sets=1 Bluetooth: btintel: Fix compiler warning for multi_v7_defconfig config Bluetooth: btintel_pcie: Fix compiler warnings Bluetooth: btintel_pcie: Add *setup* function to download firmware Bluetooth: btintel_pcie: Add support for PCIe transport Bluetooth: btintel: Export few static functions Bluetooth: HCI: Remove HCI_AMP support Bluetooth: L2CAP: Fix div-by-zero in l2cap_le_flowctl_init() Bluetooth: qca: Fix error code in qca_read_fw_build_info() Bluetooth: hci_conn: Use __counted_by() and avoid -Wfamnae warning Bluetooth: btintel: Add support for Filmore Peak2 (BE201) Bluetooth: btintel: Add support for BlazarI LE Create Connection command timeout increased to 20 secs dt-bindings: net: bluetooth: Add MediaTek MT7921S SDIO Bluetooth Bluetooth: compute LE flow credits based on recvbuf space Bluetooth: hci_sync: Use cmd->num_cis instead of magic number ...
2024-05-15Merge tag 'for-6.10-tag' of ↵Linus Torvalds50-2309/+2517
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "This update brings a few minor performance improvements, otherwise there's a lot of refactoring, cleanups and other sort of not user visible changes. Performance improvements: - inline b-tree locking functions, improvement in metadata-heavy changes - relax locking on a range that's being reflinked, allows read operations to run in parallel - speed up NOCOW write checks (throughput +9% on a sample test) - extent locking ranges have been reduced in several places, namely around delayed ref processing Core: - more page to folio conversions: - relocation - send - compression - inline extent handling - super block write and wait - extent_map structure optimizations: - reduced structure size - code simplifications - add shrinker for allocated objects, the numbers can go high and could exhaust memory on smaller systems (reported) as they may not get an opportunity to be freed fast enough - extent locking optimizations: - reduce locking ranges where it does not seem to be necessary and are safe due to other means of synchronization - potential improvements due to lower contention, allocation/freeing and state management operations of extent state tracking structures - delayed ref cleanups and simplifications - updated trace points - improved error handling, warnings and assertions - cleanups and refactoring, unification of error handling paths" * tag 'for-6.10-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (122 commits) btrfs: qgroup: fix initialization of auto inherit array btrfs: count super block write errors in device instead of tracking folio error state btrfs: use the folio iterator in btrfs_end_super_write() btrfs: convert super block writes to folio in write_dev_supers() btrfs: convert super block writes to folio in wait_dev_supers() bio: Export bio_add_folio_nofail to modules btrfs: remove duplicate included header from fs.h btrfs: add a cached state to extent_clear_unlock_delalloc btrfs: push extent lock down in submit_one_async_extent btrfs: push lock_extent down in cow_file_range() btrfs: move can_cow_file_range_inline() outside of the extent lock btrfs: push lock_extent into cow_file_range_inline btrfs: push extent lock into cow_file_range btrfs: push extent lock into run_delalloc_cow btrfs: remove unlock_extent from run_delalloc_compressed btrfs: push extent lock down in run_delalloc_nocow btrfs: adjust while loop condition in run_delalloc_nocow btrfs: push extent lock into run_delalloc_nocow btrfs: push the extent lock into btrfs_run_delalloc_range btrfs: lock extent when doing inline extent in compression ...
2024-05-13Merge tag 'for-6.10/block-20240511' of git://git.kernel.dk/linuxLinus Torvalds1-2/+1
Pull block updates from Jens Axboe: - Add a partscan attribute in sysfs, fixing an issue with systemd relying on an internal interface that went away. - Attempt #2 at making long running discards interruptible. The previous attempt went into 6.9, but we ended up mostly reverting it as it had issues. - Remove old ida_simple API in bcache - Support for zoned write plugging, greatly improving the performance on zoned devices. - Remove the old throttle low interface, which has been experimental since 2017 and never made it beyond that and isn't being used. - Remove page->index debugging checks in brd, as it hasn't caught anything and prepares us for removing in struct page. - MD pull request from Song - Don't schedule block workers on isolated CPUs * tag 'for-6.10/block-20240511' of git://git.kernel.dk/linux: (84 commits) blk-throttle: delay initialization until configuration blk-throttle: remove CONFIG_BLK_DEV_THROTTLING_LOW block: fix that util can be greater than 100% block: support to account io_ticks precisely block: add plug while submitting IO bcache: fix variable length array abuse in btree_iter bcache: Remove usage of the deprecated ida_simple_xx() API md: Revert "md: Fix overflow in is_mddev_idle" blk-lib: check for kill signal in ioctl BLKDISCARD block: add a bio_await_chain helper block: add a blk_alloc_discard_bio helper block: add a bio_chain_and_submit helper block: move discard checks into the ioctl handler block: remove the discard_granularity check in __blkdev_issue_discard block/ioctl: prefer different overflow check null_blk: Fix the WARNING: modpost: missing MODULE_DESCRIPTION() block: fix and simplify blkdevparts= cmdline parsing block: refine the EOF check in blkdev_iomap_begin block: add a partscan sysfs attribute for disks block: add a disk_has_partscan helper ...
2024-05-13Merge tag 'vfs-6.10.misc' of ↵Linus Torvalds2-2/+5
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs Pull misc vfs updates from Christian Brauner: "This contains the usual miscellaneous features, cleanups, and fixes for vfs and individual fses. Features: - Free up FMODE_* bits. I've freed up bits 6, 7, 8, and 24. That means we now have six free FMODE_* bits in total (but bit #6 already got used for FMODE_WRITE_RESTRICTED) - Add FOP_HUGE_PAGES flag (follow-up to FMODE_* cleanup) - Add fd_raw cleanup class so we can make use of automatic cleanup provided by CLASS(fd_raw, f)(fd) for O_PATH fds as well - Optimize seq_puts() - Simplify __seq_puts() - Add new anon_inode_getfile_fmode() api to allow specifying f_mode instead of open-coding it in multiple places - Annotate struct file_handle with __counted_by() and use struct_size() - Warn in get_file() whether f_count resurrection from zero is attempted (epoll/drm discussion) - Folio-sophize aio - Export the subvolume id in statx() for both btrfs and bcachefs - Relax linkat(AT_EMPTY_PATH) requirements - Add F_DUPFD_QUERY fcntl() allowing to compare two file descriptors for dup*() equality replacing kcmp() Cleanups: - Compile out swapfile inode checks when swap isn't enabled - Use (1 << n) notation for FMODE_* bitshifts for clarity - Remove redundant variable assignment in fs/direct-io - Cleanup uses of strncpy in orangefs - Speed up and cleanup writeback - Move fsparam_string_empty() helper into header since it's currently open-coded in multiple places - Add kernel-doc comments to proc_create_net_data_write() - Don't needlessly read dentry->d_flags twice Fixes: - Fix out-of-range warning in nilfs2 - Fix ecryptfs overflow due to wrong encryption packet size calculation - Fix overly long line in xfs file_operations (follow-up to FMODE_* cleanup) - Don't raise FOP_BUFFER_{R,W}ASYNC for directories in xfs (follow-up to FMODE_* cleanup) - Don't call xfs_file_open from xfs_dir_open (follow-up to FMODE_* cleanup) - Fix stable offset api to prevent endless loops - Fix afs file server rotations - Prevent xattr node from overflowing the eraseblock in jffs2 - Move fdinfo PTRACE_MODE_READ procfs check into the .permission() operation instead of .open() operation since this caused userspace regressions" * tag 'vfs-6.10.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (39 commits) afs: Fix fileserver rotation getting stuck selftests: add F_DUPDFD_QUERY selftests fcntl: add F_DUPFD_QUERY fcntl() file: add fd_raw cleanup class fs: WARN when f_count resurrection is attempted seq_file: Simplify __seq_puts() seq_file: Optimize seq_puts() proc: Move fdinfo PTRACE_MODE_READ check into the inode .permission operation fs: Create anon_inode_getfile_fmode() xfs: don't call xfs_file_open from xfs_dir_open xfs: drop fop_flags for directories xfs: fix overly long line in the file_operations shmem: Fix shmem_rename2() libfs: Add simple_offset_rename() API libfs: Fix simple_offset_rename_exchange() jffs2: prevent xattr node from overflowing the eraseblock vfs, swap: compile out IS_SWAPFILE() on swapless configs vfs: relax linkat() AT_EMPTY_PATH - aka flink() - requirements fs/direct-io: remove redundant assignment to variable retval fs/dcache: Re-use value stored to dentry->d_flags instead of re-reading ...
2024-05-09Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netJakub Kicinski6-31/+58
Cross-merge networking fixes after downstream PR. No conflicts. Adjacent changes: drivers/net/ethernet/hisilicon/hns3/hns3pf/hclge_main.c 35d92abfbad8 ("net: hns3: fix kernel crash when devlink reload during initialization") 2a1a1a7b5fd7 ("net: hns3: add command queue trace for hns3") Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-05-07btrfs: qgroup: fix initialization of auto inherit arrayDan Carpenter1-1/+1
The "i++" was accidentally left out so it just sets qgids[0] over and over. This can lead to unexpected problems, as the groups[1:] would be all 0, leading to later find_qgroup_rb() unable to find a qgroup and cause snapshot creation failure. Fixes: 5343cd9364ea ("btrfs: qgroup: simple quota auto hierarchy for nested subvolumes") CC: stable@vger.kernel.org # 6.7+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: count super block write errors in device instead of tracking folio ↵Matthew Wilcox (Oracle)3-28/+29
error state Currently the error status of super block write is tracked in page/folio status bit Error. For that we need to keep the reference for the whole duration of write and wait. Count the number of superblock writeback errors in the btrfs_device. That means we don't need the folio to stay around until it's waited for, and can avoid the extra call to folio_get/put. Also remove a mention of PageError in a comment as it's the last mention of the page Error state. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: use the folio iterator in btrfs_end_super_write()Matthew Wilcox (Oracle)1-13/+6
Iterate over folios instead of bvecs. Switch the order of unlock and put to be the usual order; we know this folio can't be put until it's been waited for, but that's fragile. Remove the calls to ClearPageUptodate / SetPageUptodate -- if PAGE_SIZE is larger than BTRFS_SUPER_INFO_SIZE, we'd be marking the entire folio uptodate without having actually initialised all the bytes in the page. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: convert super block writes to folio in write_dev_supers()Matthew Wilcox (Oracle)1-10/+13
This is a direct conversion from pages to folios, assuming single page folio. Also removes some calls to obsolete APIs and some hidden calls to compound_head(). Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: convert super block writes to folio in wait_dev_supers()Matthew Wilcox (Oracle)1-11/+12
This is a direct conversion from pages to folios, assuming single page folio. Also removes a few calls to compound_head() and calls to obsolete APIs. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: remove duplicate included header from fs.hThorsten Blum1-1/+0
Remove duplicate included header file linux/blkdev.h . Signed-off-by: Thorsten Blum <thorsten.blum@toblux.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: add a cached state to extent_clear_unlock_delallocJosef Bacik3-19/+28
Now that we have the lock_extent tightly coupled with extent_clear_unlock_delalloc we can add a cached state to extent_clear_unlock_delalloc and benefit from skipping the extra lookup when we're doing cow. Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: push extent lock down in submit_one_async_extentJosef Bacik1-1/+2
We don't need to include the time we spend in the allocator under our extent lock protection, move it after the allocator and make sure we lock the extent in the error case to ensure we're not clearing these bits without the extent lock held. Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: push lock_extent down in cow_file_range()Josef Bacik1-2/+14
Now that we've got the extent lock pushed into cow_file_range() we can push it further down into the allocation loop. This allows us to only hold the extent lock during the dropping of the extent map range and inserting the ordered extent. This makes the error case a little trickier as we'll now have to lock the range before clearing any of the other extent bits for the range, but this is the error path so is less performance critical. Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: move can_cow_file_range_inline() outside of the extent lockJosef Bacik1-4/+8
These checks aren't reliant on the extent lock. Move this up into cow_file_range_inline(), and then update encoded writes to call this check before calling __cow_file_range_inline(). This will allow us to skip the extent lock if we're not able to inline the given extent. Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>