summaryrefslogtreecommitdiff
path: root/fs/btrfs
AgeCommit message (Collapse)AuthorFilesLines
2021-11-26Merge tag 'for-5.16-rc2-tag' of ↵Linus Torvalds1-0/+2
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fix from David Sterba: "One more fix to the lzo code, a missing put_page causing memory leaks when some error branches are taken" * tag 'for-5.16-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: fix the memory leak caused in lzo_compress_pages()
2021-11-26btrfs: fix the memory leak caused in lzo_compress_pages()Qu Wenruo1-0/+2
[BUG] Fstests generic/027 is pretty easy to trigger a slow but steady memory leak if run with "-o compress=lzo" mount option. Normally one single run of generic/027 is enough to eat up at least 4G ram. [CAUSE] In commit d4088803f511 ("btrfs: subpage: make lzo_compress_pages() compatible") we changed how @page_in is released. But that refactoring makes @page_in only released after all pages being compressed. This leaves error path not releasing @page_in. And by "error path" things like incompressible data will also be treated as an error (-E2BIG). Thus it can cause a memory leak if even nothing wrong happened. [FIX] Add check under @out label to release @page_in when needed, so when we hit any error, the input page is properly released. Reported-by: Josef Bacik <josef@toxicpanda.com> Fixes: d4088803f511 ("btrfs: subpage: make lzo_compress_pages() compatible") Reviewed-and-tested-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-11-18Merge tag 'for-5.16-rc1-tag' of ↵Linus Torvalds6-9/+58
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "Several xes and one old ioctl deprecation. Namely there's fix for crashes/warnings with lzo compression that was suspected to be caused by first pull merge resolution, but it was a different bug. Summary: - regression fix for a crash in lzo due to missing boundary checks of the page array - fix crashes on ARM64 due to missing barriers when synchronizing status bits between work queues - silence lockdep when reading chunk tree during mount - fix false positive warning in integrity checker on devices with disabled write caching - fix signedness of bitfields in scrub - start deprecation of balance v1 ioctl" * tag 'for-5.16-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: deprecate BTRFS_IOC_BALANCE ioctl btrfs: make 1-bit bit-fields of scrub_page unsigned int btrfs: check-integrity: fix a warning on write caching disabled disk btrfs: silence lockdep when reading chunk tree during mount btrfs: fix memory ordering between normal and ordered work functions btrfs: fix a out-of-bound access in copy_compressed_data_to_page()
2021-11-16btrfs: deprecate BTRFS_IOC_BALANCE ioctlNikolay Borisov1-0/+4
The v2 balance ioctl has been introduced more than 9 years ago. Users of the old v1 ioctl should have long been migrated to it. It's time we deprecate it and eventually remove it. The only known user is in btrfs-progs that tries v1 as a fallback in case v2 is not supported. This is not necessary anymore. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-11-16btrfs: make 1-bit bit-fields of scrub_page unsigned intColin Ian King1-2/+2
The bitfields have_csum and io_error are currently signed which is not recommended as the representation is an implementation defined behaviour. Fix this by making the bit-fields unsigned ints. Fixes: 2c36395430b0 ("btrfs: scrub: remove the anonymous structure from scrub_page") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Colin Ian King <colin.i.king@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-11-16btrfs: check-integrity: fix a warning on write caching disabled diskWang Yugui1-1/+13
When a disk has write caching disabled, we skip submission of a bio with flush and sync requests before writing the superblock, since it's not needed. However when the integrity checker is enabled, this results in reports that there are metadata blocks referred by a superblock that were not properly flushed. So don't skip the bio submission only when the integrity checker is enabled for the sake of simplicity, since this is a debug tool and not meant for use in non-debug builds. fstests/btrfs/220 trigger a check-integrity warning like the following when CONFIG_BTRFS_FS_CHECK_INTEGRITY=y and the disk with WCE=0. btrfs: attempt to write superblock which references block M @5242880 (sdb2/5242880/0) which is not flushed out of disk's write cache (block flush_gen=1, dev->flush_gen=0)! ------------[ cut here ]------------ WARNING: CPU: 28 PID: 843680 at fs/btrfs/check-integrity.c:2196 btrfsic_process_written_superblock+0x22a/0x2a0 [btrfs] CPU: 28 PID: 843680 Comm: umount Not tainted 5.15.0-0.rc5.39.el8.x86_64 #1 Hardware name: Dell Inc. Precision T7610/0NK70N, BIOS A18 09/11/2019 RIP: 0010:btrfsic_process_written_superblock+0x22a/0x2a0 [btrfs] RSP: 0018:ffffb642afb47940 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000 RDX: 00000000ffffffff RSI: ffff8b722fc97d00 RDI: ffff8b722fc97d00 RBP: ffff8b5601c00000 R08: 0000000000000000 R09: c0000000ffff7fff R10: 0000000000000001 R11: ffffb642afb476f8 R12: ffffffffffffffff R13: ffffb642afb47974 R14: ffff8b5499254c00 R15: 0000000000000003 FS: 00007f00a06d4080(0000) GS:ffff8b722fc80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fff5cff5ff0 CR3: 00000001c0c2a006 CR4: 00000000001706e0 Call Trace: btrfsic_process_written_block+0x2f7/0x850 [btrfs] __btrfsic_submit_bio.part.19+0x310/0x330 [btrfs] ? bio_associate_blkg_from_css+0xa4/0x2c0 btrfsic_submit_bio+0x18/0x30 [btrfs] write_dev_supers+0x81/0x2a0 [btrfs] ? find_get_pages_range_tag+0x219/0x280 ? pagevec_lookup_range_tag+0x24/0x30 ? __filemap_fdatawait_range+0x6d/0xf0 ? __raw_callee_save___native_queued_spin_unlock+0x11/0x1e ? find_first_extent_bit+0x9b/0x160 [btrfs] ? __raw_callee_save___native_queued_spin_unlock+0x11/0x1e write_all_supers+0x1b3/0xa70 [btrfs] ? __raw_callee_save___native_queued_spin_unlock+0x11/0x1e btrfs_commit_transaction+0x59d/0xac0 [btrfs] close_ctree+0x11d/0x339 [btrfs] generic_shutdown_super+0x71/0x110 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0xb8/0x140 task_work_run+0x6d/0xb0 exit_to_user_mode_prepare+0x1f0/0x200 syscall_exit_to_user_mode+0x12/0x30 do_syscall_64+0x46/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f009f711dfb RSP: 002b:00007fff5cff7928 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 000055b68c6c9970 RCX: 00007f009f711dfb RDX: 0000000000000001 RSI: 0000000000000000 RDI: 000055b68c6c9b50 RBP: 0000000000000000 R08: 000055b68c6ca900 R09: 00007f009f795580 R10: 0000000000000000 R11: 0000000000000246 R12: 000055b68c6c9b50 R13: 00007f00a04bf184 R14: 0000000000000000 R15: 00000000ffffffff ---[ end trace 2c4b82abcef9eec4 ]--- S-65536(sdb2/65536/1) --> M-1064960(sdb2/1064960/1) Reviewed-by: Filipe Manana <fdmanana@gmail.com> Signed-off-by: Wang Yugui <wangyugui@e16-tech.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-11-16btrfs: silence lockdep when reading chunk tree during mountFilipe Manana1-5/+13
Often some test cases like btrfs/161 trigger lockdep splats that complain about possible unsafe lock scenario due to the fact that during mount, when reading the chunk tree we end up calling blkdev_get_by_path() while holding a read lock on a leaf of the chunk tree. That produces a lockdep splat like the following: [ 3653.683975] ====================================================== [ 3653.685148] WARNING: possible circular locking dependency detected [ 3653.686301] 5.15.0-rc7-btrfs-next-103 #1 Not tainted [ 3653.687239] ------------------------------------------------------ [ 3653.688400] mount/447465 is trying to acquire lock: [ 3653.689320] ffff8c6b0c76e528 (&disk->open_mutex){+.+.}-{3:3}, at: blkdev_get_by_dev.part.0+0xe7/0x320 [ 3653.691054] but task is already holding lock: [ 3653.692155] ffff8c6b0a9f39e0 (btrfs-chunk-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 3653.693978] which lock already depends on the new lock. [ 3653.695510] the existing dependency chain (in reverse order) is: [ 3653.696915] -> #3 (btrfs-chunk-00){++++}-{3:3}: [ 3653.698053] down_read_nested+0x4b/0x140 [ 3653.698893] __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 3653.699988] btrfs_read_lock_root_node+0x31/0x40 [btrfs] [ 3653.701205] btrfs_search_slot+0x537/0xc00 [btrfs] [ 3653.702234] btrfs_insert_empty_items+0x32/0x70 [btrfs] [ 3653.703332] btrfs_init_new_device+0x563/0x15b0 [btrfs] [ 3653.704439] btrfs_ioctl+0x2110/0x3530 [btrfs] [ 3653.705405] __x64_sys_ioctl+0x83/0xb0 [ 3653.706215] do_syscall_64+0x3b/0xc0 [ 3653.706990] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 3653.708040] -> #2 (sb_internal#2){.+.+}-{0:0}: [ 3653.708994] lock_release+0x13d/0x4a0 [ 3653.709533] up_write+0x18/0x160 [ 3653.710017] btrfs_sync_file+0x3f3/0x5b0 [btrfs] [ 3653.710699] __loop_update_dio+0xbd/0x170 [loop] [ 3653.711360] lo_ioctl+0x3b1/0x8a0 [loop] [ 3653.711929] block_ioctl+0x48/0x50 [ 3653.712442] __x64_sys_ioctl+0x83/0xb0 [ 3653.712991] do_syscall_64+0x3b/0xc0 [ 3653.713519] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 3653.714233] -> #1 (&lo->lo_mutex){+.+.}-{3:3}: [ 3653.715026] __mutex_lock+0x92/0x900 [ 3653.715648] lo_open+0x28/0x60 [loop] [ 3653.716275] blkdev_get_whole+0x28/0x90 [ 3653.716867] blkdev_get_by_dev.part.0+0x142/0x320 [ 3653.717537] blkdev_open+0x5e/0xa0 [ 3653.718043] do_dentry_open+0x163/0x390 [ 3653.718604] path_openat+0x3f0/0xa80 [ 3653.719128] do_filp_open+0xa9/0x150 [ 3653.719652] do_sys_openat2+0x97/0x160 [ 3653.720197] __x64_sys_openat+0x54/0x90 [ 3653.720766] do_syscall_64+0x3b/0xc0 [ 3653.721285] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 3653.721986] -> #0 (&disk->open_mutex){+.+.}-{3:3}: [ 3653.722775] __lock_acquire+0x130e/0x2210 [ 3653.723348] lock_acquire+0xd7/0x310 [ 3653.723867] __mutex_lock+0x92/0x900 [ 3653.724394] blkdev_get_by_dev.part.0+0xe7/0x320 [ 3653.725041] blkdev_get_by_path+0xb8/0xd0 [ 3653.725614] btrfs_get_bdev_and_sb+0x1b/0xb0 [btrfs] [ 3653.726332] open_fs_devices+0xd7/0x2c0 [btrfs] [ 3653.726999] btrfs_read_chunk_tree+0x3ad/0x870 [btrfs] [ 3653.727739] open_ctree+0xb8e/0x17bf [btrfs] [ 3653.728384] btrfs_mount_root.cold+0x12/0xde [btrfs] [ 3653.729130] legacy_get_tree+0x30/0x50 [ 3653.729676] vfs_get_tree+0x28/0xc0 [ 3653.730192] vfs_kern_mount.part.0+0x71/0xb0 [ 3653.730800] btrfs_mount+0x11d/0x3a0 [btrfs] [ 3653.731427] legacy_get_tree+0x30/0x50 [ 3653.731970] vfs_get_tree+0x28/0xc0 [ 3653.732486] path_mount+0x2d4/0xbe0 [ 3653.732997] __x64_sys_mount+0x103/0x140 [ 3653.733560] do_syscall_64+0x3b/0xc0 [ 3653.734080] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 3653.734782] other info that might help us debug this: [ 3653.735784] Chain exists of: &disk->open_mutex --> sb_internal#2 --> btrfs-chunk-00 [ 3653.737123] Possible unsafe locking scenario: [ 3653.737865] CPU0 CPU1 [ 3653.738435] ---- ---- [ 3653.739007] lock(btrfs-chunk-00); [ 3653.739449] lock(sb_internal#2); [ 3653.740193] lock(btrfs-chunk-00); [ 3653.740955] lock(&disk->open_mutex); [ 3653.741431] *** DEADLOCK *** [ 3653.742176] 3 locks held by mount/447465: [ 3653.742739] #0: ffff8c6acf85c0e8 (&type->s_umount_key#44/1){+.+.}-{3:3}, at: alloc_super+0xd5/0x3b0 [ 3653.744114] #1: ffffffffc0b28f70 (uuid_mutex){+.+.}-{3:3}, at: btrfs_read_chunk_tree+0x59/0x870 [btrfs] [ 3653.745563] #2: ffff8c6b0a9f39e0 (btrfs-chunk-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x24/0x110 [btrfs] [ 3653.747066] stack backtrace: [ 3653.747723] CPU: 4 PID: 447465 Comm: mount Not tainted 5.15.0-rc7-btrfs-next-103 #1 [ 3653.748873] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 3653.750592] Call Trace: [ 3653.750967] dump_stack_lvl+0x57/0x72 [ 3653.751526] check_noncircular+0xf3/0x110 [ 3653.752136] ? stack_trace_save+0x4b/0x70 [ 3653.752748] __lock_acquire+0x130e/0x2210 [ 3653.753356] lock_acquire+0xd7/0x310 [ 3653.753898] ? blkdev_get_by_dev.part.0+0xe7/0x320 [ 3653.754596] ? lock_is_held_type+0xe8/0x140 [ 3653.755125] ? blkdev_get_by_dev.part.0+0xe7/0x320 [ 3653.755729] ? blkdev_get_by_dev.part.0+0xe7/0x320 [ 3653.756338] __mutex_lock+0x92/0x900 [ 3653.756794] ? blkdev_get_by_dev.part.0+0xe7/0x320 [ 3653.757400] ? do_raw_spin_unlock+0x4b/0xa0 [ 3653.757930] ? _raw_spin_unlock+0x29/0x40 [ 3653.758437] ? bd_prepare_to_claim+0x129/0x150 [ 3653.758999] ? trace_module_get+0x2b/0xd0 [ 3653.759508] ? try_module_get.part.0+0x50/0x80 [ 3653.760072] blkdev_get_by_dev.part.0+0xe7/0x320 [ 3653.760661] ? devcgroup_check_permission+0xc1/0x1f0 [ 3653.761288] blkdev_get_by_path+0xb8/0xd0 [ 3653.761797] btrfs_get_bdev_and_sb+0x1b/0xb0 [btrfs] [ 3653.762454] open_fs_devices+0xd7/0x2c0 [btrfs] [ 3653.763055] ? clone_fs_devices+0x8f/0x170 [btrfs] [ 3653.763689] btrfs_read_chunk_tree+0x3ad/0x870 [btrfs] [ 3653.764370] ? kvm_sched_clock_read+0x14/0x40 [ 3653.764922] open_ctree+0xb8e/0x17bf [btrfs] [ 3653.765493] ? super_setup_bdi_name+0x79/0xd0 [ 3653.766043] btrfs_mount_root.cold+0x12/0xde [btrfs] [ 3653.766780] ? rcu_read_lock_sched_held+0x3f/0x80 [ 3653.767488] ? kfree+0x1f2/0x3c0 [ 3653.767979] legacy_get_tree+0x30/0x50 [ 3653.768548] vfs_get_tree+0x28/0xc0 [ 3653.769076] vfs_kern_mount.part.0+0x71/0xb0 [ 3653.769718] btrfs_mount+0x11d/0x3a0 [btrfs] [ 3653.770381] ? rcu_read_lock_sched_held+0x3f/0x80 [ 3653.771086] ? kfree+0x1f2/0x3c0 [ 3653.771574] legacy_get_tree+0x30/0x50 [ 3653.772136] vfs_get_tree+0x28/0xc0 [ 3653.772673] path_mount+0x2d4/0xbe0 [ 3653.773201] __x64_sys_mount+0x103/0x140 [ 3653.773793] do_syscall_64+0x3b/0xc0 [ 3653.774333] entry_SYSCALL_64_after_hwframe+0x44/0xae [ 3653.775094] RIP: 0033:0x7f648bc45aaa This happens because through btrfs_read_chunk_tree(), which is called only during mount, ends up acquiring the mutex open_mutex of a block device while holding a read lock on a leaf of the chunk tree while other paths need to acquire other locks before locking extent buffers of the chunk tree. Since at mount time when we call btrfs_read_chunk_tree() we know that we don't have other tasks running in parallel and modifying the chunk tree, we can simply skip locking of chunk tree extent buffers. So do that and move the assertion that checks the fs is not yet mounted to the top block of btrfs_read_chunk_tree(), with a comment before doing it. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-11-16btrfs: fix memory ordering between normal and ordered work functionsNikolay Borisov1-0/+14
Ordered work functions aren't guaranteed to be handled by the same thread which executed the normal work functions. The only way execution between normal/ordered functions is synchronized is via the WORK_DONE_BIT, unfortunately the used bitops don't guarantee any ordering whatsoever. This manifested as seemingly inexplicable crashes on ARM64, where async_chunk::inode is seen as non-null in async_cow_submit which causes submit_compressed_extents to be called and crash occurs because async_chunk::inode suddenly became NULL. The call trace was similar to: pc : submit_compressed_extents+0x38/0x3d0 lr : async_cow_submit+0x50/0xd0 sp : ffff800015d4bc20 <registers omitted for brevity> Call trace: submit_compressed_extents+0x38/0x3d0 async_cow_submit+0x50/0xd0 run_ordered_work+0xc8/0x280 btrfs_work_helper+0x98/0x250 process_one_work+0x1f0/0x4ac worker_thread+0x188/0x504 kthread+0x110/0x114 ret_from_fork+0x10/0x18 Fix this by adding respective barrier calls which ensure that all accesses preceding setting of WORK_DONE_BIT are strictly ordered before setting the flag. At the same time add a read barrier after reading of WORK_DONE_BIT in run_ordered_work which ensures all subsequent loads would be strictly ordered after reading the bit. This in turn ensures are all accesses before WORK_DONE_BIT are going to be strictly ordered before any access that can occur in ordered_func. Reported-by: Chris Murphy <lists@colorremedies.com> Fixes: 08a9ff326418 ("btrfs: Added btrfs_workqueue_struct implemented ordered execution based on kernel workqueue") CC: stable@vger.kernel.org # 4.4+ Link: https://bugzilla.redhat.com/show_bug.cgi?id=2011928 Reviewed-by: Josef Bacik <josef@toxicpanda.com> Tested-by: Chris Murphy <chris@colorremedies.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-11-16btrfs: fix a out-of-bound access in copy_compressed_data_to_page()Qu Wenruo1-1/+11
[BUG] The following script can cause btrfs to crash: $ mount -o compress-force=lzo $DEV /mnt $ dd if=/dev/urandom of=/mnt/foo bs=4k count=1 $ sync The call trace looks like this: general protection fault, probably for non-canonical address 0xe04b37fccce3b000: 0000 [#1] PREEMPT SMP NOPTI CPU: 5 PID: 164 Comm: kworker/u20:3 Not tainted 5.15.0-rc7-custom+ #4 Workqueue: btrfs-delalloc btrfs_work_helper [btrfs] RIP: 0010:__memcpy+0x12/0x20 Call Trace: lzo_compress_pages+0x236/0x540 [btrfs] btrfs_compress_pages+0xaa/0xf0 [btrfs] compress_file_range+0x431/0x8e0 [btrfs] async_cow_start+0x12/0x30 [btrfs] btrfs_work_helper+0xf6/0x3e0 [btrfs] process_one_work+0x294/0x5d0 worker_thread+0x55/0x3c0 kthread+0x140/0x170 ret_from_fork+0x22/0x30 ---[ end trace 63c3c0f131e61982 ]--- [CAUSE] In lzo_compress_pages(), parameter @out_pages is not only an output parameter (for the number of compressed pages), but also an input parameter, as the upper limit of compressed pages we can utilize. In commit d4088803f511 ("btrfs: subpage: make lzo_compress_pages() compatible"), the refactoring doesn't take @out_pages as an input, thus completely ignoring the limit. And for compress-force case, we could hit incompressible data that compressed size would go beyond the page limit, and cause the above crash. [FIX] Save @out_pages as @max_nr_page, and pass it to lzo_compress_pages(), and check if we're beyond the limit before accessing the pages. Note: this also fixes crash on 32bit architectures that was suspected to be caused by merge of btrfs patches to 5.16-rc1. Reported in https://lore.kernel.org/all/20211104115001.GU20319@twin.jikos.cz/ . Reported-by: Omar Sandoval <osandov@fb.com> Fixes: d4088803f511 ("btrfs: subpage: make lzo_compress_pages() compatible") Reviewed-by: Omar Sandoval <osandov@fb.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add note ] Signed-off-by: David Sterba <dsterba@suse.com>
2021-11-14Merge tag 'zstd-for-linus-v5.16' of git://github.com/terrelln/linuxLinus Torvalds1-34/+34
Pull zstd update from Nick Terrell: "Update to zstd-1.4.10. Add myself as the maintainer of zstd and update the zstd version in the kernel, which is now 4 years out of date, to a much more recent zstd release. This includes bug fixes, much more extensive fuzzing, and performance improvements. And generates the kernel zstd automatically from upstream zstd, so it is easier to keep the zstd verison up to date, and we don't fall so far out of date again. This includes 5 commits that update the zstd library version: - Adds a new kernel-style wrapper around zstd. This wrapper API is functionally equivalent to the subset of the current zstd API that is currently used. The wrapper API changes to be kernel style so that the symbols don't collide with zstd's symbols. The update to zstd-1.4.10 maintains the same API and preserves the semantics, so that none of the callers need to be updated. All callers are updated in the commit, because there are zero functional changes. - Adds an indirection for `lib/decompress_unzstd.c` so it doesn't depend on the layout of `lib/zstd/` to include every source file. This allows the next patch to be automatically generated. - Imports the zstd-1.4.10 source code. This commit is automatically generated from upstream zstd (https://github.com/facebook/zstd). - Adds me (terrelln@fb.com) as the maintainer of `lib/zstd`. - Fixes a newly added build warning for clang. The discussion around this patchset has been pretty long, so I've included a FAQ-style summary of the history of the patchset, and why we are taking this approach. Why do we need to update? ------------------------- The zstd version in the kernel is based off of zstd-1.3.1, which is was released August 20, 2017. Since then zstd has seen many bug fixes and performance improvements. And, importantly, upstream zstd is continuously fuzzed by OSS-Fuzz, and bug fixes aren't backported to older versions. So the only way to sanely get these fixes is to keep up to date with upstream zstd. There are no known security issues that affect the kernel, but we need to be able to update in case there are. And while there are no known security issues, there are relevant bug fixes. For example the problem with large kernel decompression has been fixed upstream for over 2 years [1] Additionally the performance improvements for kernel use cases are significant. Measured for x86_64 on my Intel i9-9900k @ 3.6 GHz: - BtrFS zstd compression at levels 1 and 3 is 5% faster - BtrFS zstd decompression+read is 15% faster - SquashFS zstd decompression+read is 15% faster - F2FS zstd compression+write at level 3 is 8% faster - F2FS zstd decompression+read is 20% faster - ZRAM decompression+read is 30% faster - Kernel zstd decompression is 35% faster - Initramfs zstd decompression+build is 5% faster On top of this, there are significant performance improvements coming down the line in the next zstd release, and the new automated update patch generation will allow us to pull them easily. How is the update patch generated? ---------------------------------- The first two patches are preparation for updating the zstd version. Then the 3rd patch in the series imports upstream zstd into the kernel. This patch is automatically generated from upstream. A script makes the necessary changes and imports it into the kernel. The changes are: - Replace all libc dependencies with kernel replacements and rewrite includes. - Remove unncessary portability macros like: #if defined(_MSC_VER). - Use the kernel xxhash instead of bundling it. This automation gets tested every commit by upstream's continuous integration. When we cut a new zstd release, we will submit a patch to the kernel to update the zstd version in the kernel. The automated process makes it easy to keep the kernel version of zstd up to date. The current zstd in the kernel shares the guts of the code, but has a lot of API and minor changes to work in the kernel. This is because at the time upstream zstd was not ready to be used in the kernel envrionment as-is. But, since then upstream zstd has evolved to support being used in the kernel as-is. Why are we updating in one big patch? ------------------------------------- The 3rd patch in the series is very large. This is because it is restructuring the code, so it both deletes the existing zstd, and re-adds the new structure. Future updates will be directly proportional to the changes in upstream zstd since the last import. They will admittidly be large, as zstd is an actively developed project, and has hundreds of commits between every release. However, there is no other great alternative. One option ruled out is to replay every upstream zstd commit. This is not feasible for several reasons: - There are over 3500 upstream commits since the zstd version in the kernel. - The automation to automatically generate the kernel update was only added recently, so older commits cannot easily be imported. - Not every upstream zstd commit builds. - Only zstd releases are "supported", and individual commits may have bugs that were fixed before a release. Another option to reduce the patch size would be to first reorganize to the new file structure, and then apply the patch. However, the current kernel zstd is formatted with clang-format to be more "kernel-like". But, the new method imports zstd as-is, without additional formatting, to allow for closer correlation with upstream, and easier debugging. So the patch wouldn't be any smaller. It also doesn't make sense to import upstream zstd commit by commit going forward. Upstream zstd doesn't support production use cases running of the development branch. We have a lot of post-commit fuzzing that catches many bugs, so indiviudal commits may be buggy, but fixed before a release. So going forward, I intend to import every (important) zstd release into the Kernel. So, while it isn't ideal, updating in one big patch is the only patch I see forward. Who is responsible for this code? --------------------------------- I am. This patchset adds me as the maintainer for zstd. Previously, there was no tree for zstd patches. Because of that, there were several patches that either got ignored, or took a long time to merge, since it wasn't clear which tree should pick them up. I'm officially stepping up as maintainer, and setting up my tree as the path through which zstd patches get merged. I'll make sure that patches to the kernel zstd get ported upstream, so they aren't erased when the next version update happens. How is this code tested? ------------------------ I tested every caller of zstd on x86_64 (BtrFS, ZRAM, SquashFS, F2FS, Kernel, InitRAMFS). I also tested Kernel & InitRAMFS on i386 and aarch64. I checked both performance and correctness. Also, thanks to many people in the community who have tested these patches locally. Lastly, this code will bake in linux-next before being merged into v5.16. Why update to zstd-1.4.10 when zstd-1.5.0 has been released? ------------------------------------------------------------ This patchset has been outstanding since 2020, and zstd-1.4.10 was the latest release when it was created. Since the update patch is automatically generated from upstream, I could generate it from zstd-1.5.0. However, there were some large stack usage regressions in zstd-1.5.0, and are only fixed in the latest development branch. And the latest development branch contains some new code that needs to bake in the fuzzer before I would feel comfortable releasing to the kernel. Once this patchset has been merged, and we've released zstd-1.5.1, we can update the kernel to zstd-1.5.1, and exercise the update process. You may notice that zstd-1.4.10 doesn't exist upstream. This release is an artifical release based off of zstd-1.4.9, with some fixes for the kernel backported from the development branch. I will tag the zstd-1.4.10 release after this patchset is merged, so the Linux Kernel is running a known version of zstd that can be debugged upstream. Why was a wrapper API added? ---------------------------- The first versions of this patchset migrated the kernel to the upstream zstd API. It first added a shim API that supported the new upstream API with the old code, then updated callers to use the new shim API, then transitioned to the new code and deleted the shim API. However, Cristoph Hellwig suggested that we transition to a kernel style API, and hide zstd's upstream API behind that. This is because zstd's upstream API is supports many other use cases, and does not follow the kernel style guide, while the kernel API is focused on the kernel's use cases, and follows the kernel style guide. Where is the previous discussion? --------------------------------- Links for the discussions of the previous versions of the patch set below. The largest changes in the design of the patchset are driven by the discussions in v11, v5, and v1. Sorry for the mix of links, I couldn't find most of the the threads on lkml.org" Link: https://lkml.org/lkml/2020/9/29/27 [1] Link: https://www.spinics.net/lists/linux-crypto/msg58189.html [v12] Link: https://lore.kernel.org/linux-btrfs/20210430013157.747152-1-nickrterrell@gmail.com/ [v11] Link: https://lore.kernel.org/lkml/20210426234621.870684-2-nickrterrell@gmail.com/ [v10] Link: https://lore.kernel.org/linux-btrfs/20210330225112.496213-1-nickrterrell@gmail.com/ [v9] Link: https://lore.kernel.org/linux-f2fs-devel/20210326191859.1542272-1-nickrterrell@gmail.com/ [v8] Link: https://lkml.org/lkml/2020/12/3/1195 [v7] Link: https://lkml.org/lkml/2020/12/2/1245 [v6] Link: https://lore.kernel.org/linux-btrfs/20200916034307.2092020-1-nickrterrell@gmail.com/ [v5] Link: https://www.spinics.net/lists/linux-btrfs/msg105783.html [v4] Link: https://lkml.org/lkml/2020/9/23/1074 [v3] Link: https://www.spinics.net/lists/linux-btrfs/msg105505.html [v2] Link: https://lore.kernel.org/linux-btrfs/20200916034307.2092020-1-nickrterrell@gmail.com/ [v1] Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf> * tag 'zstd-for-linus-v5.16' of git://github.com/terrelln/linux: lib: zstd: Add cast to silence clang's -Wbitwise-instead-of-logical MAINTAINERS: Add maintainer entry for zstd lib: zstd: Upgrade to latest upstream zstd version 1.4.10 lib: zstd: Add decompress_sources.h for decompress_unzstd lib: zstd: Add kernel-specific API
2021-11-09btrfs: fix deadlock due to page faults during direct IO reads and writesFilipe Manana1-16/+123
If we do a direct IO read or write when the buffer given by the user is memory mapped to the file range we are going to do IO, we end up ending in a deadlock. This is triggered by the new test case generic/647 from fstests. For a direct IO read we get a trace like this: [967.872718] INFO: task mmap-rw-fault:12176 blocked for more than 120 seconds. [967.874161] Not tainted 5.14.0-rc7-btrfs-next-95 #1 [967.874909] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [967.875983] task:mmap-rw-fault state:D stack: 0 pid:12176 ppid: 11884 flags:0x00000000 [967.875992] Call Trace: [967.875999] __schedule+0x3ca/0xe10 [967.876015] schedule+0x43/0xe0 [967.876020] wait_extent_bit.constprop.0+0x1eb/0x260 [btrfs] [967.876109] ? do_wait_intr_irq+0xb0/0xb0 [967.876118] lock_extent_bits+0x37/0x90 [btrfs] [967.876150] btrfs_lock_and_flush_ordered_range+0xa9/0x120 [btrfs] [967.876184] ? extent_readahead+0xa7/0x530 [btrfs] [967.876214] extent_readahead+0x32d/0x530 [btrfs] [967.876253] ? lru_cache_add+0x104/0x220 [967.876255] ? kvm_sched_clock_read+0x14/0x40 [967.876258] ? sched_clock_cpu+0xd/0x110 [967.876263] ? lock_release+0x155/0x4a0 [967.876271] read_pages+0x86/0x270 [967.876274] ? lru_cache_add+0x125/0x220 [967.876281] page_cache_ra_unbounded+0x1a3/0x220 [967.876291] filemap_fault+0x626/0xa20 [967.876303] __do_fault+0x36/0xf0 [967.876308] __handle_mm_fault+0x83f/0x15f0 [967.876322] handle_mm_fault+0x9e/0x260 [967.876327] __get_user_pages+0x204/0x620 [967.876332] ? get_user_pages_unlocked+0x69/0x340 [967.876340] get_user_pages_unlocked+0xd3/0x340 [967.876349] internal_get_user_pages_fast+0xbca/0xdc0 [967.876366] iov_iter_get_pages+0x8d/0x3a0 [967.876374] bio_iov_iter_get_pages+0x82/0x4a0 [967.876379] ? lock_release+0x155/0x4a0 [967.876387] iomap_dio_bio_actor+0x232/0x410 [967.876396] iomap_apply+0x12a/0x4a0 [967.876398] ? iomap_dio_rw+0x30/0x30 [967.876414] __iomap_dio_rw+0x29f/0x5e0 [967.876415] ? iomap_dio_rw+0x30/0x30 [967.876420] ? lock_acquired+0xf3/0x420 [967.876429] iomap_dio_rw+0xa/0x30 [967.876431] btrfs_file_read_iter+0x10b/0x140 [btrfs] [967.876460] new_sync_read+0x118/0x1a0 [967.876472] vfs_read+0x128/0x1b0 [967.876477] __x64_sys_pread64+0x90/0xc0 [967.876483] do_syscall_64+0x3b/0xc0 [967.876487] entry_SYSCALL_64_after_hwframe+0x44/0xae [967.876490] RIP: 0033:0x7fb6f2c038d6 [967.876493] RSP: 002b:00007fffddf586b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000011 [967.876496] RAX: ffffffffffffffda RBX: 0000000000001000 RCX: 00007fb6f2c038d6 [967.876498] RDX: 0000000000001000 RSI: 00007fb6f2c17000 RDI: 0000000000000003 [967.876499] RBP: 0000000000001000 R08: 0000000000000003 R09: 0000000000000000 [967.876501] R10: 0000000000001000 R11: 0000000000000246 R12: 0000000000000003 [967.876502] R13: 0000000000000000 R14: 00007fb6f2c17000 R15: 0000000000000000 This happens because at btrfs_dio_iomap_begin() we lock the extent range and return with it locked - we only unlock in the endio callback, at end_bio_extent_readpage() -> endio_readpage_release_extent(). Then after iomap called the btrfs_dio_iomap_begin() callback, it triggers the page faults that resulting in reading the pages, through the readahead callback btrfs_readahead(), and through there we end to attempt to lock again the same extent range (or a subrange of what we locked before), resulting in the deadlock. For a direct IO write, the scenario is a bit different, and it results in trace like this: [1132.442520] run fstests generic/647 at 2021-08-31 18:53:35 [1330.349355] INFO: task mmap-rw-fault:184017 blocked for more than 120 seconds. [1330.350540] Not tainted 5.14.0-rc7-btrfs-next-95 #1 [1330.351158] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [1330.351900] task:mmap-rw-fault state:D stack: 0 pid:184017 ppid:183725 flags:0x00000000 [1330.351906] Call Trace: [1330.351913] __schedule+0x3ca/0xe10 [1330.351930] schedule+0x43/0xe0 [1330.351935] btrfs_start_ordered_extent+0x108/0x1c0 [btrfs] [1330.352020] ? do_wait_intr_irq+0xb0/0xb0 [1330.352028] btrfs_lock_and_flush_ordered_range+0x8c/0x120 [btrfs] [1330.352064] ? extent_readahead+0xa7/0x530 [btrfs] [1330.352094] extent_readahead+0x32d/0x530 [btrfs] [1330.352133] ? lru_cache_add+0x104/0x220 [1330.352135] ? kvm_sched_clock_read+0x14/0x40 [1330.352138] ? sched_clock_cpu+0xd/0x110 [1330.352143] ? lock_release+0x155/0x4a0 [1330.352151] read_pages+0x86/0x270 [1330.352155] ? lru_cache_add+0x125/0x220 [1330.352162] page_cache_ra_unbounded+0x1a3/0x220 [1330.352172] filemap_fault+0x626/0xa20 [1330.352176] ? filemap_map_pages+0x18b/0x660 [1330.352184] __do_fault+0x36/0xf0 [1330.352189] __handle_mm_fault+0x1253/0x15f0 [1330.352203] handle_mm_fault+0x9e/0x260 [1330.352208] __get_user_pages+0x204/0x620 [1330.352212] ? get_user_pages_unlocked+0x69/0x340 [1330.352220] get_user_pages_unlocked+0xd3/0x340 [1330.352229] internal_get_user_pages_fast+0xbca/0xdc0 [1330.352246] iov_iter_get_pages+0x8d/0x3a0 [1330.352254] bio_iov_iter_get_pages+0x82/0x4a0 [1330.352259] ? lock_release+0x155/0x4a0 [1330.352266] iomap_dio_bio_actor+0x232/0x410 [1330.352275] iomap_apply+0x12a/0x4a0 [1330.352278] ? iomap_dio_rw+0x30/0x30 [1330.352292] __iomap_dio_rw+0x29f/0x5e0 [1330.352294] ? iomap_dio_rw+0x30/0x30 [1330.352306] btrfs_file_write_iter+0x238/0x480 [btrfs] [1330.352339] new_sync_write+0x11f/0x1b0 [1330.352344] ? NF_HOOK_LIST.constprop.0.cold+0x31/0x3e [1330.352354] vfs_write+0x292/0x3c0 [1330.352359] __x64_sys_pwrite64+0x90/0xc0 [1330.352365] do_syscall_64+0x3b/0xc0 [1330.352369] entry_SYSCALL_64_after_hwframe+0x44/0xae [1330.352372] RIP: 0033:0x7f4b0a580986 [1330.352379] RSP: 002b:00007ffd34d75418 EFLAGS: 00000246 ORIG_RAX: 0000000000000012 [1330.352382] RAX: ffffffffffffffda RBX: 0000000000001000 RCX: 00007f4b0a580986 [1330.352383] RDX: 0000000000001000 RSI: 00007f4b0a3a4000 RDI: 0000000000000003 [1330.352385] RBP: 00007f4b0a3a4000 R08: 0000000000000003 R09: 0000000000000000 [1330.352386] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000003 [1330.352387] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 Unlike for reads, at btrfs_dio_iomap_begin() we return with the extent range unlocked, but later when the page faults are triggered and we try to read the extents, we end up btrfs_lock_and_flush_ordered_range() where we find the ordered extent for our write, created by the iomap callback btrfs_dio_iomap_begin(), and we wait for it to complete, which makes us deadlock since we can't complete the ordered extent without reading the pages (the iomap code only submits the bio after the pages are faulted in). Fix this by setting the nofault attribute of the given iov_iter and retry the direct IO read/write if we get an -EFAULT error returned from iomap. For reads, also disable page faults completely, this is because when we read from a hole or a prealloc extent, we can still trigger page faults due to the call to iov_iter_zero() done by iomap - at the moment, it is oblivious to the value of the ->nofault attribute of an iov_iter. We also need to keep track of the number of bytes written or read, and pass it to iomap_dio_rw(), as well as use the new flag IOMAP_DIO_PARTIAL. This depends on the iov_iter and iomap changes introduced in commit c03098d4b9ad ("Merge tag 'gfs2-v5.15-rc5-mmap-fault' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2"). Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-11-09lib: zstd: Add kernel-specific APINick Terrell1-34/+34
This patch: - Moves `include/linux/zstd.h` -> `include/linux/zstd_lib.h` - Updates modified zstd headers to yearless copyright - Adds a new API in `include/linux/zstd.h` that is functionally equivalent to the in-use subset of the current API. Functions are renamed to avoid symbol collisions with zstd, to make it clear it is not the upstream zstd API, and to follow the kernel style guide. - Updates all callers to use the new API. There are no functional changes in this patch. Since there are no functional change, I felt it was okay to update all the callers in a single patch. Once the API is approved, the callers are mechanically changed. This patch is preparing for the 3rd patch in this series, which updates zstd to version 1.4.10. Since the upstream zstd API is no longer exposed to callers, the update can happen transparently. Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2021-11-02Merge tag 'gfs2-v5.15-rc5-mmap-fault' of ↵Linus Torvalds2-6/+6
git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2 Pull gfs2 mmap + page fault deadlocks fixes from Andreas Gruenbacher: "Functions gfs2_file_read_iter and gfs2_file_write_iter are both accessing the user buffer to write to or read from while holding the inode glock. In the most basic deadlock scenario, that buffer will not be resident and it will be mapped to the same file. Accessing the buffer will trigger a page fault, and gfs2 will deadlock trying to take the same inode glock again while trying to handle that fault. Fix that and similar, more complex scenarios by disabling page faults while accessing user buffers. To make this work, introduce a small amount of new infrastructure and fix some bugs that didn't trigger so far, with page faults enabled" * tag 'gfs2-v5.15-rc5-mmap-fault' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2: gfs2: Fix mmap + page fault deadlocks for direct I/O iov_iter: Introduce nofault flag to disable page faults gup: Introduce FOLL_NOFAULT flag to disable page faults iomap: Add done_before argument to iomap_dio_rw iomap: Support partial direct I/O on user copy failures iomap: Fix iomap_dio_rw return value for user copies gfs2: Fix mmap + page fault deadlocks for buffered I/O gfs2: Eliminate ip->i_gh gfs2: Move the inode glock locking to gfs2_file_buffered_write gfs2: Introduce flag for glock holder auto-demotion gfs2: Clean up function may_grant gfs2: Add wrapper for iomap_file_buffered_write iov_iter: Introduce fault_in_iov_iter_writeable iov_iter: Turn iov_iter_fault_in_readable into fault_in_iov_iter_readable gup: Turn fault_in_pages_{readable,writeable} into fault_in_{readable,writeable} powerpc/kvm: Fix kvm_use_magic_page iov_iter: Fix iov_iter_get_pages{,_alloc} page fault return value
2021-11-02Merge tag 'overflow-v5.16-rc1' of ↵Linus Torvalds1-4/+2
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull overflow updates from Kees Cook: "The end goal of the current buffer overflow detection work[0] is to gain full compile-time and run-time coverage of all detectable buffer overflows seen via array indexing or memcpy(), memmove(), and memset(). The str*() family of functions already have full coverage. While much of the work for these changes have been on-going for many releases (i.e. 0-element and 1-element array replacements, as well as avoiding false positives and fixing discovered overflows[1]), this series contains the foundational elements of several related buffer overflow detection improvements by providing new common helpers and FORTIFY_SOURCE changes needed to gain the introspection required for compiler visibility into array sizes. Also included are a handful of already Acked instances using the helpers (or related clean-ups), with many more waiting at the ready to be taken via subsystem-specific trees[2]. The new helpers are: - struct_group() for gaining struct member range introspection - memset_after() and memset_startat() for clearing to the end of structures - DECLARE_FLEX_ARRAY() for using flex arrays in unions or alone in structs Also included is the beginning of the refactoring of FORTIFY_SOURCE to support memcpy() introspection, fix missing and regressed coverage under GCC, and to prepare to fix the currently broken Clang support. Finishing this work is part of the larger series[0], but depends on all the false positives and buffer overflow bug fixes to have landed already and those that depend on this series to land. As part of the FORTIFY_SOURCE refactoring, a set of both a compile-time and run-time tests are added for FORTIFY_SOURCE and the mem*()-family functions respectively. The compile time tests have found a legitimate (though corner-case) bug[6] already. Please note that the appearance of "panic" and "BUG" in the FORTIFY_SOURCE refactoring are the result of relocating existing code, and no new use of those code-paths are expected nor desired. Finally, there are two tree-wide conversions for 0-element arrays and flexible array unions to gain sane compiler introspection coverage that result in no known object code differences. After this series (and the changes that have now landed via netdev and usb), we are very close to finally being able to build with -Warray-bounds and -Wzero-length-bounds. However, due corner cases in GCC[3] and Clang[4], I have not included the last two patches that turn on these options, as I don't want to introduce any known warnings to the build. Hopefully these can be solved soon" Link: https://lore.kernel.org/lkml/20210818060533.3569517-1-keescook@chromium.org/ [0] Link: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=grep&q=FORTIFY_SOURCE [1] Link: https://lore.kernel.org/lkml/202108220107.3E26FE6C9C@keescook/ [2] Link: https://lore.kernel.org/lkml/3ab153ec-2798-da4c-f7b1-81b0ac8b0c5b@roeck-us.net/ [3] Link: https://bugs.llvm.org/show_bug.cgi?id=51682 [4] Link: https://lore.kernel.org/lkml/202109051257.29B29745C0@keescook/ [5] Link: https://lore.kernel.org/lkml/20211020200039.170424-1-keescook@chromium.org/ [6] * tag 'overflow-v5.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (30 commits) fortify: strlen: Avoid shadowing previous locals compiler-gcc.h: Define __SANITIZE_ADDRESS__ under hwaddress sanitizer treewide: Replace 0-element memcpy() destinations with flexible arrays treewide: Replace open-coded flex arrays in unions stddef: Introduce DECLARE_FLEX_ARRAY() helper btrfs: Use memset_startat() to clear end of struct string.h: Introduce memset_startat() for wiping trailing members and padding xfrm: Use memset_after() to clear padding string.h: Introduce memset_after() for wiping trailing members/padding lib: Introduce CONFIG_MEMCPY_KUNIT_TEST fortify: Add compile-time FORTIFY_SOURCE tests fortify: Allow strlen() and strnlen() to pass compile-time known lengths fortify: Prepare to improve strnlen() and strlen() warnings fortify: Fix dropped strcpy() compile-time write overflow check fortify: Explicitly disable Clang support fortify: Move remaining fortify helpers into fortify-string.h lib/string: Move helper functions out of string.c compiler_types.h: Remove __compiletime_object_size() cm4000_cs: Use struct_group() to zero struct cm4000_dev region can: flexcan: Use struct_group() to zero struct flexcan_regs regions ...
2021-11-01Merge tag 'for-5.16-tag' of ↵Linus Torvalds50-2900/+4435
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "The updates this time are more under the hood and enhancing existing features (subpage with compression and zoned namespaces). Performance related: - misc small inode logging improvements (+3% throughput, -11% latency on sample dbench workload) - more efficient directory logging: bulk item insertion, less tree searches and locking - speed up bulk insertion of items into a b-tree, which is used when logging directories, when running delayed items for directories (fsync and transaction commits) and when running the slow path (full sync) of an fsync (bulk creation run time -4%, deletion -12%) Core: - continued subpage support - make defragmentation work - make compression write work - zoned mode - support ZNS (zoned namespaces), zone capacity is number of usable blocks in each zone - add dedicated block group (zoned) for relocation, to prevent out of order writes in some cases - greedy block group reclaim, pick the ones with least usable space first - preparatory work for send protocol updates - error handling improvements - cleanups and refactoring Fixes: - lockdep warnings - in show_devname callback, on seeding device - device delete on loop device due to conversions to workqueues - fix deadlock between chunk allocation and chunk btree modifications - fix tracking of missing device count and status" * tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (140 commits) btrfs: remove root argument from check_item_in_log() btrfs: remove root argument from add_link() btrfs: remove root argument from btrfs_unlink_inode() btrfs: remove root argument from drop_one_dir_item() btrfs: clear MISSING device status bit in btrfs_close_one_device btrfs: call btrfs_check_rw_degradable only if there is a missing device btrfs: send: prepare for v2 protocol btrfs: fix comment about sector sizes supported in 64K systems btrfs: update device path inode time instead of bd_inode fs: export an inode_update_time helper btrfs: fix deadlock when defragging transparent huge pages btrfs: sysfs: convert scnprintf and snprintf to sysfs_emit btrfs: make btrfs_super_block size match BTRFS_SUPER_INFO_SIZE btrfs: update comments for chunk allocation -ENOSPC cases btrfs: fix deadlock between chunk allocation and chunk btree modifications btrfs: zoned: use greedy gc for auto reclaim btrfs: check-integrity: stop storing the block device name in btrfsic_dev_state btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls btrfs: add a btrfs_get_dev_args_from_path helper btrfs: handle device lookup with btrfs_dev_lookup_args ...
2021-11-01btrfs: fix lzo_decompress_bio() kmap leakageLinus Torvalds1-1/+2
Commit ccaa66c8dd27 reinstated the kmap/kunmap that had been dropped in commit 8c945d32e604 ("btrfs: compression: drop kmap/kunmap from lzo"). However, it seems to have done so incorrectly due to the change not reverting cleanly, and lzo_decompress_bio() ended up not having a matching "kunmap()" to the "kmap()" that was put back. Also, any assert that the page pointer is not NULL should be before the kmap() of said pointer, since otherwise you'd just oops in the kmap() before the assert would even trigger. I noticed this when trying to verify my btrfs merge, and things not adding up. I'm doing this fixup before re-doing my merge, because this commit needs to also be backported to 5.15 (after verification from the btrfs people). Fixes: ccaa66c8dd27 ("Revert 'btrfs: compression: drop kmap/kunmap from lzo'") Cc: David Sterba <dsterba@suse.com> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-01Merge tag 'for-5.16/inode-sync-2021-10-29' of git://git.kernel.dk/linux-blockLinus Torvalds1-1/+1
Pull block inode sync updates from Jens Axboe: "This contains improvements to how bdev inode syncing is handled, unifying the API" * tag 'for-5.16/inode-sync-2021-10-29' of git://git.kernel.dk/linux-block: block: simplify the block device syncing code ntfs3: use sync_blockdev_nowait fat: use sync_blockdev_nowait btrfs: use sync_blockdev xen-blkback: use sync_blockdev block: remove __sync_blockdev fs: remove __sync_filesystem
2021-11-01Merge tag 'for-5.16/bdev-size-2021-10-29' of git://git.kernel.dk/linux-blockLinus Torvalds4-9/+8
Pull bdev size cleanups from Jens Axboe: "Clean up the bdev size handling with new bdev_nr_bytes() helper" * tag 'for-5.16/bdev-size-2021-10-29' of git://git.kernel.dk/linux-block: (34 commits) partitions/ibm: use bdev_nr_sectors instead of open coding it partitions/efi: use bdev_nr_bytes instead of open coding it block/ioctl: use bdev_nr_sectors and bdev_nr_bytes block: cache inode size in bdev udf: use sb_bdev_nr_blocks reiserfs: use sb_bdev_nr_blocks ntfs: use sb_bdev_nr_blocks jfs: use sb_bdev_nr_blocks ext4: use sb_bdev_nr_blocks block: add a sb_bdev_nr_blocks helper block: use bdev_nr_bytes instead of open coding it in blkdev_fallocate squashfs: use bdev_nr_bytes instead of open coding it reiserfs: use bdev_nr_bytes instead of open coding it pstore/blk: use bdev_nr_bytes instead of open coding it ntfs3: use bdev_nr_bytes instead of open coding it nilfs2: use bdev_nr_bytes instead of open coding it nfs/blocklayout: use bdev_nr_bytes instead of open coding it jfs: use bdev_nr_bytes instead of open coding it hfsplus: use bdev_nr_sectors instead of open coding it hfs: use bdev_nr_sectors instead of open coding it ...
2021-11-01Merge tag 'for-5.16/block-2021-10-29' of git://git.kernel.dk/linux-blockLinus Torvalds3-5/+6
Pull block updates from Jens Axboe: - mq-deadline accounting improvements (Bart) - blk-wbt timer fix (Andrea) - Untangle the block layer includes (Christoph) - Rework the poll support to be bio based, which will enable adding support for polling for bio based drivers (Christoph) - Block layer core support for multi-actuator drives (Damien) - blk-crypto improvements (Eric) - Batched tag allocation support (me) - Request completion batching support (me) - Plugging improvements (me) - Shared tag set improvements (John) - Concurrent queue quiesce support (Ming) - Cache bdev in ->private_data for block devices (Pavel) - bdev dio improvements (Pavel) - Block device invalidation and block size improvements (Xie) - Various cleanups, fixes, and improvements (Christoph, Jackie, Masahira, Tejun, Yu, Pavel, Zheng, me) * tag 'for-5.16/block-2021-10-29' of git://git.kernel.dk/linux-block: (174 commits) blk-mq-debugfs: Show active requests per queue for shared tags block: improve readability of blk_mq_end_request_batch() virtio-blk: Use blk_validate_block_size() to validate block size loop: Use blk_validate_block_size() to validate block size nbd: Use blk_validate_block_size() to validate block size block: Add a helper to validate the block size block: re-flow blk_mq_rq_ctx_init() block: prefetch request to be initialized block: pass in blk_mq_tags to blk_mq_rq_ctx_init() block: add rq_flags to struct blk_mq_alloc_data block: add async version of bio_set_polled block: kill DIO_MULTI_BIO block: kill unused polling bits in __blkdev_direct_IO() block: avoid extra iter advance with async iocb block: Add independent access ranges support blk-mq: don't issue request directly in case that current is to be blocked sbitmap: silence data race warning blk-cgroup: synchronize blkg creation against policy deactivation block: refactor bio_iov_bvec_set() block: add single bio async direct IO helper ...
2021-10-29Merge tag 'for-5.15-rc7-tag' of ↵Linus Torvalds5-33/+72
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "Last minute fixes for crash on 32bit architectures when compression is in use. It's a regression introduced in 5.15-rc and I'd really like not let this into the final release, fixes via stable trees would add unnecessary delay. The problem is on 32bit architectures with highmem enabled, the pages for compression may need to be kmapped, while the patches removed that as we don't use GFP_HIGHMEM allocations anymore. The pages that don't come from local allocation still may be from highmem. Despite being on 32bit there's enough such ARM machines in use so it's not a marginal issue. I did full reverts of the patches one by one instead of a huge one. There's one exception for the "lzo" revert as there was an intermediate patch touching the same code to make it compatible with subpage. I can't revert that one too, so the revert in lzo.c is manual. Qu Wenruo has worked on that with me and verified the changes" * tag 'for-5.15-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: Revert "btrfs: compression: drop kmap/kunmap from lzo" Revert "btrfs: compression: drop kmap/kunmap from zlib" Revert "btrfs: compression: drop kmap/kunmap from zstd" Revert "btrfs: compression: drop kmap/kunmap from generic helpers"
2021-10-29Revert "btrfs: compression: drop kmap/kunmap from lzo"David Sterba1-11/+25
This reverts commit 8c945d32e60427cbc0859cf7045bbe6196bb03d8. The kmaps in compression code are still needed and cause crashes on 32bit machines (ARM, x86). Reproducible eg. by running fstest btrfs/004 with enabled LZO or ZSTD compression. The revert does not apply cleanly due to changes in a6e66e6f8c1b ("btrfs: rework lzo_decompress_bio() to make it subpage compatible") that reworked the page iteration so the revert is done to be equivalent to the original code. Link: https://lore.kernel.org/all/CAJCQCtT+OuemovPO7GZk8Y8=qtOObr0XTDp8jh4OHD6y84AFxw@mail.gmail.com/ Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=214839 Tested-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-29Revert "btrfs: compression: drop kmap/kunmap from zlib"David Sterba1-11/+25
This reverts commit 696ab562e6df9fbafd6052d8ce4aafcb2ed16069. The kmaps in compression code are still needed and cause crashes on 32bit machines (ARM, x86). Reproducible eg. by running fstest btrfs/004 with enabled LZO or ZSTD compression. Link: https://lore.kernel.org/all/CAJCQCtT+OuemovPO7GZk8Y8=qtOObr0XTDp8jh4OHD6y84AFxw@mail.gmail.com/ Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=214839 Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-29Revert "btrfs: compression: drop kmap/kunmap from zstd"David Sterba1-9/+18
This reverts commit bbaf9715f3f5b5ff0de71da91fcc34ee9c198ed8. The kmaps in compression code are still needed and cause crashes on 32bit machines (ARM, x86). Reproducible eg. by running fstest btrfs/004 with enabled LZO or ZSTD compression. Example stacktrace with ZSTD on a 32bit ARM machine: Unable to handle kernel NULL pointer dereference at virtual address 00000000 pgd = c4159ed3 [00000000] *pgd=00000000 Internal error: Oops: 5 [#1] PREEMPT SMP ARM Modules linked in: CPU: 0 PID: 210 Comm: kworker/u2:3 Not tainted 5.14.0-rc79+ #12 Hardware name: Allwinner sun4i/sun5i Families Workqueue: btrfs-delalloc btrfs_work_helper PC is at mmiocpy+0x48/0x330 LR is at ZSTD_compressStream_generic+0x15c/0x28c (mmiocpy) from [<c0629648>] (ZSTD_compressStream_generic+0x15c/0x28c) (ZSTD_compressStream_generic) from [<c06297dc>] (ZSTD_compressStream+0x64/0xa0) (ZSTD_compressStream) from [<c049444c>] (zstd_compress_pages+0x170/0x488) (zstd_compress_pages) from [<c0496798>] (btrfs_compress_pages+0x124/0x12c) (btrfs_compress_pages) from [<c043c068>] (compress_file_range+0x3c0/0x834) (compress_file_range) from [<c043c4ec>] (async_cow_start+0x10/0x28) (async_cow_start) from [<c0475c3c>] (btrfs_work_helper+0x100/0x230) (btrfs_work_helper) from [<c014ef68>] (process_one_work+0x1b4/0x418) (process_one_work) from [<c014f210>] (worker_thread+0x44/0x524) (worker_thread) from [<c0156aa4>] (kthread+0x180/0x1b0) (kthread) from [<c0100150>] Link: https://lore.kernel.org/all/CAJCQCtT+OuemovPO7GZk8Y8=qtOObr0XTDp8jh4OHD6y84AFxw@mail.gmail.com/ Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=214839 Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-29btrfs: remove root argument from check_item_in_log()Filipe Manana1-2/+2
The root argument passed to check_item_in_log() always matches the root of the given directory, so it can be eliminated. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-29btrfs: remove root argument from add_link()Filipe Manana1-2/+3
The root argument for tree-log.c:add_link() always matches the root of the given directory and the given inode, so it can eliminated. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-29btrfs: remove root argument from btrfs_unlink_inode()Filipe Manana3-22/+18
The root argument passed to btrfs_unlink_inode() and its callee, __btrfs_unlink_inode(), always matches the root of the given directory and the given inode. So remove the argument and make __btrfs_unlink_inode() use the root of the directory. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-29btrfs: remove root argument from drop_one_dir_item()Filipe Manana1-4/+4
The root argument for drop_one_dir_item() always matches the root of the given directory inode, since each log tree is associated to one and only one subvolume/root, so remove the argument. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-29btrfs: clear MISSING device status bit in btrfs_close_one_deviceLi Zhang1-1/+3
Reported bug: https://github.com/kdave/btrfs-progs/issues/389 There's a problem with scrub reporting aborted status but returning error code 0, on a filesystem with missing and readded device. Roughly these steps: - mkfs -d raid1 dev1 dev2 - fill with data - unmount - make dev1 disappear - mount -o degraded - copy more data - make dev1 appear again Running scrub afterwards reports that the command was aborted, but the system log message says the exit code was 0. It seems that the cause of the error is decrementing fs_devices->missing_devices but not clearing device->dev_state. Every time we umount filesystem, it would call close_ctree, And it would eventually involve btrfs_close_one_device to close the device, but it only decrements fs_devices->missing_devices but does not clear the device BTRFS_DEV_STATE_MISSING bit. Worse, this bug will cause Integer Overflow, because every time umount, fs_devices->missing_devices will decrease. If fs_devices->missing_devices value hit 0, it would overflow. With added debugging: loop1: detected capacity change from 0 to 20971520 BTRFS: device fsid 56ad51f1-5523-463b-8547-c19486c51ebb devid 1 transid 21 /dev/loop1 scanned by systemd-udevd (2311) loop2: detected capacity change from 0 to 20971520 BTRFS: device fsid 56ad51f1-5523-463b-8547-c19486c51ebb devid 2 transid 17 /dev/loop2 scanned by systemd-udevd (2313) BTRFS info (device loop1): flagging fs with big metadata feature BTRFS info (device loop1): allowing degraded mounts BTRFS info (device loop1): using free space tree BTRFS info (device loop1): has skinny extents BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 0 BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1 BTRFS info (device loop1): flagging fs with big metadata feature BTRFS info (device loop1): allowing degraded mounts BTRFS info (device loop1): using free space tree BTRFS info (device loop1): has skinny extents BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 0 BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 0 BTRFS info (device loop1): flagging fs with big metadata feature BTRFS info (device loop1): allowing degraded mounts BTRFS info (device loop1): using free space tree BTRFS info (device loop1): has skinny extents BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 18446744073709551615 BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 18446744073709551615 If fs_devices->missing_devices is 0, next time it would be 18446744073709551615 After apply this patch, the fs_devices->missing_devices seems to be right: $ truncate -s 10g test1 $ truncate -s 10g test2 $ losetup /dev/loop1 test1 $ losetup /dev/loop2 test2 $ mkfs.btrfs -draid1 -mraid1 /dev/loop1 /dev/loop2 -f $ losetup -d /dev/loop2 $ mount -o degraded /dev/loop1 /mnt/1 $ umount /mnt/1 $ mount -o degraded /dev/loop1 /mnt/1 $ umount /mnt/1 $ mount -o degraded /dev/loop1 /mnt/1 $ umount /mnt/1 $ dmesg loop1: detected capacity change from 0 to 20971520 loop2: detected capacity change from 0 to 20971520 BTRFS: device fsid 15aa1203-98d3-4a66-bcae-ca82f629c2cd devid 1 transid 5 /dev/loop1 scanned by mkfs.btrfs (1863) BTRFS: device fsid 15aa1203-98d3-4a66-bcae-ca82f629c2cd devid 2 transid 5 /dev/loop2 scanned by mkfs.btrfs (1863) BTRFS info (device loop1): flagging fs with big metadata feature BTRFS info (device loop1): allowing degraded mounts BTRFS info (device loop1): disk space caching is enabled BTRFS info (device loop1): has skinny extents BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0 BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1 BTRFS info (device loop1): checking UUID tree BTRFS info (device loop1): flagging fs with big metadata feature BTRFS info (device loop1): allowing degraded mounts BTRFS info (device loop1): disk space caching is enabled BTRFS info (device loop1): has skinny extents BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0 BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1 BTRFS info (device loop1): flagging fs with big metadata feature BTRFS info (device loop1): allowing degraded mounts BTRFS info (device loop1): disk space caching is enabled BTRFS info (device loop1): has skinny extents BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0 BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1 CC: stable@vger.kernel.org # 4.19+ Signed-off-by: Li Zhang <zhanglikernel@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-29btrfs: call btrfs_check_rw_degradable only if there is a missing deviceAnand Jain1-1/+2
In open_ctree() in btrfs_check_rw_degradable() [1], we check each block group individually if at least the minimum number of devices is available for that profile. If all the devices are available, then we don't have to check degradable. [1] open_ctree() :: 3559 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { Also before calling btrfs_check_rw_degradable() in open_ctee() at the line number shown below [2] we call btrfs_read_chunk_tree() and down to add_missing_dev() to record number of missing devices. [2] open_ctree() :: 3454 ret = btrfs_read_chunk_tree(fs_info); btrfs_read_chunk_tree() read_one_chunk() / read_one_dev() add_missing_dev() So, check if there is any missing device before btrfs_check_rw_degradable() in open_ctree(). Also, with this the mount command could save ~16ms.[3] in the most common case, that is no device is missing. [3] 1) * 16934.96 us | btrfs_check_rw_degradable [btrfs](); CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-29btrfs: send: prepare for v2 protocolDavid Sterba3-1/+32
This is preparatory work for send protocol update to version 2 and higher. We have many pending protocol update requests but still don't have the basic protocol rev in place, the first thing that must happen is to do the actual versioning support. The protocol version is u32 and is a new member in the send ioctl struct. Validity of the version field is backed by a new flag bit. Old kernels would fail when a higher version is requested. Version protocol 0 will pick the highest supported version, BTRFS_SEND_STREAM_VERSION, that's also exported in sysfs. The version is still unchanged and will be increased once we have new incompatible commands or stream updates. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-27Revert "btrfs: compression: drop kmap/kunmap from generic helpers"David Sterba2-2/+4
This reverts commit 4c2bf276b56d8d27ddbafcdf056ef3fc60ae50b0. The kmaps in compression code are still needed and cause crashes on 32bit machines (ARM, x86). Reproducible eg. by running fstest btrfs/004 with enabled LZO or ZSTD compression. Link: https://lore.kernel.org/all/CAJCQCtT+OuemovPO7GZk8Y8=qtOObr0XTDp8jh4OHD6y84AFxw@mail.gmail.com/ Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=214839 Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26btrfs: fix comment about sector sizes supported in 64K systemsAnand Jain1-2/+1
Commit 95ea0486b20e ("btrfs: allow read-write for 4K sectorsize on 64K page size systems") added write support for 4K sectorsize on a 64K systems. Fix the now stale comments. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26btrfs: update device path inode time instead of bd_inodeJosef Bacik1-8/+13
Christoph pointed out that I'm updating bdev->bd_inode for the device time when we remove block devices from a btrfs file system, however this isn't actually exposed to anything. The inode we want to update is the one that's associated with the path to the device, usually on devtmpfs, so that blkid notices the difference. We still don't want to do the blkdev_open, so use kern_path() to get the path to the given device and do the update time on that inode. Fixes: 8f96a5bfa150 ("btrfs: update the bdev time directly when closing") Reported-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26btrfs: fix deadlock when defragging transparent huge pagesOmar Sandoval1-0/+14
Attempting to defragment a Btrfs file containing a transparent huge page immediately deadlocks with the following stack trace: #0 context_switch (kernel/sched/core.c:4940:2) #1 __schedule (kernel/sched/core.c:6287:8) #2 schedule (kernel/sched/core.c:6366:3) #3 io_schedule (kernel/sched/core.c:8389:2) #4 wait_on_page_bit_common (mm/filemap.c:1356:4) #5 __lock_page (mm/filemap.c:1648:2) #6 lock_page (./include/linux/pagemap.h:625:3) #7 pagecache_get_page (mm/filemap.c:1910:4) #8 find_or_create_page (./include/linux/pagemap.h:420:9) #9 defrag_prepare_one_page (fs/btrfs/ioctl.c:1068:9) #10 defrag_one_range (fs/btrfs/ioctl.c:1326:14) #11 defrag_one_cluster (fs/btrfs/ioctl.c:1421:9) #12 btrfs_defrag_file (fs/btrfs/ioctl.c:1523:9) #13 btrfs_ioctl_defrag (fs/btrfs/ioctl.c:3117:9) #14 btrfs_ioctl (fs/btrfs/ioctl.c:4872:10) #15 vfs_ioctl (fs/ioctl.c:51:10) #16 __do_sys_ioctl (fs/ioctl.c:874:11) #17 __se_sys_ioctl (fs/ioctl.c:860:1) #18 __x64_sys_ioctl (fs/ioctl.c:860:1) #19 do_syscall_x64 (arch/x86/entry/common.c:50:14) #20 do_syscall_64 (arch/x86/entry/common.c:80:7) #21 entry_SYSCALL_64+0x7c/0x15b (arch/x86/entry/entry_64.S:113) A huge page is represented by a compound page, which consists of a struct page for each PAGE_SIZE page within the huge page. The first struct page is the "head page", and the remaining are "tail pages". Defragmentation attempts to lock each page in the range. However, lock_page() on a tail page actually locks the corresponding head page. So, if defragmentation tries to lock more than one struct page in a compound page, it tries to lock the same head page twice and deadlocks with itself. Ideally, we should be able to defragment transparent huge pages. However, THP for filesystems is currently read-only, so a lot of code is not ready to use huge pages for I/O. For now, let's just return ETXTBUSY. This can be reproduced with the following on a kernel with CONFIG_READ_ONLY_THP_FOR_FS=y: $ cat create_thp_file.c #include <fcntl.h> #include <stdbool.h> #include <stdio.h> #include <stdint.h> #include <stdlib.h> #include <unistd.h> #include <sys/mman.h> static const char zeroes[1024 * 1024]; static const size_t FILE_SIZE = 2 * 1024 * 1024; int main(int argc, char **argv) { if (argc != 2) { fprintf(stderr, "usage: %s PATH\n", argv[0]); return EXIT_FAILURE; } int fd = creat(argv[1], 0777); if (fd == -1) { perror("creat"); return EXIT_FAILURE; } size_t written = 0; while (written < FILE_SIZE) { ssize_t ret = write(fd, zeroes, sizeof(zeroes) < FILE_SIZE - written ? sizeof(zeroes) : FILE_SIZE - written); if (ret < 0) { perror("write"); return EXIT_FAILURE; } written += ret; } close(fd); fd = open(argv[1], O_RDONLY); if (fd == -1) { perror("open"); return EXIT_FAILURE; } /* * Reserve some address space so that we can align the file mapping to * the huge page size. */ void *placeholder_map = mmap(NULL, FILE_SIZE * 2, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (placeholder_map == MAP_FAILED) { perror("mmap (placeholder)"); return EXIT_FAILURE; } void *aligned_address = (void *)(((uintptr_t)placeholder_map + FILE_SIZE - 1) & ~(FILE_SIZE - 1)); void *map = mmap(aligned_address, FILE_SIZE, PROT_READ | PROT_EXEC, MAP_SHARED | MAP_FIXED, fd, 0); if (map == MAP_FAILED) { perror("mmap"); return EXIT_FAILURE; } if (madvise(map, FILE_SIZE, MADV_HUGEPAGE) < 0) { perror("madvise"); return EXIT_FAILURE; } char *line = NULL; size_t line_capacity = 0; FILE *smaps_file = fopen("/proc/self/smaps", "r"); if (!smaps_file) { perror("fopen"); return EXIT_FAILURE; } for (;;) { for (size_t off = 0; off < FILE_SIZE; off += 4096) ((volatile char *)map)[off]; ssize_t ret; bool this_mapping = false; while ((ret = getline(&line, &line_capacity, smaps_file)) > 0) { unsigned long start, end, huge; if (sscanf(line, "%lx-%lx", &start, &end) == 2) { this_mapping = (start <= (uintptr_t)map && (uintptr_t)map < end); } else if (this_mapping && sscanf(line, "FilePmdMapped: %ld", &huge) == 1 && huge > 0) { return EXIT_SUCCESS; } } sleep(6); rewind(smaps_file); fflush(smaps_file); } } $ ./create_thp_file huge $ btrfs fi defrag -czstd ./huge Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26btrfs: sysfs: convert scnprintf and snprintf to sysfs_emitAnand Jain1-49/+44
Commit 2efc459d06f1 ("sysfs: Add sysfs_emit and sysfs_emit_at to format sysfs out") merged in 5.10 introduced two new functions sysfs_emit() and sysfs_emit_at() which are aware of the PAGE_SIZE limit of the output buffer. Use the above two new functions instead of scnprintf() and snprintf() in various sysfs show(). Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26btrfs: make btrfs_super_block size match BTRFS_SUPER_INFO_SIZEQu Wenruo2-3/+7
It's a common practice to avoid use sizeof(struct btrfs_super_block) (3531), but to use BTRFS_SUPER_INFO_SIZE (4096). The problem is that, sizeof(struct btrfs_super_block) doesn't match BTRFS_SUPER_INFO_SIZE from the very beginning. Furthermore, for all call sites except selftests, we always allocate BTRFS_SUPER_INFO_SIZE space for super block, there isn't any real reason to use the smaller value, and it doesn't really save any space. So let's get rid of such confusing behavior, and unify those two values. This modification also adds a new static_assert() to verify the size, and moves the BTRFS_SUPER_INFO_* macros to the definition of btrfs_super_block for the static_assert(). Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26btrfs: update comments for chunk allocation -ENOSPC casesFilipe Manana1-3/+18
Update the comments at btrfs_chunk_alloc() and do_chunk_alloc() that describe which cases can lead to a failure to allocate metadata and system space despite having previously reserved space. This adds one more reason that I previously forgot to mention. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26btrfs: fix deadlock between chunk allocation and chunk btree modificationsFilipe Manana4-56/+111
When a task is doing some modification to the chunk btree and it is not in the context of a chunk allocation or a chunk removal, it can deadlock with another task that is currently allocating a new data or metadata chunk. These contexts are the following: * When relocating a system chunk, when we need to COW the extent buffers that belong to the chunk btree; * When adding a new device (ioctl), where we need to add a new device item to the chunk btree; * When removing a device (ioctl), where we need to remove a device item from the chunk btree; * When resizing a device (ioctl), where we need to update a device item in the chunk btree and may need to relocate a system chunk that lies beyond the new device size when shrinking a device. The problem happens due to a sequence of steps like the following: 1) Task A starts a data or metadata chunk allocation and it locks the chunk mutex; 2) Task B is relocating a system chunk, and when it needs to COW an extent buffer of the chunk btree, it has locked both that extent buffer as well as its parent extent buffer; 3) Since there is not enough available system space, either because none of the existing system block groups have enough free space or because the only one with enough free space is in RO mode due to the relocation, task B triggers a new system chunk allocation. It blocks when trying to acquire the chunk mutex, currently held by task A; 4) Task A enters btrfs_chunk_alloc_add_chunk_item(), in order to insert the new chunk item into the chunk btree and update the existing device items there. But in order to do that, it has to lock the extent buffer that task B locked at step 2, or its parent extent buffer, but task B is waiting on the chunk mutex, which is currently locked by task A, therefore resulting in a deadlock. One example report when the deadlock happens with system chunk relocation: INFO: task kworker/u9:5:546 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u9:5 state:D stack:25936 pid: 546 ppid: 2 flags:0x00004000 Workqueue: events_unbound btrfs_async_reclaim_metadata_space Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 rwsem_down_read_slowpath+0x4ee/0x9d0 kernel/locking/rwsem.c:993 __down_read_common kernel/locking/rwsem.c:1214 [inline] __down_read kernel/locking/rwsem.c:1223 [inline] down_read_nested+0xe6/0x440 kernel/locking/rwsem.c:1590 __btrfs_tree_read_lock+0x31/0x350 fs/btrfs/locking.c:47 btrfs_tree_read_lock fs/btrfs/locking.c:54 [inline] btrfs_read_lock_root_node+0x8a/0x320 fs/btrfs/locking.c:191 btrfs_search_slot_get_root fs/btrfs/ctree.c:1623 [inline] btrfs_search_slot+0x13b4/0x2140 fs/btrfs/ctree.c:1728 btrfs_update_device+0x11f/0x500 fs/btrfs/volumes.c:2794 btrfs_chunk_alloc_add_chunk_item+0x34d/0xea0 fs/btrfs/volumes.c:5504 do_chunk_alloc fs/btrfs/block-group.c:3408 [inline] btrfs_chunk_alloc+0x84d/0xf50 fs/btrfs/block-group.c:3653 flush_space+0x54e/0xd80 fs/btrfs/space-info.c:670 btrfs_async_reclaim_metadata_space+0x396/0xa90 fs/btrfs/space-info.c:953 process_one_work+0x9df/0x16d0 kernel/workqueue.c:2297 worker_thread+0x90/0xed0 kernel/workqueue.c:2444 kthread+0x3e5/0x4d0 kernel/kthread.c:319 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 INFO: task syz-executor:9107 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor state:D stack:23200 pid: 9107 ppid: 7792 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425 __mutex_lock_common kernel/locking/mutex.c:669 [inline] __mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729 btrfs_chunk_alloc+0x31a/0xf50 fs/btrfs/block-group.c:3631 find_free_extent_update_loop fs/btrfs/extent-tree.c:3986 [inline] find_free_extent+0x25cb/0x3a30 fs/btrfs/extent-tree.c:4335 btrfs_reserve_extent+0x1f1/0x500 fs/btrfs/extent-tree.c:4415 btrfs_alloc_tree_block+0x203/0x1120 fs/btrfs/extent-tree.c:4813 __btrfs_cow_block+0x412/0x1620 fs/btrfs/ctree.c:415 btrfs_cow_block+0x2f6/0x8c0 fs/btrfs/ctree.c:570 btrfs_search_slot+0x1094/0x2140 fs/btrfs/ctree.c:1768 relocate_tree_block fs/btrfs/relocation.c:2694 [inline] relocate_tree_blocks+0xf73/0x1770 fs/btrfs/relocation.c:2757 relocate_block_group+0x47e/0xc70 fs/btrfs/relocation.c:3673 btrfs_relocate_block_group+0x48a/0xc60 fs/btrfs/relocation.c:4070 btrfs_relocate_chunk+0x96/0x280 fs/btrfs/volumes.c:3181 __btrfs_balance fs/btrfs/volumes.c:3911 [inline] btrfs_balance+0x1f03/0x3cd0 fs/btrfs/volumes.c:4301 btrfs_ioctl_balance+0x61e/0x800 fs/btrfs/ioctl.c:4137 btrfs_ioctl+0x39ea/0x7b70 fs/btrfs/ioctl.c:4949 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae So fix this by making sure that whenever we try to modify the chunk btree and we are neither in a chunk allocation context nor in a chunk remove context, we reserve system space before modifying the chunk btree. Reported-by: Hao Sun <sunhao.th@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CACkBjsax51i4mu6C0C3vJqQN3NR_iVuucoeG3U1HXjrgzn5FFQ@mail.gmail.com/ Fixes: 79bd37120b1495 ("btrfs: rework chunk allocation to avoid exhaustion of the system chunk array") CC: stable@vger.kernel.org # 5.14+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26btrfs: zoned: use greedy gc for auto reclaimJohannes Thumshirn1-0/+22
Currently auto reclaim of unusable zones reclaims the block-groups in the order they have been added to the reclaim list. Change this to a greedy algorithm by sorting the list so we have the block-groups with the least amount of valid bytes reclaimed first. Note: we can't splice the block groups from reclaim_bgs to let the sort happen outside of the lock. The block groups can be still in use by other parts eg. via bg_list and we must hold unused_bgs_lock while processing them. Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> [ write note and comment why we can't splice the list ] Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26btrfs: check-integrity: stop storing the block device name in btrfsic_dev_stateChristoph Hellwig1-91/+110
Just use the %pg format specifier in all the debug printks previously using it. Note that both bdevname and the %pg specifier never print a pathname, so the kbasename call wasn't needed to start with. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> [ adjust messages and indentation ] Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26btrfs: use btrfs_get_dev_args_from_path in dev removal ioctlsJosef Bacik3-36/+48
For device removal and replace we call btrfs_find_device_by_devspec, which if we give it a device path and nothing else will call btrfs_get_dev_args_from_path, which opens the block device and reads the super block and then looks up our device based on that. However at this point we're holding the sb write "lock", so reading the block device pulls in the dependency of ->open_mutex, which produces the following lockdep splat ====================================================== WARNING: possible circular locking dependency detected 5.14.0-rc2+ #405 Not tainted ------------------------------------------------------ losetup/11576 is trying to acquire lock: ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0 but task is already holding lock: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 (&lo->lo_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 lo_open+0x28/0x60 [loop] blkdev_get_whole+0x25/0xf0 blkdev_get_by_dev.part.0+0x168/0x3c0 blkdev_open+0xd2/0xe0 do_dentry_open+0x161/0x390 path_openat+0x3cc/0xa20 do_filp_open+0x96/0x120 do_sys_openat2+0x7b/0x130 __x64_sys_openat+0x46/0x70 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #3 (&disk->open_mutex){+.+.}-{3:3}: __mutex_lock+0x7d/0x750 blkdev_get_by_dev.part.0+0x56/0x3c0 blkdev_get_by_path+0x98/0xa0 btrfs_get_bdev_and_sb+0x1b/0xb0 btrfs_find_device_by_devspec+0x12b/0x1c0 btrfs_rm_device+0x127/0x610 btrfs_ioctl+0x2a31/0x2e70 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae -> #2 (sb_writers#12){.+.+}-{0:0}: lo_write_bvec+0xc2/0x240 [loop] loop_process_work+0x238/0xd00 [loop] process_one_work+0x26b/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}: process_one_work+0x245/0x560 worker_thread+0x55/0x3c0 kthread+0x140/0x160 ret_from_fork+0x1f/0x30 -> #0 ((wq_completion)loop0){+.+.}-{0:0}: __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 flush_workqueue+0x91/0x5e0 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae other info that might help us debug this: Chain exists of: (wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&lo->lo_mutex); lock(&disk->open_mutex); lock(&lo->lo_mutex); lock((wq_completion)loop0); *** DEADLOCK *** 1 lock held by losetup/11576: #0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop] stack backtrace: CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x57/0x72 check_noncircular+0xcf/0xf0 ? stack_trace_save+0x3b/0x50 __lock_acquire+0x10ea/0x1d90 lock_acquire+0xb5/0x2b0 ? flush_workqueue+0x67/0x5e0 ? lockdep_init_map_type+0x47/0x220 flush_workqueue+0x91/0x5e0 ? flush_workqueue+0x67/0x5e0 ? verify_cpu+0xf0/0x100 drain_workqueue+0xa0/0x110 destroy_workqueue+0x36/0x250 __loop_clr_fd+0x9a/0x660 [loop] ? blkdev_ioctl+0x8d/0x2a0 block_ioctl+0x3f/0x50 __x64_sys_ioctl+0x80/0xb0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f31b02404cb Instead what we want to do is populate our device lookup args before we grab any locks, and then pass these args into btrfs_rm_device(). From there we can find the device and do the appropriate removal. Suggested-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26btrfs: add a btrfs_get_dev_args_from_path helperJosef Bacik2-32/+68
We are going to want to populate our device lookup args outside of any locks and then do the actual device lookup later, so add a helper to do this work and make btrfs_find_device_by_devspec() use this helper for now. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26btrfs: handle device lookup with btrfs_dev_lookup_argsJosef Bacik5-65/+112
We have a lot of device lookup functions that all do something slightly different. Clean this up by adding a struct to hold the different lookup criteria, and then pass this around to btrfs_find_device() so it can do the proper matching based on the lookup criteria. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26btrfs: do not call close_fs_devices in btrfs_rm_deviceJosef Bacik1-1/+9
There's a subtle case where if we're removing the seed device from a file system we need to free its private copy of the fs_devices. However we do not need to call close_fs_devices(), because at this point there are no devices left to close as we've closed the last one. The only thing that close_fs_devices() does is decrement ->opened, which should be 1. We want to avoid calling close_fs_devices() here because it has a lockdep_assert_held(&uuid_mutex), and we are going to stop holding the uuid_mutex in this path. So simply decrement the ->opened counter like we should, and then clean up like normal. Also add a comment explaining what we're doing here as I initially removed this code erroneously. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26btrfs: add comments for device counts in struct btrfs_fs_devicesAnand Jain1-0/+19
A bug was was checking a wrong device count before we delete the struct btrfs_fs_devices in btrfs_rm_device(). To avoid future confusion and easy reference add a comment about the various device counts that we have in the struct btrfs_fs_devices. Signed-off-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26btrfs: use num_device to check for the last surviving seed deviceAnand Jain1-1/+1
For both sprout and seed fsids, btrfs_fs_devices::num_devices provides device count including missing btrfs_fs_devices::open_devices provides device count excluding missing We create a dummy struct btrfs_device for the missing device, so num_devices != open_devices when there is a missing device. In btrfs_rm_devices() we wrongly check for %cur_devices->open_devices before freeing the seed fs_devices. Instead we should check for %cur_devices->num_devices. Signed-off-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26btrfs: fix lost error handling when replaying directory deletesFilipe Manana1-1/+3
At replay_dir_deletes(), if find_dir_range() returns an error we break out of the main while loop and then assign a value of 0 (success) to the 'ret' variable, resulting in completely ignoring that an error happened. Fix that by jumping to the 'out' label when find_dir_range() returns an error (negative value). CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26btrfs: remove btrfs_bio::logical memberQu Wenruo3-11/+8
The member btrfs_bio::logical is only initialized by two call sites: - btrfs_repair_one_sector() No corresponding site to utilize it. - btrfs_submit_direct() The corresponding site to utilize it is btrfs_check_read_dio_bio(). However for btrfs_check_read_dio_bio(), we can grab the file_offset from btrfs_dio_private::file_offset directly. Thus it turns out we don't really need that btrfs_bio::logical member at all. For btrfs_bio, the logical bytenr can be fetched from its bio->bi_iter.bi_sector directly. So let's just remove the member to save 8 bytes for structure btrfs_bio. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26btrfs: rename btrfs_dio_private::logical_offset to file_offsetQu Wenruo2-7/+12
The naming of "logical_offset" can be confused with logical bytenr of the dio range. In fact it's file offset, and the naming "file_offset" is already widely used in all other sites. Just do the rename to avoid confusion. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-26btrfs: use bvec_kmap_local in btrfs_csum_one_bioChristoph Hellwig1-4/+4
Using local kmaps slightly reduces the chances to stray writes, and the bvec interface cleans up the code a little bit. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>