summaryrefslogtreecommitdiff
path: root/fs/btrfs/transaction.h
AgeCommit message (Collapse)AuthorFilesLines
2023-02-13btrfs: move btrfs_abort_transaction to transaction.cJosef Bacik1-0/+31
While trying to sync messages.[ch] I ended up with this dependency on messages.h in the rest of btrfs-progs code base because it's where btrfs_abort_transaction() was now held. We want to keep messages.[ch] limited to the kernel code, and the btrfs_abort_transaction() code better fits in the transaction code and not in messages. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ move the __cold attributes ] Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: remove fs_info::pending_changes and related codeJosef Bacik1-1/+0
Now that we're not using this code anywhere we can remove it as well as the member from fs_info. We don't have any mount options or on/off features that would utilize the pending infrastructure, the last one was inode_cache. There was a patchset [1] to enable some features from sysfs that would break things if it would be set immediately. In case we'll need that kind of logic again the patch can be reverted, but for the current use it can be replaced by the single state bit to do the commit. [1] https://lore.kernel.org/linux-btrfs/1422609654-19519-1-git-send-email-quwenruo@cn.fujitsu.com/ Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add note ] Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: convert __TRANS_* defines to enum bitsDavid Sterba1-8/+10
The base transaction bits can be defined as bits in a contiguous sequence, although right now there's a hole from bit 1 to 8. The bits are used for btrfs_trans_handle::type, and there's another set of TRANS_STATE_* defines that are for btrfs_transaction::state. They are mutually exclusive though the hole in the sequence looks like was made for the states. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: move trans_handle_cachep out of ctree.hJosef Bacik1-0/+3
This is local to the transaction code, remove it from ctree.h and inode.c, create new helpers in the transaction to handle the init work and move the cachep locally to transaction.c. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14btrfs: pass btrfs_fs_info for deleting snapshots and cleanerJosef Bacik1-1/+1
We're passing a root around here, but we only really need the fs_info, so fix up btrfs_clean_one_deleted_snapshot() to take an fs_info instead, and then fix up all the callers appropriately. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-02btrfs: do not start relocation until in progress drops are doneJosef Bacik1-0/+1
We hit a bug with a recovering relocation on mount for one of our file systems in production. I reproduced this locally by injecting errors into snapshot delete with balance running at the same time. This presented as an error while looking up an extent item WARNING: CPU: 5 PID: 1501 at fs/btrfs/extent-tree.c:866 lookup_inline_extent_backref+0x647/0x680 CPU: 5 PID: 1501 Comm: btrfs-balance Not tainted 5.16.0-rc8+ #8 RIP: 0010:lookup_inline_extent_backref+0x647/0x680 RSP: 0018:ffffae0a023ab960 EFLAGS: 00010202 RAX: 0000000000000001 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 000000000000000c RDI: 0000000000000000 RBP: ffff943fd2a39b60 R08: 0000000000000000 R09: 0000000000000001 R10: 0001434088152de0 R11: 0000000000000000 R12: 0000000001d05000 R13: ffff943fd2a39b60 R14: ffff943fdb96f2a0 R15: ffff9442fc923000 FS: 0000000000000000(0000) GS:ffff944e9eb40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1157b1fca8 CR3: 000000010f092000 CR4: 0000000000350ee0 Call Trace: <TASK> insert_inline_extent_backref+0x46/0xd0 __btrfs_inc_extent_ref.isra.0+0x5f/0x200 ? btrfs_merge_delayed_refs+0x164/0x190 __btrfs_run_delayed_refs+0x561/0xfa0 ? btrfs_search_slot+0x7b4/0xb30 ? btrfs_update_root+0x1a9/0x2c0 btrfs_run_delayed_refs+0x73/0x1f0 ? btrfs_update_root+0x1a9/0x2c0 btrfs_commit_transaction+0x50/0xa50 ? btrfs_update_reloc_root+0x122/0x220 prepare_to_merge+0x29f/0x320 relocate_block_group+0x2b8/0x550 btrfs_relocate_block_group+0x1a6/0x350 btrfs_relocate_chunk+0x27/0xe0 btrfs_balance+0x777/0xe60 balance_kthread+0x35/0x50 ? btrfs_balance+0xe60/0xe60 kthread+0x16b/0x190 ? set_kthread_struct+0x40/0x40 ret_from_fork+0x22/0x30 </TASK> Normally snapshot deletion and relocation are excluded from running at the same time by the fs_info->cleaner_mutex. However if we had a pending balance waiting to get the ->cleaner_mutex, and a snapshot deletion was running, and then the box crashed, we would come up in a state where we have a half deleted snapshot. Again, in the normal case the snapshot deletion needs to complete before relocation can start, but in this case relocation could very well start before the snapshot deletion completes, as we simply add the root to the dead roots list and wait for the next time the cleaner runs to clean up the snapshot. Fix this by setting a bit on the fs_info if we have any DEAD_ROOT's that had a pending drop_progress key. If they do then we know we were in the middle of the drop operation and set a flag on the fs_info. Then balance can wait until this flag is cleared to start up again. If there are DEAD_ROOT's that don't have a drop_progress set then we're safe to start balance right away as we'll be properly protected by the cleaner_mutex. CC: stable@vger.kernel.org # 5.10+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-31btrfs: fix use-after-free after failure to create a snapshotFilipe Manana1-0/+2
At ioctl.c:create_snapshot(), we allocate a pending snapshot structure and then attach it to the transaction's list of pending snapshots. After that we call btrfs_commit_transaction(), and if that returns an error we jump to 'fail' label, where we kfree() the pending snapshot structure. This can result in a later use-after-free of the pending snapshot: 1) We allocated the pending snapshot and added it to the transaction's list of pending snapshots; 2) We call btrfs_commit_transaction(), and it fails either at the first call to btrfs_run_delayed_refs() or btrfs_start_dirty_block_groups(). In both cases, we don't abort the transaction and we release our transaction handle. We jump to the 'fail' label and free the pending snapshot structure. We return with the pending snapshot still in the transaction's list; 3) Another task commits the transaction. This time there's no error at all, and then during the transaction commit it accesses a pointer to the pending snapshot structure that the snapshot creation task has already freed, resulting in a user-after-free. This issue could actually be detected by smatch, which produced the following warning: fs/btrfs/ioctl.c:843 create_snapshot() warn: '&pending_snapshot->list' not removed from list So fix this by not having the snapshot creation ioctl directly add the pending snapshot to the transaction's list. Instead add the pending snapshot to the transaction handle, and then at btrfs_commit_transaction() we add the snapshot to the list only when we can guarantee that any error returned after that point will result in a transaction abort, in which case the ioctl code can safely free the pending snapshot and no one can access it anymore. CC: stable@vger.kernel.org # 5.10+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-03btrfs: remove trans_handle->rootJosef Bacik1-1/+0
Nobody is using this anymore, remove it. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-01-03btrfs: rework async transaction committingJosef Bacik1-1/+1
Currently we do this awful thing where we get another ref on a trans handle, async off that handle and commit the transaction from that work. Because we do this we have to mess with current->journal_info and the freeze counting stuff. We already have an async thing to kick for the transaction commit, the transaction kthread. Replace this work struct with a flag on the fs_info to tell the kthread to go ahead and commit even if it's before our timeout. Then we can drastically simplify the async transaction commit path. Note: this can be simplified and functionality based on the pending operation COMMIT. Signed-off-by: Josef Bacik <josef@toxicpanda.com> [ add note ] Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-07btrfs: rework chunk allocation to avoid exhaustion of the system chunk arrayFilipe Manana1-1/+1
Commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") fixed a problem that resulted in exhausting the system chunk array in the superblock when there are many tasks allocating chunks in parallel. Basically too many tasks enter the first phase of chunk allocation without previous tasks having finished their second phase of allocation, resulting in too many system chunks being allocated. That was originally observed when running the fallocate tests of stress-ng on a PowerPC machine, using a node size of 64K. However that commit also introduced a deadlock where a task in phase 1 of the chunk allocation waited for another task that had allocated a system chunk to finish its phase 2, but that other task was waiting on an extent buffer lock held by the first task, therefore resulting in both tasks not making any progress. That change was later reverted by a patch with the subject "btrfs: fix deadlock with concurrent chunk allocations involving system chunks", since there is no simple and short solution to address it and the deadlock is relatively easy to trigger on zoned filesystems, while the system chunk array exhaustion is not so common. This change reworks the chunk allocation to avoid the system chunk array exhaustion. It accomplishes that by making the first phase of chunk allocation do the updates of the device items in the chunk btree and the insertion of the new chunk item in the chunk btree. This is done while under the protection of the chunk mutex (fs_info->chunk_mutex), in the same critical section that checks for available system space, allocates a new system chunk if needed and reserves system chunk space. This way we do not have chunk space reserved until the second phase completes. The same logic is applied to chunk removal as well, since it keeps reserved system space long after it is done updating the chunk btree. For direct allocation of system chunks, the previous behaviour remains, because otherwise we would deadlock on extent buffers of the chunk btree. Changes to the chunk btree are by large done by chunk allocation and chunk removal, which first reserve chunk system space and then later do changes to the chunk btree. The other remaining cases are uncommon and correspond to adding a device, removing a device and resizing a device. All these other cases do not pre-reserve system space, they modify the chunk btree right away, so they don't hold reserved space for a long period like chunk allocation and chunk removal do. The diff of this change is huge, but more than half of it is just addition of comments describing both how things work regarding chunk allocation and removal, including both the new behavior and the parts of the old behavior that did not change. CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-07btrfs: fix deadlock with concurrent chunk allocations involving system chunksFilipe Manana1-7/+0
When a task attempting to allocate a new chunk verifies that there is not currently enough free space in the system space_info and there is another task that allocated a new system chunk but it did not finish yet the creation of the respective block group, it waits for that other task to finish creating the block group. This is to avoid exhaustion of the system chunk array in the superblock, which is limited, when we have a thundering herd of tasks allocating new chunks. This problem was described and fixed by commit eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations"). However there are two very similar scenarios where this can lead to a deadlock: 1) Task B allocated a new system chunk and task A is waiting on task B to finish creation of the respective system block group. However before task B ends its transaction handle and finishes the creation of the system block group, it attempts to allocate another chunk (like a data chunk for an fallocate operation for a very large range). Task B will be unable to progress and allocate the new chunk, because task A set space_info->chunk_alloc to 1 and therefore it loops at btrfs_chunk_alloc() waiting for task A to finish its chunk allocation and set space_info->chunk_alloc to 0, but task A is waiting on task B to finish creation of the new system block group, therefore resulting in a deadlock; 2) Task B allocated a new system chunk and task A is waiting on task B to finish creation of the respective system block group. By the time that task B enter the final phase of block group allocation, which happens at btrfs_create_pending_block_groups(), when it modifies the extent tree, the device tree or the chunk tree to insert the items for some new block group, it needs to allocate a new chunk, so it ends up at btrfs_chunk_alloc() and keeps looping there because task A has set space_info->chunk_alloc to 1, but task A is waiting for task B to finish creation of the new system block group and release the reserved system space, therefore resulting in a deadlock. In short, the problem is if a task B needs to allocate a new chunk after it previously allocated a new system chunk and if another task A is currently waiting for task B to complete the allocation of the new system chunk. Unfortunately this deadlock scenario introduced by the previous fix for the system chunk array exhaustion problem does not have a simple and short fix, and requires a big change to rework the chunk allocation code so that chunk btree updates are all made in the first phase of chunk allocation. And since this deadlock regression is being frequently hit on zoned filesystems and the system chunk array exhaustion problem is triggered in more extreme cases (originally observed on PowerPC with a node size of 64K when running the fallocate tests from stress-ng), revert the changes from that commit. The next patch in the series, with a subject of "btrfs: rework chunk allocation to avoid exhaustion of the system chunk array" does the necessary changes to fix the system chunk array exhaustion problem. Reported-by: Naohiro Aota <naohiro.aota@wdc.com> Link: https://lore.kernel.org/linux-btrfs/20210621015922.ewgbffxuawia7liz@naota-xeon/ Fixes: eafa4fd0ad0607 ("btrfs: fix exhaustion of the system chunk array due to concurrent allocations") CC: stable@vger.kernel.org # 5.12+ Tested-by: Shin'ichiro Kawasaki <shinichiro.kawasaki@wdc.com> Tested-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Tested-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-22btrfs: send: fix crash when memory allocations trigger reclaimFilipe Manana1-2/+0
When doing a send we don't expect the task to ever start a transaction after the initial check that verifies if commit roots match the regular roots. This is because after that we set current->journal_info with a stub (special value) that signals we are in send context, so that we take a read lock on an extent buffer when reading it from disk and verifying it is valid (its generation matches the generation stored in the parent). This stub was introduced in 2014 by commit a26e8c9f75b0bf ("Btrfs: don't clear uptodate if the eb is under IO") in order to fix a concurrency issue between send and balance. However there is one particular exception where we end up needing to start a transaction and when this happens it results in a crash with a stack trace like the following: [60015.902283] kernel: WARNING: CPU: 3 PID: 58159 at arch/x86/include/asm/kfence.h:44 kfence_protect_page+0x21/0x80 [60015.902292] kernel: Modules linked in: uinput rfcomm snd_seq_dummy (...) [60015.902384] kernel: CPU: 3 PID: 58159 Comm: btrfs Not tainted 5.12.9-300.fc34.x86_64 #1 [60015.902387] kernel: Hardware name: Gigabyte Technology Co., Ltd. To be filled by O.E.M./F2A88XN-WIFI, BIOS F6 12/24/2015 [60015.902389] kernel: RIP: 0010:kfence_protect_page+0x21/0x80 [60015.902393] kernel: Code: ff 0f 1f 84 00 00 00 00 00 55 48 89 fd (...) [60015.902396] kernel: RSP: 0018:ffff9fb583453220 EFLAGS: 00010246 [60015.902399] kernel: RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff9fb583453224 [60015.902401] kernel: RDX: ffff9fb583453224 RSI: 0000000000000000 RDI: 0000000000000000 [60015.902402] kernel: RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 [60015.902404] kernel: R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000002 [60015.902406] kernel: R13: ffff9fb583453348 R14: 0000000000000000 R15: 0000000000000001 [60015.902408] kernel: FS: 00007f158e62d8c0(0000) GS:ffff93bd37580000(0000) knlGS:0000000000000000 [60015.902410] kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [60015.902412] kernel: CR2: 0000000000000039 CR3: 00000001256d2000 CR4: 00000000000506e0 [60015.902414] kernel: Call Trace: [60015.902419] kernel: kfence_unprotect+0x13/0x30 [60015.902423] kernel: page_fault_oops+0x89/0x270 [60015.902427] kernel: ? search_module_extables+0xf/0x40 [60015.902431] kernel: ? search_bpf_extables+0x57/0x70 [60015.902435] kernel: kernelmode_fixup_or_oops+0xd6/0xf0 [60015.902437] kernel: __bad_area_nosemaphore+0x142/0x180 [60015.902440] kernel: exc_page_fault+0x67/0x150 [60015.902445] kernel: asm_exc_page_fault+0x1e/0x30 [60015.902450] kernel: RIP: 0010:start_transaction+0x71/0x580 [60015.902454] kernel: Code: d3 0f 84 92 00 00 00 80 e7 06 0f 85 63 (...) [60015.902456] kernel: RSP: 0018:ffff9fb5834533f8 EFLAGS: 00010246 [60015.902458] kernel: RAX: 0000000000000001 RBX: 0000000000000001 RCX: 0000000000000000 [60015.902460] kernel: RDX: 0000000000000801 RSI: 0000000000000000 RDI: 0000000000000039 [60015.902462] kernel: RBP: ffff93bc0a7eb800 R08: 0000000000000001 R09: 0000000000000000 [60015.902463] kernel: R10: 0000000000098a00 R11: 0000000000000001 R12: 0000000000000001 [60015.902464] kernel: R13: 0000000000000000 R14: ffff93bc0c92b000 R15: ffff93bc0c92b000 [60015.902468] kernel: btrfs_commit_inode_delayed_inode+0x5d/0x120 [60015.902473] kernel: btrfs_evict_inode+0x2c5/0x3f0 [60015.902476] kernel: evict+0xd1/0x180 [60015.902480] kernel: inode_lru_isolate+0xe7/0x180 [60015.902483] kernel: __list_lru_walk_one+0x77/0x150 [60015.902487] kernel: ? iput+0x1a0/0x1a0 [60015.902489] kernel: ? iput+0x1a0/0x1a0 [60015.902491] kernel: list_lru_walk_one+0x47/0x70 [60015.902495] kernel: prune_icache_sb+0x39/0x50 [60015.902497] kernel: super_cache_scan+0x161/0x1f0 [60015.902501] kernel: do_shrink_slab+0x142/0x240 [60015.902505] kernel: shrink_slab+0x164/0x280 [60015.902509] kernel: shrink_node+0x2c8/0x6e0 [60015.902512] kernel: do_try_to_free_pages+0xcb/0x4b0 [60015.902514] kernel: try_to_free_pages+0xda/0x190 [60015.902516] kernel: __alloc_pages_slowpath.constprop.0+0x373/0xcc0 [60015.902521] kernel: ? __memcg_kmem_charge_page+0xc2/0x1e0 [60015.902525] kernel: __alloc_pages_nodemask+0x30a/0x340 [60015.902528] kernel: pipe_write+0x30b/0x5c0 [60015.902531] kernel: ? set_next_entity+0xad/0x1e0 [60015.902534] kernel: ? switch_mm_irqs_off+0x58/0x440 [60015.902538] kernel: __kernel_write+0x13a/0x2b0 [60015.902541] kernel: kernel_write+0x73/0x150 [60015.902543] kernel: send_cmd+0x7b/0xd0 [60015.902545] kernel: send_extent_data+0x5a3/0x6b0 [60015.902549] kernel: process_extent+0x19b/0xed0 [60015.902551] kernel: btrfs_ioctl_send+0x1434/0x17e0 [60015.902554] kernel: ? _btrfs_ioctl_send+0xe1/0x100 [60015.902557] kernel: _btrfs_ioctl_send+0xbf/0x100 [60015.902559] kernel: ? enqueue_entity+0x18c/0x7b0 [60015.902562] kernel: btrfs_ioctl+0x185f/0x2f80 [60015.902564] kernel: ? psi_task_change+0x84/0xc0 [60015.902569] kernel: ? _flat_send_IPI_mask+0x21/0x40 [60015.902572] kernel: ? check_preempt_curr+0x2f/0x70 [60015.902576] kernel: ? selinux_file_ioctl+0x137/0x1e0 [60015.902579] kernel: ? expand_files+0x1cb/0x1d0 [60015.902582] kernel: ? __x64_sys_ioctl+0x82/0xb0 [60015.902585] kernel: __x64_sys_ioctl+0x82/0xb0 [60015.902588] kernel: do_syscall_64+0x33/0x40 [60015.902591] kernel: entry_SYSCALL_64_after_hwframe+0x44/0xae [60015.902595] kernel: RIP: 0033:0x7f158e38f0ab [60015.902599] kernel: Code: ff ff ff 85 c0 79 9b (...) [60015.902602] kernel: RSP: 002b:00007ffcb2519bf8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 [60015.902605] kernel: RAX: ffffffffffffffda RBX: 00007ffcb251ae00 RCX: 00007f158e38f0ab [60015.902607] kernel: RDX: 00007ffcb2519cf0 RSI: 0000000040489426 RDI: 0000000000000004 [60015.902608] kernel: RBP: 0000000000000004 R08: 00007f158e297640 R09: 00007f158e297640 [60015.902610] kernel: R10: 0000000000000008 R11: 0000000000000246 R12: 0000000000000000 [60015.902612] kernel: R13: 0000000000000002 R14: 00007ffcb251aee0 R15: 0000558c1a83e2a0 [60015.902615] kernel: ---[ end trace 7bbc33e23bb887ae ]--- This happens because when writing to the pipe, by calling kernel_write(), we end up doing page allocations using GFP_HIGHUSER | __GFP_ACCOUNT as the gfp flags, which allow reclaim to happen if there is memory pressure. This allocation happens at fs/pipe.c:pipe_write(). If the reclaim is triggered, inode eviction can be triggered and that in turn can result in starting a transaction if the inode has a link count of 0. The transaction start happens early on during eviction, when we call btrfs_commit_inode_delayed_inode() at btrfs_evict_inode(). This happens if there is currently an open file descriptor for an inode with a link count of 0 and the reclaim task gets a reference on the inode before that descriptor is closed, in which case the reclaim task ends up doing the final iput that triggers the inode eviction. When we have assertions enabled (CONFIG_BTRFS_ASSERT=y), this triggers the following assertion at transaction.c:start_transaction(): /* Send isn't supposed to start transactions. */ ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); And when assertions are not enabled, it triggers a crash since after that assertion we cast current->journal_info into a transaction handle pointer and then dereference it: if (current->journal_info) { WARN_ON(type & TRANS_EXTWRITERS); h = current->journal_info; refcount_inc(&h->use_count); (...) Which obviously results in a crash due to an invalid memory access. The same type of issue can happen during other memory allocations we do directly in the send code with kmalloc (and friends) as they use GFP_KERNEL and therefore may trigger reclaim too, which started to happen since 2016 after commit e780b0d1c1523e ("btrfs: send: use GFP_KERNEL everywhere"). The issue could be solved by setting up a NOFS context for the entire send operation so that reclaim could not be triggered when allocating memory or pages through kernel_write(). However that is not very friendly and we can in fact get rid of the send stub because: 1) The stub was introduced way back in 2014 by commit a26e8c9f75b0bf ("Btrfs: don't clear uptodate if the eb is under IO") to solve an issue exclusive to when send and balance are running in parallel, however there were other problems between balance and send and we do not allow anymore to have balance and send run concurrently since commit 9e967495e0e0ae ("Btrfs: prevent send failures and crashes due to concurrent relocation"). More generically the issues are between send and relocation, and that last commit eliminated only the possibility of having send and balance run concurrently, but shrinking a device also can trigger relocation, and on zoned filesystems we have relocation of partially used block groups triggered automatically as well. The previous patch that has a subject of: "btrfs: ensure relocation never runs while we have send operations running" Addresses all the remaining cases that can trigger relocation. 2) We can actually allow starting and even committing transactions while in a send context if needed because send is not holding any locks that would block the start or the commit of a transaction. So get rid of all the logic added by commit a26e8c9f75b0bf ("Btrfs: don't clear uptodate if the eb is under IO"). We can now always call clear_extent_buffer_uptodate() at verify_parent_transid() since send is the only case that uses commit roots without having a transaction open or without holding the commit_root_sem. Reported-by: Chris Murphy <lists@colorremedies.com> Link: https://lore.kernel.org/linux-btrfs/CAJCQCtRQ57=qXo3kygwpwEBOU_CA_eKvdmjP52sU=eFvuVOEGw@mail.gmail.com/ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21btrfs: sink wait_for_unblock parameter to async commitDavid Sterba1-2/+1
There's only one caller left btrfs_ioctl_start_sync that passes 0, so we can remove the switch in btrfs_commit_transaction_async. A cleanup 9babda9f33fd ("btrfs: Remove async_transid from btrfs_mksubvol/create_subvol/create_snapshot") removed calls that passed 1, so this is a followup. As this removes last call of wait_current_trans_commit_start_and_unblock, remove the function as well. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21btrfs: always abort the transaction if we abort a trans handleJosef Bacik1-1/+0
While stress testing our error handling I noticed that sometimes we would still commit the transaction even though we had aborted the transaction. Currently we track if a trans handle has dirtied any metadata, and if it hasn't we mark the filesystem as having an error (so no new transactions can be started), but we will allow the current transaction to complete as we do not mark the transaction itself as having been aborted. This sounds good in theory, but we were not properly tracking IO errors in btrfs_finish_ordered_io, and thus committing the transaction with bogus free space data. This isn't necessarily a problem per-se with the free space cache, as the other guards in place would have kept us from accepting the free space cache as valid, but highlights a real world case where we had a bug and could have corrupted the filesystem because of it. This "skip abort on empty trans handle" is nice in theory, but assumes we have perfect error handling everywhere, which we clearly do not. Also we do not allow further transactions to be started, so all this does is save the last transaction that was happening, which doesn't necessarily gain us anything other than the potential for real corruption. Remove this particular bit of code, if we decide we need to abort the transaction then abort the current one and keep us from doing real harm to the file system, regardless of whether this specific trans handle dirtied anything or not. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19btrfs: fix exhaustion of the system chunk array due to concurrent allocationsFilipe Manana1-0/+7
When we are running out of space for updating the chunk tree, that is, when we are low on available space in the system space info, if we have many task concurrently allocating block groups, via fallocate for example, many of them can end up all allocating new system chunks when only one is needed. In extreme cases this can lead to exhaustion of the system chunk array, which has a size limit of 2048 bytes, and results in a transaction abort with errno EFBIG, producing a trace in dmesg like the following, which was triggered on a PowerPC machine with a node/leaf size of 64K: [1359.518899] ------------[ cut here ]------------ [1359.518980] BTRFS: Transaction aborted (error -27) [1359.519135] WARNING: CPU: 3 PID: 16463 at ../fs/btrfs/block-group.c:1968 btrfs_create_pending_block_groups+0x340/0x3c0 [btrfs] [1359.519152] Modules linked in: (...) [1359.519239] Supported: Yes, External [1359.519252] CPU: 3 PID: 16463 Comm: stress-ng Tainted: G X 5.3.18-47-default #1 SLE15-SP3 [1359.519274] NIP: c008000000e36fe8 LR: c008000000e36fe4 CTR: 00000000006de8e8 [1359.519293] REGS: c00000056890b700 TRAP: 0700 Tainted: G X (5.3.18-47-default) [1359.519317] MSR: 800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 48008222 XER: 00000007 [1359.519356] CFAR: c00000000013e170 IRQMASK: 0 [1359.519356] GPR00: c008000000e36fe4 c00000056890b990 c008000000e83200 0000000000000026 [1359.519356] GPR04: 0000000000000000 0000000000000000 0000d52a3b027651 0000000000000007 [1359.519356] GPR08: 0000000000000003 0000000000000001 0000000000000007 0000000000000000 [1359.519356] GPR12: 0000000000008000 c00000063fe44600 000000001015e028 000000001015dfd0 [1359.519356] GPR16: 000000000000404f 0000000000000001 0000000000010000 0000dd1e287affff [1359.519356] GPR20: 0000000000000001 c000000637c9a000 ffffffffffffffe5 0000000000000000 [1359.519356] GPR24: 0000000000000004 0000000000000000 0000000000000100 ffffffffffffffc0 [1359.519356] GPR28: c000000637c9a000 c000000630e09230 c000000630e091d8 c000000562188b08 [1359.519561] NIP [c008000000e36fe8] btrfs_create_pending_block_groups+0x340/0x3c0 [btrfs] [1359.519613] LR [c008000000e36fe4] btrfs_create_pending_block_groups+0x33c/0x3c0 [btrfs] [1359.519626] Call Trace: [1359.519671] [c00000056890b990] [c008000000e36fe4] btrfs_create_pending_block_groups+0x33c/0x3c0 [btrfs] (unreliable) [1359.519729] [c00000056890ba90] [c008000000d68d44] __btrfs_end_transaction+0xbc/0x2f0 [btrfs] [1359.519782] [c00000056890bae0] [c008000000e309ac] btrfs_alloc_data_chunk_ondemand+0x154/0x610 [btrfs] [1359.519844] [c00000056890bba0] [c008000000d8a0fc] btrfs_fallocate+0xe4/0x10e0 [btrfs] [1359.519891] [c00000056890bd00] [c0000000004a23b4] vfs_fallocate+0x174/0x350 [1359.519929] [c00000056890bd50] [c0000000004a3cf8] ksys_fallocate+0x68/0xf0 [1359.519957] [c00000056890bda0] [c0000000004a3da8] sys_fallocate+0x28/0x40 [1359.519988] [c00000056890bdc0] [c000000000038968] system_call_exception+0xe8/0x170 [1359.520021] [c00000056890be20] [c00000000000cb70] system_call_common+0xf0/0x278 [1359.520037] Instruction dump: [1359.520049] 7d0049ad 40c2fff4 7c0004ac 71490004 40820024 2f83fffb 419e0048 3c620000 [1359.520082] e863bcb8 7ec4b378 48010d91 e8410018 <0fe00000> 3c820000 e884bcc8 7ec6b378 [1359.520122] ---[ end trace d6c186e151022e20 ]--- The following steps explain how we can end up in this situation: 1) Task A is at check_system_chunk(), either because it is allocating a new data or metadata block group, at btrfs_chunk_alloc(), or because it is removing a block group or turning a block group RO. It does not matter why; 2) Task A sees that there is not enough free space in the system space_info object, that is 'left' is < 'thresh'. And at this point the system space_info has a value of 0 for its 'bytes_may_use' counter; 3) As a consequence task A calls btrfs_alloc_chunk() in order to allocate a new system block group (chunk) and then reserves 'thresh' bytes in the chunk block reserve with the call to btrfs_block_rsv_add(). This changes the chunk block reserve's 'reserved' and 'size' counters by an amount of 'thresh', and changes the 'bytes_may_use' counter of the system space_info object from 0 to 'thresh'. Also during its call to btrfs_alloc_chunk(), we end up increasing the value of the 'total_bytes' counter of the system space_info object by 8MiB (the size of a system chunk stripe). This happens through the call chain: btrfs_alloc_chunk() create_chunk() btrfs_make_block_group() btrfs_update_space_info() 4) After it finishes the first phase of the block group allocation, at btrfs_chunk_alloc(), task A unlocks the chunk mutex; 5) At this point the new system block group was added to the transaction handle's list of new block groups, but its block group item, device items and chunk item were not yet inserted in the extent, device and chunk trees, respectively. That only happens later when we call btrfs_finish_chunk_alloc() through a call to btrfs_create_pending_block_groups(); Note that only when we update the chunk tree, through the call to btrfs_finish_chunk_alloc(), we decrement the 'reserved' counter of the chunk block reserve as we COW/allocate extent buffers, through: btrfs_alloc_tree_block() btrfs_use_block_rsv() btrfs_block_rsv_use_bytes() And the system space_info's 'bytes_may_use' is decremented everytime we allocate an extent buffer for COW operations on the chunk tree, through: btrfs_alloc_tree_block() btrfs_reserve_extent() find_free_extent() btrfs_add_reserved_bytes() If we end up COWing less chunk btree nodes/leaves than expected, which is the typical case since the amount of space we reserve is always pessimistic to account for the worst possible case, we release the unused space through: btrfs_create_pending_block_groups() btrfs_trans_release_chunk_metadata() btrfs_block_rsv_release() block_rsv_release_bytes() btrfs_space_info_free_bytes_may_use() But before task A gets into btrfs_create_pending_block_groups()... 6) Many other tasks start allocating new block groups through fallocate, each one does the first phase of block group allocation in a serialized way, since btrfs_chunk_alloc() takes the chunk mutex before calling check_system_chunk() and btrfs_alloc_chunk(). However before everyone enters the final phase of the block group allocation, that is, before calling btrfs_create_pending_block_groups(), new tasks keep coming to allocate new block groups and while at check_system_chunk(), the system space_info's 'bytes_may_use' keeps increasing each time a task reserves space in the chunk block reserve. This means that eventually some other task can end up not seeing enough free space in the system space_info and decide to allocate yet another system chunk. This may repeat several times if yet more new tasks keep allocating new block groups before task A, and all the other tasks, finish the creation of the pending block groups, which is when reserved space in excess is released. Eventually this can result in exhaustion of system chunk array in the superblock, with btrfs_add_system_chunk() returning EFBIG, resulting later in a transaction abort. Even when we don't reach the extreme case of exhausting the system array, most, if not all, unnecessarily created system block groups end up being unused since when finishing creation of the first pending system block group, the creation of the following ones end up not needing to COW nodes/leaves of the chunk tree, so we never allocate and deallocate from them, resulting in them never being added to the list of unused block groups - as a consequence they don't get deleted by the cleaner kthread - the only exceptions are if we unmount and mount the filesystem again, which adds any unused block groups to the list of unused block groups, if a scrub is run, which also adds unused block groups to the unused list, and under some circumstances when using a zoned filesystem or async discard, which may also add unused block groups to the unused list. So fix this by: *) Tracking the number of reserved bytes for the chunk tree per transaction, which is the sum of reserved chunk bytes by each transaction handle currently being used; *) When there is not enough free space in the system space_info, if there are other transaction handles which reserved chunk space, wait for some of them to complete in order to have enough excess reserved space released, and then try again. Otherwise proceed with the creation of a new system chunk. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19btrfs: fix race between marking inode needs to be logged and log syncingFilipe Manana1-1/+1
We have a race between marking that an inode needs to be logged, either at btrfs_set_inode_last_trans() or at btrfs_page_mkwrite(), and between btrfs_sync_log(). The following steps describe how the race happens. 1) We are at transaction N; 2) Inode I was previously fsynced in the current transaction so it has: inode->logged_trans set to N; 3) The inode's root currently has: root->log_transid set to 1 root->last_log_commit set to 0 Which means only one log transaction was committed to far, log transaction 0. When a log tree is created we set ->log_transid and ->last_log_commit of its parent root to 0 (at btrfs_add_log_tree()); 4) One more range of pages is dirtied in inode I; 5) Some task A starts an fsync against some other inode J (same root), and so it joins log transaction 1. Before task A calls btrfs_sync_log()... 6) Task B starts an fsync against inode I, which currently has the full sync flag set, so it starts delalloc and waits for the ordered extent to complete before calling btrfs_inode_in_log() at btrfs_sync_file(); 7) During ordered extent completion we have btrfs_update_inode() called against inode I, which in turn calls btrfs_set_inode_last_trans(), which does the following: spin_lock(&inode->lock); inode->last_trans = trans->transaction->transid; inode->last_sub_trans = inode->root->log_transid; inode->last_log_commit = inode->root->last_log_commit; spin_unlock(&inode->lock); So ->last_trans is set to N and ->last_sub_trans set to 1. But before setting ->last_log_commit... 8) Task A is at btrfs_sync_log(): - it increments root->log_transid to 2 - starts writeback for all log tree extent buffers - waits for the writeback to complete - writes the super blocks - updates root->last_log_commit to 1 It's a lot of slow steps between updating root->log_transid and root->last_log_commit; 9) The task doing the ordered extent completion, currently at btrfs_set_inode_last_trans(), then finally runs: inode->last_log_commit = inode->root->last_log_commit; spin_unlock(&inode->lock); Which results in inode->last_log_commit being set to 1. The ordered extent completes; 10) Task B is resumed, and it calls btrfs_inode_in_log() which returns true because we have all the following conditions met: inode->logged_trans == N which matches fs_info->generation && inode->last_subtrans (1) <= inode->last_log_commit (1) && inode->last_subtrans (1) <= root->last_log_commit (1) && list inode->extent_tree.modified_extents is empty And as a consequence we return without logging the inode, so the existing logged version of the inode does not point to the extent that was written after the previous fsync. It should be impossible in practice for one task be able to do so much progress in btrfs_sync_log() while another task is at btrfs_set_inode_last_trans() right after it reads root->log_transid and before it reads root->last_log_commit. Even if kernel preemption is enabled we know the task at btrfs_set_inode_last_trans() can not be preempted because it is holding the inode's spinlock. However there is another place where we do the same without holding the spinlock, which is in the memory mapped write path at: vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) { (...) BTRFS_I(inode)->last_trans = fs_info->generation; BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; (...) So with preemption happening after setting ->last_sub_trans and before setting ->last_log_commit, it is less of a stretch to have another task do enough progress at btrfs_sync_log() such that the task doing the memory mapped write ends up with ->last_sub_trans and ->last_log_commit set to the same value. It is still a big stretch to get there, as the task doing btrfs_sync_log() has to start writeback, wait for its completion and write the super blocks. So fix this in two different ways: 1) For btrfs_set_inode_last_trans(), simply set ->last_log_commit to the value of ->last_sub_trans minus 1; 2) For btrfs_page_mkwrite() only set the inode's ->last_sub_trans, just like we do for buffered and direct writes at btrfs_file_write_iter(), which is all we need to make sure multiple writes and fsyncs to an inode in the same transaction never result in an fsync missing that the inode changed and needs to be logged. Turn this into a helper function and use it both at btrfs_page_mkwrite() and at btrfs_file_write_iter() - this also fixes the problem that at btrfs_page_mkwrite() we were setting those fields without the protection of the inode's spinlock. This is an extremely unlikely race to happen in practice. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-09btrfs: zoned: redirty released extent buffersNaohiro Aota1-0/+3
Tree manipulating operations like merging nodes often release once-allocated tree nodes. Such nodes are cleaned so that pages in the node are not uselessly written out. On zoned volumes, however, such optimization blocks the following IOs as the cancellation of the write out of the freed blocks breaks the sequential write sequence expected by the device. Introduce a list of clean and unwritten extent buffers that have been released in a transaction. Redirty the buffers so that btree_write_cache_pages() can send proper bios to the devices. Besides it clears the entire content of the extent buffer not to confuse raw block scanners e.g. 'btrfs check'. By clearing the content, csum_dirty_buffer() complains about bytenr mismatch, so avoid the checking and checksum using newly introduced buffer flag EXTENT_BUFFER_NO_CHECK. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-02-09btrfs: make concurrent fsyncs wait less when waiting for a transaction commitFilipe Manana1-0/+2
Often an fsync needs to fallback to a transaction commit for several reasons (to ensure consistency after a power failure, a new block group was allocated or a temporary error such as ENOMEM or ENOSPC happened). In that case the log is marked as needing a full commit and any concurrent tasks attempting to log inodes or commit the log will also fallback to the transaction commit. When this happens they all wait for the task that first started the transaction commit to finish the transaction commit - however they wait until the full transaction commit happens, which is not needed, as they only need to wait for the superblocks to be persisted and not for unpinning all the extents pinned during the transaction's lifetime, which even for short lived transactions can be a few thousand and take some significant amount of time to complete - for dbench workloads I have observed up to 4~5 milliseconds of time spent unpinning extents in the worst cases, and the number of pinned extents was between 2 to 3 thousand. So allow fsync tasks to skip waiting for the unpinning of extents when they call btrfs_commit_transaction() and they were not the task that started the transaction commit (that one has to do it, the alternative would be to offload the transaction commit to another task so that it could avoid waiting for the extent unpinning or offload the extent unpinning to another task). This patch is part of a patchset comprised of the following patches: btrfs: remove unnecessary directory inode item update when deleting dir entry btrfs: stop setting nbytes when filling inode item for logging btrfs: avoid logging new ancestor inodes when logging new inode btrfs: skip logging directories already logged when logging all parents btrfs: skip logging inodes already logged when logging new entries btrfs: remove unnecessary check_parent_dirs_for_sync() btrfs: make concurrent fsyncs wait less when waiting for a transaction commit After applying the entire patchset, dbench shows improvements in respect to throughput and latency. The script used to measure it is the following: $ cat dbench-test.sh #!/bin/bash DEV=/dev/sdk MNT=/mnt/sdk MOUNT_OPTIONS="-o ssd" MKFS_OPTIONS="-m single -d single" echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor umount $DEV &> /dev/null mkfs.btrfs -f $MKFS_OPTIONS $DEV mount $MOUNT_OPTIONS $DEV $MNT dbench -D $MNT -t 300 64 umount $MNT The test was run on a physical machine with 12 cores (Intel corei7), 64G of ram, using a NVMe device and a non-debug kernel configuration (Debian's default configuration). Before applying patchset, 32 clients: Operation Count AvgLat MaxLat ---------------------------------------- NTCreateX 9627107 0.153 61.938 Close 7072076 0.001 3.175 Rename 407633 1.222 44.439 Unlink 1943895 0.658 44.440 Deltree 256 17.339 110.891 Mkdir 128 0.003 0.009 Qpathinfo 8725406 0.064 17.850 Qfileinfo 1529516 0.001 2.188 Qfsinfo 1599884 0.002 1.457 Sfileinfo 784200 0.005 3.562 Find 3373513 0.411 30.312 WriteX 4802132 0.053 29.054 ReadX 15089959 0.002 5.801 LockX 31344 0.002 0.425 UnlockX 31344 0.001 0.173 Flush 674724 5.952 341.830 Throughput 1008.02 MB/sec 32 clients 32 procs max_latency=341.833 ms After applying patchset, 32 clients: After patchset, with 32 clients: Operation Count AvgLat MaxLat ---------------------------------------- NTCreateX 9931568 0.111 25.597 Close 7295730 0.001 2.171 Rename 420549 0.982 49.714 Unlink 2005366 0.497 39.015 Deltree 256 11.149 89.242 Mkdir 128 0.002 0.014 Qpathinfo 9001863 0.049 20.761 Qfileinfo 1577730 0.001 2.546 Qfsinfo 1650508 0.002 3.531 Sfileinfo 809031 0.005 5.846 Find 3480259 0.309 23.977 WriteX 4952505 0.043 41.283 ReadX 15568127 0.002 5.476 LockX 32338 0.002 0.978 UnlockX 32338 0.001 2.032 Flush 696017 7.485 228.835 Throughput 1049.91 MB/sec 32 clients 32 procs max_latency=228.847 ms --> +4.1% throughput, -39.6% max latency Before applying patchset, 64 clients: Operation Count AvgLat MaxLat ---------------------------------------- NTCreateX 8956748 0.342 108.312 Close 6579660 0.001 3.823 Rename 379209 2.396 81.897 Unlink 1808625 1.108 131.148 Deltree 256 25.632 172.176 Mkdir 128 0.003 0.018 Qpathinfo 8117615 0.131 55.916 Qfileinfo 1423495 0.001 2.635 Qfsinfo 1488496 0.002 5.412 Sfileinfo 729472 0.007 8.643 Find 3138598 0.855 78.321 WriteX 4470783 0.102 79.442 ReadX 14038139 0.002 7.578 LockX 29158 0.002 0.844 UnlockX 29158 0.001 0.567 Flush 627746 14.168 506.151 Throughput 924.738 MB/sec 64 clients 64 procs max_latency=506.154 ms After applying patchset, 64 clients: Operation Count AvgLat MaxLat ---------------------------------------- NTCreateX 9069003 0.303 43.193 Close 6662328 0.001 3.888 Rename 383976 2.194 46.418 Unlink 1831080 1.022 43.873 Deltree 256 24.037 155.763 Mkdir 128 0.002 0.005 Qpathinfo 8219173 0.137 30.233 Qfileinfo 1441203 0.001 3.204 Qfsinfo 1507092 0.002 4.055 Sfileinfo 738775 0.006 5.431 Find 3177874 0.936 38.170 WriteX 4526152 0.084 39.518 ReadX 14213562 0.002 24.760 LockX 29522 0.002 1.221 UnlockX 29522 0.001 0.694 Flush 635652 14.358 422.039 Throughput 990.13 MB/sec 64 clients 64 procs max_latency=422.043 ms --> +6.8% throughput, -18.1% max latency Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08btrfs: return bool from btrfs_should_end_transactionNikolay Borisov1-1/+1
Results in slightly smaller code. add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-11 (-11) Function old new delta btrfs_should_end_transaction 96 85 -11 Total: Before=20070, After=20059, chg -0.05% Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08btrfs: remove dio iomap DSYNC workaroundGoldwyn Rodrigues1-1/+0
This effectively reverts 09745ff88d93 ("btrfs: dio iomap DSYNC workaround") now that the iomap API has been updated to allow iomap_dio_complete() not to be called under i_rwsem anymore. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: dio iomap DSYNC workaroundJosef Bacik1-0/+1
iomap dio will run generic_write_sync() for us if the iocb is DSYNC. This is problematic for us because of 2 reasons: 1. we hold the inode_lock() during this operation, and we take it in generic_write_sync() 2. we hold a read lock on the dio_sem but take the write lock in fsync Since we don't want to rip out this code right now, but reworking the locking is a bit much to do at this point, work around this problem with this masterpiece of a patch. First, we clear DSYNC on the iocb so that the iomap stuff doesn't know that it needs to handle the sync. We save this fact in current->journal_info, because we need to see do special things once we're in iomap_begin, and we have no way to pass private information into iomap_dio_rw(). Next we specify a separate iomap_dio_ops for sync, which implements an ->end_io() callback that gets called when the dio completes. This is important for AIO, because we really do need to run generic_write_sync() if we complete asynchronously. However if we're still in the submitting context when we enter ->end_io() we clear the flag so that the submitter knows they're the ones that needs to run generic_write_sync(). This is meant to be temporary. We need to work out how to eliminate the inode_lock() and the dio_sem in our fsync and use another mechanism to protect these operations. Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07btrfs: make fast fsyncs wait only for writebackFilipe Manana1-0/+7
Currently regardless of a full or a fast fsync we always wait for ordered extents to complete, and then start logging the inode after that. However for fast fsyncs we can just wait for the writeback to complete, we don't need to wait for the ordered extents to complete since we use the list of modified extents maps to figure out which extents we must log and we can get their checksums directly from the ordered extents that are still in flight, otherwise look them up from the checksums tree. Until commit b5e6c3e170b770 ("btrfs: always wait on ordered extents at fsync time"), for fast fsyncs, we used to start logging without even waiting for the writeback to complete first, we would wait for it to complete after logging, while holding a transaction open, which lead to performance issues when using cgroups and probably for other cases too, as wait for IO while holding a transaction handle should be avoided as much as possible. After that, for fast fsyncs, we started to wait for ordered extents to complete before starting to log, which adds some latency to fsyncs and we even got at least one report about a performance drop which bisected to that particular change: https://lore.kernel.org/linux-btrfs/20181109215148.GF23260@techsingularity.net/ This change makes fast fsyncs only wait for writeback to finish before starting to log the inode, instead of waiting for both the writeback to finish and for the ordered extents to complete. This brings back part of the logic we had that extracts checksums from in flight ordered extents, which are not yet in the checksums tree, and making sure transaction commits wait for the completion of ordered extents previously logged (by far most of the time they have already completed by the time a transaction commit starts, resulting in no wait at all), to avoid any data loss if an ordered extent completes after the transaction used to log an inode is committed, followed by a power failure. When there are no other tasks accessing the checksums and the subvolume btrees, the ordered extent completion is pretty fast, typically taking 100 to 200 microseconds only in my observations. However when there are other tasks accessing these btrees, ordered extent completion can take a lot more time due to lock contention on nodes and leaves of these btrees. I've seen cases over 2 milliseconds, which starts to be significant. In particular when we do have concurrent fsyncs against different files there is a lot of contention on the checksums btree, since we have many tasks writing the checksums into the btree and other tasks that already started the logging phase are doing lookups for checksums in the btree. This change also turns all ranged fsyncs into full ranged fsyncs, which is something we already did when not using the NO_HOLES features or when doing a full fsync. This is to guarantee we never miss checksums due to writeback having been triggered only for a part of an extent, and we end up logging the full extent but only checksums for the written range, which results in missing checksums after log replay. Allowing ranged fsyncs to operate again only in the original range, when using the NO_HOLES feature and doing a fast fsync is doable but requires some non trivial changes to the writeback path, which can always be worked on later if needed, but I don't think they are a very common use case. Several tests were performed using fio for different numbers of concurrent jobs, each writing and fsyncing its own file, for both sequential and random file writes. The tests were run on bare metal, no virtualization, on a box with 12 cores (Intel i7-8700), 64Gb of RAM and a NVMe device, with a kernel configuration that is the default of typical distributions (debian in this case), without debug options enabled (kasan, kmemleak, slub debug, debug of page allocations, lock debugging, etc). The following script that calls fio was used: $ cat test-fsync.sh #!/bin/bash DEV=/dev/nvme0n1 MNT=/mnt/btrfs MOUNT_OPTIONS="-o ssd -o space_cache=v2" MKFS_OPTIONS="-d single -m single" if [ $# -ne 5 ]; then echo "Use $0 NUM_JOBS FILE_SIZE FSYNC_FREQ BLOCK_SIZE [write|randwrite]" exit 1 fi NUM_JOBS=$1 FILE_SIZE=$2 FSYNC_FREQ=$3 BLOCK_SIZE=$4 WRITE_MODE=$5 if [ "$WRITE_MODE" != "write" ] && [ "$WRITE_MODE" != "randwrite" ]; then echo "Invalid WRITE_MODE, must be 'write' or 'randwrite'" exit 1 fi cat <<EOF > /tmp/fio-job.ini [writers] rw=$WRITE_MODE fsync=$FSYNC_FREQ fallocate=none group_reporting=1 direct=0 bs=$BLOCK_SIZE ioengine=sync size=$FILE_SIZE directory=$MNT numjobs=$NUM_JOBS EOF echo "performance" | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor echo echo "Using config:" echo cat /tmp/fio-job.ini echo umount $MNT &> /dev/null mkfs.btrfs -f $MKFS_OPTIONS $DEV mount $MOUNT_OPTIONS $DEV $MNT fio /tmp/fio-job.ini umount $MNT The results were the following: ************************* *** sequential writes *** ************************* ==== 1 job, 8GiB file, fsync frequency 1, block size 64KiB ==== Before patch: WRITE: bw=36.6MiB/s (38.4MB/s), 36.6MiB/s-36.6MiB/s (38.4MB/s-38.4MB/s), io=8192MiB (8590MB), run=223689-223689msec After patch: WRITE: bw=40.2MiB/s (42.1MB/s), 40.2MiB/s-40.2MiB/s (42.1MB/s-42.1MB/s), io=8192MiB (8590MB), run=203980-203980msec (+9.8%, -8.8% runtime) ==== 2 jobs, 4GiB files, fsync frequency 1, block size 64KiB ==== Before patch: WRITE: bw=35.8MiB/s (37.5MB/s), 35.8MiB/s-35.8MiB/s (37.5MB/s-37.5MB/s), io=8192MiB (8590MB), run=228950-228950msec After patch: WRITE: bw=43.5MiB/s (45.6MB/s), 43.5MiB/s-43.5MiB/s (45.6MB/s-45.6MB/s), io=8192MiB (8590MB), run=188272-188272msec (+21.5% throughput, -17.8% runtime) ==== 4 jobs, 2GiB files, fsync frequency 1, block size 64KiB ==== Before patch: WRITE: bw=50.1MiB/s (52.6MB/s), 50.1MiB/s-50.1MiB/s (52.6MB/s-52.6MB/s), io=8192MiB (8590MB), run=163446-163446msec After patch: WRITE: bw=64.5MiB/s (67.6MB/s), 64.5MiB/s-64.5MiB/s (67.6MB/s-67.6MB/s), io=8192MiB (8590MB), run=126987-126987msec (+28.7% throughput, -22.3% runtime) ==== 8 jobs, 1GiB files, fsync frequency 1, block size 64KiB ==== Before patch: WRITE: bw=64.0MiB/s (68.1MB/s), 64.0MiB/s-64.0MiB/s (68.1MB/s-68.1MB/s), io=8192MiB (8590MB), run=126075-126075msec After patch: WRITE: bw=86.8MiB/s (91.0MB/s), 86.8MiB/s-86.8MiB/s (91.0MB/s-91.0MB/s), io=8192MiB (8590MB), run=94358-94358msec (+35.6% throughput, -25.2% runtime) ==== 16 jobs, 512MiB files, fsync frequency 1, block size 64KiB ==== Before patch: WRITE: bw=79.8MiB/s (83.6MB/s), 79.8MiB/s-79.8MiB/s (83.6MB/s-83.6MB/s), io=8192MiB (8590MB), run=102694-102694msec After patch: WRITE: bw=107MiB/s (112MB/s), 107MiB/s-107MiB/s (112MB/s-112MB/s), io=8192MiB (8590MB), run=76446-76446msec (+34.1% throughput, -25.6% runtime) ==== 32 jobs, 512MiB files, fsync frequency 1, block size 64KiB ==== Before patch: WRITE: bw=93.2MiB/s (97.7MB/s), 93.2MiB/s-93.2MiB/s (97.7MB/s-97.7MB/s), io=16.0GiB (17.2GB), run=175836-175836msec After patch: WRITE: bw=111MiB/s (117MB/s), 111MiB/s-111MiB/s (117MB/s-117MB/s), io=16.0GiB (17.2GB), run=147001-147001msec (+19.1% throughput, -16.4% runtime) ==== 64 jobs, 512MiB files, fsync frequency 1, block size 64KiB ==== Before patch: WRITE: bw=108MiB/s (114MB/s), 108MiB/s-108MiB/s (114MB/s-114MB/s), io=32.0GiB (34.4GB), run=302656-302656msec After patch: WRITE: bw=133MiB/s (140MB/s), 133MiB/s-133MiB/s (140MB/s-140MB/s), io=32.0GiB (34.4GB), run=246003-246003msec (+23.1% throughput, -18.7% runtime) ************************ *** random writes *** ************************ ==== 1 job, 8GiB file, fsync frequency 16, block size 4KiB ==== Before patch: WRITE: bw=11.5MiB/s (12.0MB/s), 11.5MiB/s-11.5MiB/s (12.0MB/s-12.0MB/s), io=8192MiB (8590MB), run=714281-714281msec After patch: WRITE: bw=11.6MiB/s (12.2MB/s), 11.6MiB/s-11.6MiB/s (12.2MB/s-12.2MB/s), io=8192MiB (8590MB), run=705959-705959msec (+0.9% throughput, -1.7% runtime) ==== 2 jobs, 4GiB files, fsync frequency 16, block size 4KiB ==== Before patch: WRITE: bw=12.8MiB/s (13.5MB/s), 12.8MiB/s-12.8MiB/s (13.5MB/s-13.5MB/s), io=8192MiB (8590MB), run=638101-638101msec After patch: WRITE: bw=13.1MiB/s (13.7MB/s), 13.1MiB/s-13.1MiB/s (13.7MB/s-13.7MB/s), io=8192MiB (8590MB), run=625374-625374msec (+2.3% throughput, -2.0% runtime) ==== 4 jobs, 2GiB files, fsync frequency 16, block size 4KiB ==== Before patch: WRITE: bw=15.4MiB/s (16.2MB/s), 15.4MiB/s-15.4MiB/s (16.2MB/s-16.2MB/s), io=8192MiB (8590MB), run=531146-531146msec After patch: WRITE: bw=17.8MiB/s (18.7MB/s), 17.8MiB/s-17.8MiB/s (18.7MB/s-18.7MB/s), io=8192MiB (8590MB), run=460431-460431msec (+15.6% throughput, -13.3% runtime) ==== 8 jobs, 1GiB files, fsync frequency 16, block size 4KiB ==== Before patch: WRITE: bw=19.9MiB/s (20.8MB/s), 19.9MiB/s-19.9MiB/s (20.8MB/s-20.8MB/s), io=8192MiB (8590MB), run=412664-412664msec After patch: WRITE: bw=22.2MiB/s (23.3MB/s), 22.2MiB/s-22.2MiB/s (23.3MB/s-23.3MB/s), io=8192MiB (8590MB), run=368589-368589msec (+11.6% throughput, -10.7% runtime) ==== 16 jobs, 512MiB files, fsync frequency 16, block size 4KiB ==== Before patch: WRITE: bw=29.3MiB/s (30.7MB/s), 29.3MiB/s-29.3MiB/s (30.7MB/s-30.7MB/s), io=8192MiB (8590MB), run=279924-279924msec After patch: WRITE: bw=30.4MiB/s (31.9MB/s), 30.4MiB/s-30.4MiB/s (31.9MB/s-31.9MB/s), io=8192MiB (8590MB), run=269258-269258msec (+3.8% throughput, -3.8% runtime) ==== 32 jobs, 512MiB files, fsync frequency 16, block size 4KiB ==== Before patch: WRITE: bw=36.9MiB/s (38.7MB/s), 36.9MiB/s-36.9MiB/s (38.7MB/s-38.7MB/s), io=16.0GiB (17.2GB), run=443581-443581msec After patch: WRITE: bw=41.6MiB/s (43.6MB/s), 41.6MiB/s-41.6MiB/s (43.6MB/s-43.6MB/s), io=16.0GiB (17.2GB), run=394114-394114msec (+12.7% throughput, -11.2% runtime) ==== 64 jobs, 512MiB files, fsync frequency 16, block size 4KiB ==== Before patch: WRITE: bw=45.9MiB/s (48.1MB/s), 45.9MiB/s-45.9MiB/s (48.1MB/s-48.1MB/s), io=32.0GiB (34.4GB), run=714614-714614msec After patch: WRITE: bw=48.8MiB/s (51.1MB/s), 48.8MiB/s-48.8MiB/s (51.1MB/s-51.1MB/s), io=32.0GiB (34.4GB), run=672087-672087msec (+6.3% throughput, -6.0% runtime) Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27btrfs: qgroup: remove ASYNC_COMMIT mechanism in favor of reserve ↵Qu Wenruo1-14/+0
retry-after-EDQUOT commit a514d63882c3 ("btrfs: qgroup: Commit transaction in advance to reduce early EDQUOT") tries to reduce the early EDQUOT problems by checking the qgroup free against threshold and tries to wake up commit kthread to free some space. The problem of that mechanism is, it can only free qgroup per-trans metadata space, can't do anything to data, nor prealloc qgroup space. Now since we have the ability to flush qgroup space, and implemented retry-after-EDQUOT behavior, such mechanism can be completely replaced. So this patch will cleanup such mechanism in favor of retry-after-EDQUOT. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27btrfs: preallocate anon block device at first phase of snapshot creationQu Wenruo1-0/+2
[BUG] When the anonymous block device pool is exhausted, subvolume/snapshot creation fails with EMFILE (Too many files open). This has been reported by a user. The allocation happens in the second phase during transaction commit where it's only way out is to abort the transaction BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] When the global anonymous block device pool is exhausted, the following call chain will fail, and lead to transaction abort: btrfs_ioctl_snap_create_v2() |- btrfs_ioctl_snap_create_transid() |- btrfs_mksubvol() |- btrfs_commit_transaction() |- create_pending_snapshot() |- btrfs_get_fs_root() |- btrfs_init_fs_root() |- get_anon_bdev() [FIX] Although we can't enlarge the anonymous block device pool, at least we can preallocate anon_dev for subvolume/snapshot in the first phase, outside of transaction context and exactly at the moment the user calls the creation ioctl. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-27btrfs: make btrfs_set_inode_last_trans take btrfs_inodeNikolay Borisov1-6/+6
Instead of making multiple calls to BTRFS_I simply take btrfs_inode as an input paramter. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-25btrfs: improve global reserve stealing logicJosef Bacik1-2/+1
For unlink transactions and block group removal btrfs_start_transaction_fallback_global_rsv will first try to start an ordinary transaction and if it fails it will fall back to reserving the required amount by stealing from the global reserve. This is problematic because of all the same reasons we had with previous iterations of the ENOSPC handling, thundering herd. We get a bunch of failures all at once, everybody tries to allocate from the global reserve, some win and some lose, we get an ENSOPC. Fix this behavior by introducing BTRFS_RESERVE_FLUSH_ALL_STEAL. It's used to mark unlink reservation. To fix this we need to integrate this logic into the normal ENOSPC infrastructure. We still go through all of the normal flushing work, and at the moment we begin to fail all the tickets we try to satisfy any tickets that are allowed to steal by stealing from the global reserve. If this works we start the flushing system over again just like we would with a normal ticket satisfaction. This serializes our global reserve stealing, so we don't have the thundering herd problem. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23btrfs: switch to per-transaction pinned extentsNikolay Borisov1-0/+1
This commit flips the switch to start tracking/processing pinned extents on a per-transaction basis. It mostly replaces all references from btrfs_fs_info::(pinned_extents|freed_extents[]) to btrfs_transaction::pinned_extents. Two notable modifications that warrant explicit mention are changing clean_pinned_extents to get a reference to the previously running transaction. The other one is removal of call to btrfs_destroy_pinned_extent since transactions are going to be cleaned in btrfs_cleanup_one_transaction. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-23btrfs: add wrapper for transaction abort predicateDavid Sterba1-0/+12
The status of aborted transaction can change between calls and it needs to be accessed by READ_ONCE. Add a helper that also wraps the unlikely hint. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18btrfs: Rename btrfs_join_transaction_nolockNikolay Borisov1-1/+1
This function is used only during the final phase of freespace cache writeout. This is necessary since using the plain btrfs_join_transaction api is deadlock prone. The deadlock looks like: T1: btrfs_commit_transaction commit_cowonly_roots btrfs_write_dirty_block_groups btrfs_wait_cache_io __btrfs_wait_cache_io btrfs_wait_ordered_range <-- Triggers ordered IO for freespace inode and blocks transaction commit until freespace cache writeout T2: <-- after T1 has triggered the writeout finish_ordered_fn btrfs_finish_ordered_io btrfs_join_transaction <--- this would block waiting for current transaction to commit, but since trans commit is waiting for this writeout to finish The special purpose functions prevents it by simply skipping the "wait for writeout" since it's guaranteed the transaction won't proceed until we are done. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18btrfs: transaction: Cleanup unused TRANS_STATE_BLOCKEDQu Wenruo1-1/+0
The state was introduced in commit 4a9d8bdee368 ("Btrfs: make the state of the transaction more readable"), then in commit 302167c50b32 ("btrfs: don't end the transaction for delayed refs in throttle") the state is completely removed. So we can just clean up the state since it's only compared but never set. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18Btrfs: make btrfs_wait_extents() staticFilipe Manana1-2/+0
It's not used ouside of transaction.c Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-30Btrfs: fix deadlock between fiemap and transaction commitsFilipe Manana1-0/+3
The fiemap handler locks a file range that can have unflushed delalloc, and after locking the range, it tries to attach to a running transaction. If the running transaction started its commit, that is, it is in state TRANS_STATE_COMMIT_START, and either the filesystem was mounted with the flushoncommit option or the transaction is creating a snapshot for the subvolume that contains the file that fiemap is operating on, we end up deadlocking. This happens because fiemap is blocked on the transaction, waiting for it to complete, and the transaction is waiting for the flushed dealloc to complete, which requires locking the file range that the fiemap task already locked. The following stack traces serve as an example of when this deadlock happens: (...) [404571.515510] Workqueue: btrfs-endio-write btrfs_endio_write_helper [btrfs] [404571.515956] Call Trace: [404571.516360] ? __schedule+0x3ae/0x7b0 [404571.516730] schedule+0x3a/0xb0 [404571.517104] lock_extent_bits+0x1ec/0x2a0 [btrfs] [404571.517465] ? remove_wait_queue+0x60/0x60 [404571.517832] btrfs_finish_ordered_io+0x292/0x800 [btrfs] [404571.518202] normal_work_helper+0xea/0x530 [btrfs] [404571.518566] process_one_work+0x21e/0x5c0 [404571.518990] worker_thread+0x4f/0x3b0 [404571.519413] ? process_one_work+0x5c0/0x5c0 [404571.519829] kthread+0x103/0x140 [404571.520191] ? kthread_create_worker_on_cpu+0x70/0x70 [404571.520565] ret_from_fork+0x3a/0x50 [404571.520915] kworker/u8:6 D 0 31651 2 0x80004000 [404571.521290] Workqueue: btrfs-flush_delalloc btrfs_flush_delalloc_helper [btrfs] (...) [404571.537000] fsstress D 0 13117 13115 0x00004000 [404571.537263] Call Trace: [404571.537524] ? __schedule+0x3ae/0x7b0 [404571.537788] schedule+0x3a/0xb0 [404571.538066] wait_current_trans+0xc8/0x100 [btrfs] [404571.538349] ? remove_wait_queue+0x60/0x60 [404571.538680] start_transaction+0x33c/0x500 [btrfs] [404571.539076] btrfs_check_shared+0xa3/0x1f0 [btrfs] [404571.539513] ? extent_fiemap+0x2ce/0x650 [btrfs] [404571.539866] extent_fiemap+0x2ce/0x650 [btrfs] [404571.540170] do_vfs_ioctl+0x526/0x6f0 [404571.540436] ksys_ioctl+0x70/0x80 [404571.540734] __x64_sys_ioctl+0x16/0x20 [404571.540997] do_syscall_64+0x60/0x1d0 [404571.541279] entry_SYSCALL_64_after_hwframe+0x49/0xbe (...) [404571.543729] btrfs D 0 14210 14208 0x00004000 [404571.544023] Call Trace: [404571.544275] ? __schedule+0x3ae/0x7b0 [404571.544526] ? wait_for_completion+0x112/0x1a0 [404571.544795] schedule+0x3a/0xb0 [404571.545064] schedule_timeout+0x1ff/0x390 [404571.545351] ? lock_acquire+0xa6/0x190 [404571.545638] ? wait_for_completion+0x49/0x1a0 [404571.545890] ? wait_for_completion+0x112/0x1a0 [404571.546228] wait_for_completion+0x131/0x1a0 [404571.546503] ? wake_up_q+0x70/0x70 [404571.546775] btrfs_wait_ordered_extents+0x27c/0x400 [btrfs] [404571.547159] btrfs_commit_transaction+0x3b0/0xae0 [btrfs] [404571.547449] ? btrfs_mksubvol+0x4a4/0x640 [btrfs] [404571.547703] ? remove_wait_queue+0x60/0x60 [404571.547969] btrfs_mksubvol+0x605/0x640 [btrfs] [404571.548226] ? __sb_start_write+0xd4/0x1c0 [404571.548512] ? mnt_want_write_file+0x24/0x50 [404571.548789] btrfs_ioctl_snap_create_transid+0x169/0x1a0 [btrfs] [404571.549048] btrfs_ioctl_snap_create_v2+0x11d/0x170 [btrfs] [404571.549307] btrfs_ioctl+0x133f/0x3150 [btrfs] [404571.549549] ? mem_cgroup_charge_statistics+0x4c/0xd0 [404571.549792] ? mem_cgroup_commit_charge+0x84/0x4b0 [404571.550064] ? __handle_mm_fault+0xe3e/0x11f0 [404571.550306] ? do_raw_spin_unlock+0x49/0xc0 [404571.550608] ? _raw_spin_unlock+0x24/0x30 [404571.550976] ? __handle_mm_fault+0xedf/0x11f0 [404571.551319] ? do_vfs_ioctl+0xa2/0x6f0 [404571.551659] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs] [404571.552087] do_vfs_ioctl+0xa2/0x6f0 [404571.552355] ksys_ioctl+0x70/0x80 [404571.552621] __x64_sys_ioctl+0x16/0x20 [404571.552864] do_syscall_64+0x60/0x1d0 [404571.553104] entry_SYSCALL_64_after_hwframe+0x49/0xbe (...) If we were joining the transaction instead of attaching to it, we would not risk a deadlock because a join only blocks if the transaction is in a state greater then or equals to TRANS_STATE_COMMIT_DOING, and the delalloc flush performed by a transaction is done before it reaches that state, when it is in the state TRANS_STATE_COMMIT_START. However a transaction join is intended for use cases where we do modify the filesystem, and fiemap only needs to peek at delayed references from the current transaction in order to determine if extents are shared, and, besides that, when there is no current transaction or when it blocks to wait for a current committing transaction to complete, it creates a new transaction without reserving any space. Such unnecessary transactions, besides doing unnecessary IO, can cause transaction aborts (-ENOSPC) and unnecessary rotation of the precious backup roots. So fix this by adding a new transaction join variant, named join_nostart, which behaves like the regular join, but it does not create a transaction when none currently exists or after waiting for a committing transaction to complete. Fixes: 03628cdbc64db6 ("Btrfs: do not start a transaction during fiemap") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-07-04btrfs: migrate btrfs_trans_release_chunk_metadataJosef Bacik1-0/+1
Move this into transaction.c with the rest of the transaction related code. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29Btrfs: remove no longer used member num_dirty_bgs from transactionFilipe Manana1-1/+0
The member num_dirty_bgs of struct btrfs_transaction is not used anymore, it is set and incremented but nothing reads its value anymore. Its last read use was removed by commit 64403612b73a94 ("btrfs: rework btrfs_check_space_for_delayed_refs"). So just remove that member. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: replace pending/pinned chunks lists with io treeJeff Mahoney1-1/+0
The pending chunks list contains chunks that are allocated in the current transaction but haven't been created yet. The pinned chunks list contains chunks that are being released in the current transaction. Both describe chunks that are not reflected on disk as in use but are unavailable just the same. The pending chunks list is anchored by the transaction handle, which means that we need to hold a reference to a transaction when working with the list. The way we use them is by iterating over both lists to perform comparisons on the stripes they describe for each device. This is backwards and requires that we keep a transaction handle open while we're trimming. This patchset adds an extent_io_tree to btrfs_device that maintains the allocation state of the device. Extents are set dirty when chunks are first allocated -- when the extent maps are added to the mapping tree. They're cleared when last removed -- when the extent maps are removed from the mapping tree. This matches the lifespan of the pending and pinned chunks list and allows us to do trims on unallocated space safely without pinning the transaction for what may be a lengthy operation. We can also use this io tree to mark which chunks have already been trimmed so we don't repeat the operation. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: combine device update operations during transaction commitNikolay Borisov1-0/+1
We currently overload the pending_chunks list to handle updating btrfs_device->commit_bytes used. We don't actually care about the extent mapping or even the device mapping for the chunk - we just need the device, and we can end up processing it multiple times. The fs_devices->resized_list does more or less the same thing, but with the disk size. They are called consecutively during commit and have more or less the same purpose. We can combine the two lists into a single list that attaches to the transaction and contains a list of devices that need updating. Since we always add the device to a list when we change bytes_used or disk_total_size, there's no harm in copying both values at once. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29Btrfs: remove no longer used 'sync' member from transaction handleFilipe Manana1-1/+0
Commit db2462a6ad3d ("btrfs: don't run delayed refs in the end transaction logic") removed its last use, so now it does absolutely nothing, therefore remove it. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17btrfs: drop extra enum initialization where using defaultsDavid Sterba1-7/+7
The first auto-assigned value to enum is 0, we can use that and not initialize all members where the auto-increment does the same. This is used for values that are not part of on-disk format. Reviewed-by: Omar Sandoval <osandov@fb.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17Btrfs: remove no longer used stuff for tracking pending ordered extentsFilipe Manana1-2/+0
Tracking pending ordered extents per transaction was introduced in commit 50d9aa99bd35 ("Btrfs: make sure logged extents complete in the current transaction V3") and later updated in commit 161c3549b45a ("Btrfs: change how we wait for pending ordered extents"). However now that on fsync we always wait for ordered extents to complete before logging, done in commit 5636cf7d6dc8 ("btrfs: remove the logged extents infrastructure"), we no longer need the stuff to track for pending ordered extents, which was not completely removed in the mentioned commit. So remove the remaining of the pending ordered extents infrastructure. Reviewed-by: Liu Bo <bo.liu@linux.alibaba.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: replace get_seconds with new 64bit time APIAllen Pais1-1/+1
The get_seconds() function is deprecated as it truncates the timestamp to 32 bits. Change it to or ktime_get_real_seconds(). Signed-off-by: Allen Pais <allen.lkml@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-30btrfs: drop useless member qgroup_reserved of btrfs_pending_snapshotGu JinXiang1-1/+0
Since there is no more use of qgroup_reserved member in struct btrfs_pending_snapshot, remove it. Signed-off-by: Gu JinXiang <gujx@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-18btrfs: qgroup: Commit transaction in advance to reduce early EDQUOTQu Wenruo1-0/+14
Unlike previous method that tries to commit transaction inside qgroup_reserve(), this time we will try to commit transaction using fs_info->transaction_kthread to avoid nested transaction and no need to worry about locking context. Since it's an asynchronous function call and we won't wait for transaction commit, unlike previous method, we must call it before we hit the qgroup limit. So this patch will use the ratio and size of qgroup meta_pertrans reservation as indicator to check if we should trigger a transaction commit. (meta_prealloc won't be cleaned in transaction committ, it's useless anyway) Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-12btrfs: replace GPL boilerplate by SPDX -- headersDavid Sterba1-16/+4
Remove GPL boilerplate text (long, short, one-line) and keep the rest, ie. personal, company or original source copyright statements. Add the SPDX header. Unify the include protection macros to match the file names. Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: Remove code referencing unused TRANS_USERSPACENikolay Borisov1-5/+1
Now that the userspace transaction ioctls have been removed, TRANS_USERSPACE is no longer used hence we can remove it. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-26btrfs: Document consistency of transaction->io_bgs listNikolay Borisov1-0/+16
The reason why io_bgs can be modified without holding any lock is non-obvious. Document it and reference that documentation from the respective call sites. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-26btrfs: Remove unused btrfs_start_transaction_lflush functionNikolay Borisov1-3/+0
Commit 0e8c36a9fd81 ("Btrfs: fix lots of orphan inodes when the space is not enough") changed the way transaction reservation is made in btrfs_evict_node and as a result this function became unused. This has been the status quo for 5 years in which time no one noticed, so I'd say it's safe to assume it's unlikely it will ever be used again. Historical note: there were more attempts to remove the function, the reasoning was missing and only based on some static analysis tool reports. Other reason for rejection was that there seemed to be connection to BTRFS_RESERVE_FLUSH_LIMIT and that would need to be removeed to. This was not correct so removing the function is all we can do. Signed-off-by: Nikolay Borisov <nborisov@suse.com> [ add the note ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-01-22btrfs: reorder btrfs_transaction members for better packingDavid Sterba1-2/+2
There are now 20 bytes of holes, we can reduce that to 4 by minor changes. Moving 'aborted' to the status and flags is also more logical, similar for num_dirty_bgs. The size goes from 432 to 416. Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-01-22btrfs: use narrower type for btrfs_transaction::num_dirty_bgsDavid Sterba1-1/+1
The u64 is an overkill here, we could not possibly create that many blockgroups in one transaction. Signed-off-by: David Sterba <dsterba@suse.com>
2018-01-22btrfs: reorder btrfs_trans_handle members for better packingDavid Sterba1-2/+2
Recent updates to the structure left some holes, reorder the types so the packing is tight. The size goes from 112 to 104 on 64bit. Signed-off-by: David Sterba <dsterba@suse.com>
2018-01-22btrfs: switch to refcount_t type for btrfs_trans_handle::use_countDavid Sterba1-1/+1
The use_count is a reference counter, we can use the refcount_t type, though we don't use the atomicity. This is not a performance critical code and we could catch the underflows. The type is changed from long, but the number of references will fit an int. Signed-off-by: David Sterba <dsterba@suse.com>