summaryrefslogtreecommitdiff
path: root/fs/btrfs/qgroup.h
AgeCommit message (Collapse)AuthorFilesLines
2019-02-25btrfs: qgroup: Move reserved data accounting from btrfs_delayed_ref_head to ↵Qu Wenruo1-9/+11
btrfs_qgroup_extent_record [BUG] Btrfs/139 will fail with a high probability if the testing machine (VM) has only 2G RAM. Resulting the final write success while it should fail due to EDQUOT, and the fs will have quota exceeding the limit by 16K. The simplified reproducer will be: (needs a 2G ram VM) $ mkfs.btrfs -f $dev $ mount $dev $mnt $ btrfs subv create $mnt/subv $ btrfs quota enable $mnt $ btrfs quota rescan -w $mnt $ btrfs qgroup limit -e 1G $mnt/subv $ for i in $(seq -w 1 8); do xfs_io -f -c "pwrite 0 128M" $mnt/subv/file_$i > /dev/null echo "file $i written" > /dev/kmsg done $ sync $ btrfs qgroup show -pcre --raw $mnt The last pwrite will not trigger EDQUOT and final 'qgroup show' will show something like: qgroupid rfer excl max_rfer max_excl parent child -------- ---- ---- -------- -------- ------ ----- 0/5 16384 16384 none none --- --- 0/256 1073758208 1073758208 none 1073741824 --- --- And 1073758208 is larger than > 1073741824. [CAUSE] It's a bug in btrfs qgroup data reserved space management. For quota limit, we must ensure that: reserved (data + metadata) + rfer/excl <= limit Since rfer/excl is only updated at transaction commmit time, reserved space needs to be taken special care. One important part of reserved space is data, and for a new data extent written to disk, we still need to take the reserved space until rfer/excl numbers get updated. Originally when an ordered extent finishes, we migrate the reserved qgroup data space from extent_io tree to delayed ref head of the data extent, expecting delayed ref will only be cleaned up at commit transaction time. However for small RAM machine, due to memory pressure dirty pages can be flushed back to disk without committing a transaction. The related events will be something like: file 1 written btrfs_finish_ordered_io: ino=258 ordered offset=0 len=54947840 btrfs_finish_ordered_io: ino=258 ordered offset=54947840 len=5636096 btrfs_finish_ordered_io: ino=258 ordered offset=61153280 len=57344 btrfs_finish_ordered_io: ino=258 ordered offset=61210624 len=8192 btrfs_finish_ordered_io: ino=258 ordered offset=60583936 len=569344 cleanup_ref_head: num_bytes=54947840 cleanup_ref_head: num_bytes=5636096 cleanup_ref_head: num_bytes=569344 cleanup_ref_head: num_bytes=57344 cleanup_ref_head: num_bytes=8192 ^^^^^^^^^^^^^^^^ This will free qgroup data reserved space file 2 written ... file 8 written cleanup_ref_head: num_bytes=8192 ... btrfs_commit_transaction <<< the only transaction committed during the test When file 2 is written, we have already freed 128M reserved qgroup data space for ino 258. Thus later write won't trigger EDQUOT. This allows us to write more data beyond qgroup limit. In my 2G ram VM, it could reach about 1.2G before hitting EDQUOT. [FIX] By moving reserved qgroup data space from btrfs_delayed_ref_head to btrfs_qgroup_extent_record, we can ensure that reserved qgroup data space won't be freed half way before commit transaction, thus fix the problem. Fixes: f64d5ca86821 ("btrfs: delayed_ref: Add new function to record reserved space into delayed ref") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-02-25btrfs: qgroup: Cleanup old subtree swap codeQu Wenruo1-6/+0
Since it's replaced by new delayed subtree swap code, remove the original code. The cleanup is small since most of its core function is still used by delayed subtree swap trace. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-02-25btrfs: qgroup: Use delayed subtree rescan for balanceQu Wenruo1-0/+2
Before this patch, qgroup code traces the whole subtree of subvolume and reloc trees unconditionally. This makes qgroup numbers consistent, but it could cause tons of unnecessary extent tracing, which causes a lot of overhead. However for subtree swap of balance, just swap both subtrees because they contain the same contents and tree structure, so qgroup numbers won't change. It's the race window between subtree swap and transaction commit could cause qgroup number change. This patch will delay the qgroup subtree scan until COW happens for the subtree root. So if there is no other operations for the fs, balance won't cause extra qgroup overhead. (best case scenario) Depending on the workload, most of the subtree scan can still be avoided. Only for worst case scenario, it will fall back to old subtree swap overhead. (scan all swapped subtrees) [[Benchmark]] Hardware: VM 4G vRAM, 8 vCPUs, disk is using 'unsafe' cache mode, backing device is SAMSUNG 850 evo SSD. Host has 16G ram. Mkfs parameter: --nodesize 4K (To bump up tree size) Initial subvolume contents: 4G data copied from /usr and /lib. (With enough regular small files) Snapshots: 16 snapshots of the original subvolume. each snapshot has 3 random files modified. balance parameter: -m So the content should be pretty similar to a real world root fs layout. And after file system population, there is no other activity, so it should be the best case scenario. | v4.20-rc1 | w/ patchset | diff ----------------------------------------------------------------------- relocated extents | 22615 | 22457 | -0.1% qgroup dirty extents | 163457 | 121606 | -25.6% time (sys) | 22.884s | 18.842s | -17.6% time (real) | 27.724s | 22.884s | -17.5% Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-02-25btrfs: qgroup: Introduce per-root swapped blocks infrastructureQu Wenruo1-0/+92
To allow delayed subtree swap rescan, btrfs needs to record per-root information about which tree blocks get swapped. This patch introduces the required infrastructure. The designed workflow will be: 1) Record the subtree root block that gets swapped. During subtree swap: O = Old tree blocks N = New tree blocks reloc tree subvolume tree X Root Root / \ / \ NA OB OA OB / | | \ / | | \ NC ND OE OF OC OD OE OF In this case, NA and OA are going to be swapped, record (NA, OA) into subvolume tree X. 2) After subtree swap. reloc tree subvolume tree X Root Root / \ / \ OA OB NA OB / | | \ / | | \ OC OD OE OF NC ND OE OF 3a) COW happens for OB If we are going to COW tree block OB, we check OB's bytenr against tree X's swapped_blocks structure. If it doesn't fit any, nothing will happen. 3b) COW happens for NA Check NA's bytenr against tree X's swapped_blocks, and get a hit. Then we do subtree scan on both subtrees OA and NA. Resulting 6 tree blocks to be scanned (OA, OC, OD, NA, NC, ND). Then no matter what we do to subvolume tree X, qgroup numbers will still be correct. Then NA's record gets removed from X's swapped_blocks. 4) Transaction commit Any record in X's swapped_blocks gets removed, since there is no modification to swapped subtrees, no need to trigger heavy qgroup subtree rescan for them. This will introduce 128 bytes overhead for each btrfs_root even qgroup is not enabled. This is to reduce memory allocations and potential failures. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17btrfs: Fix typos in comments and stringsAndrea Gelmini1-2/+2
The typos accumulate over time so once in a while time they get fixed in a large patch. Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17btrfs: drop extra enum initialization where using defaultsDavid Sterba1-1/+1
The first auto-assigned value to enum is 0, we can use that and not initialize all members where the auto-increment does the same. This is used for values that are not part of on-disk format. Reviewed-by: Omar Sandoval <osandov@fb.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15btrfs: qgroup: Avoid calling qgroup functions if qgroup is not enabledQu Wenruo1-0/+2
Some qgroup trace events like btrfs_qgroup_release_data() and btrfs_qgroup_free_delayed_ref() can still be triggered even if qgroup is not enabled. This is caused by the lack of qgroup status check before calling some qgroup functions. Thankfully the functions can handle quota disabled case well and just do nothing for qgroup disabled case. This patch will do earlier check before triggering related trace events. And for enabled <-> disabled race case: 1) For enabled->disabled case Disable will wipe out all qgroups data including reservation and excl/rfer. Even if we leak some reservation or numbers, it will still be cleared, so nothing will go wrong. 2) For disabled -> enabled case Current btrfs_qgroup_release_data() will use extent_io tree to ensure we won't underflow reservation. And for delayed_ref we use head->qgroup_reserved to record the reserved space, so in that case head->qgroup_reserved should be 0 and we won't underflow. CC: stable@vger.kernel.org # 4.14+ Reported-by: Chris Murphy <lists@colorremedies.com> Link: https://lore.kernel.org/linux-btrfs/CAJCQCtQau7DtuUUeycCkZ36qjbKuxNzsgqJ7+sJ6W0dK_NLE3w@mail.gmail.com/ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15btrfs: qgroup: Only trace data extents in leaves if we're relocating data ↵Qu Wenruo1-0/+1
block group For qgroup_trace_extent_swap(), if we find one leaf that needs to be traced, we will also iterate all file extents and trace them. This is OK if we're relocating data block groups, but if we're relocating metadata block groups, balance code itself has ensured that both subtree of file tree and reloc tree contain the same contents. That's to say, if we're relocating metadata block groups, all file extents in reloc and file tree should match, thus no need to trace them. This should reduce the total number of dirty extents processed in metadata block group balance. [[Benchmark]] (with all previous enhancement) Hardware: VM 4G vRAM, 8 vCPUs, disk is using 'unsafe' cache mode, backing device is SAMSUNG 850 evo SSD. Host has 16G ram. Mkfs parameter: --nodesize 4K (To bump up tree size) Initial subvolume contents: 4G data copied from /usr and /lib. (With enough regular small files) Snapshots: 16 snapshots of the original subvolume. each snapshot has 3 random files modified. balance parameter: -m So the content should be pretty similar to a real world root fs layout. | v4.19-rc1 | w/ patchset | diff (*) --------------------------------------------------------------- relocated extents | 22929 | 22851 | -0.3% qgroup dirty extents | 227757 | 140886 | -38.1% time (sys) | 65.253s | 37.464s | -42.6% time (real) | 74.032s | 44.722s | -39.6% Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15btrfs: qgroup: Use generation-aware subtree swap to mark dirty extentsQu Wenruo1-0/+5
Before this patch, with quota enabled during balance, we need to mark the whole subtree dirty for quota. E.g. OO = Old tree blocks (from file tree) NN = New tree blocks (from reloc tree) File tree (src) Reloc tree (dst) OO (a) NN (a) / \ / \ (b) OO OO (c) (b) NN NN (c) / \ / \ / \ / \ OO OO OO OO (d) OO OO OO NN (d) For old balance + quota case, quota will mark the whole src and dst tree dirty, including all the 3 old tree blocks in reloc tree. It's doable for small file tree or new tree blocks are all located at lower level. But for large file tree or new tree blocks are all located at higher level, this will lead to mark the whole tree dirty, and be unbelievably slow. This patch will change how we handle such balance with quota enabled case. Now we will search from (b) and (c) for any new tree blocks whose generation is equal to @last_snapshot, and only mark them dirty. In above case, we only need to trace tree blocks NN(b), NN(c) and NN(d). (NN(a) will be traced when COW happens for nodeptr modification). And also for tree blocks OO(b), OO(c), OO(d). (OO(a) will be traced when COW happens for nodeptr modification.) For above case, we could skip 3 tree blocks, but for larger tree, we can skip tons of unmodified tree blocks, and hugely speed up balance. This patch will introduce a new function, btrfs_qgroup_trace_subtree_swap(), which will do the following main work: 1) Read out real root eb And setup basic dst_path for later calls 2) Call qgroup_trace_new_subtree_blocks() To trace all new tree blocks in reloc tree and their counter parts in the file tree. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: qgroup: Drop fs_info parameter from btrfs_qgroup_inheritLu Fengqi1-3/+2
It can be fetched from the transaction handle. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: qgroup: Drop fs_info parameter from btrfs_run_qgroupsLu Fengqi1-2/+1
It can be fetched from the transaction handle. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: qgroup: Drop fs_info parameter from btrfs_qgroup_account_extentLu Fengqi1-5/+3
It can be fetched from the transaction handle. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: qgroup: Drop root parameter from btrfs_qgroup_trace_subtreeLu Fengqi1-1/+0
The fs_info can be fetched from the transaction handle directly. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: qgroup: Drop fs_info parameter from btrfs_qgroup_trace_leaf_itemsLu Fengqi1-1/+0
It can be fetched from the transaction handle. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: qgroup: Drop fs_info parameter from btrfs_qgroup_trace_extentLu Fengqi1-3/+2
It can be fetched from the transaction handle. In addition, remove the WARN_ON(trans == NULL) because it's not possible to hit this condition. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: qgroup: Drop fs_info parameter from btrfs_limit_qgroupLu Fengqi1-2/+1
It can be fetched from the transaction handle. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: qgroup: Drop fs_info parameter from btrfs_remove_qgroupLu Fengqi1-2/+1
It can be fetched from the transaction handle. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: qgroup: Drop fs_info parameter from btrfs_create_qgroupLu Fengqi1-2/+1
It can be fetched from the transaction handle. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: qgroup: Drop fs_info parameter from btrfs_del_qgroup_relationLu Fengqi1-2/+2
It can be fetched from the transaction handle. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: qgroup: Drop fs_info parameter from btrfs_add_qgroup_relationLu Fengqi1-2/+2
It can be fetched from the transaction handle. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: qgroups: Move transaction management inside btrfs_quota_enable/disableNikolay Borisov1-4/+2
Commit 5d23515be669 ("btrfs: Move qgroup rescan on quota enable to btrfs_quota_enable") not only resulted in an easier to follow code but it also introduced a subtle bug. It changed the timing when the initial transaction rescan was happening: - before the commit: it would happen after transaction commit had occured - after the commit: it might happen before the transaction was committed This results in failure to correctly rescan the quota since there could be data which is still not committed on disk. This patch aims to fix this by moving the transaction creation/commit inside btrfs_quota_enable, which allows to schedule the quota commit after the transaction has been committed. Fixes: 5d23515be669 ("btrfs: Move qgroup rescan on quota enable to btrfs_quota_enable") Reported-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com> Link: https://marc.info/?l=linux-btrfs&m=152999289017582 Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-12btrfs: replace GPL boilerplate by SPDX -- headersDavid Sterba1-17/+5
Remove GPL boilerplate text (long, short, one-line) and keep the rest, ie. personal, company or original source copyright statements. Add the SPDX header. Unify the include protection macros to match the file names. Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: qgroup: Introduce function to convert META_PREALLOC into META_PERTRANSQu Wenruo1-0/+8
For meta_prealloc reservation users, after btrfs_join_transaction() caller will modify tree so part (or even all) meta_prealloc reservation should be converted to meta_pertrans until transaction commit time. This patch introduces a new function, btrfs_qgroup_convert_reserved_meta() to do this for META_PREALLOC reservation user. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: qgroup: Split meta rsv type into meta_prealloc and meta_pertransQu Wenruo1-5/+64
Btrfs uses 2 different methods to reseve metadata qgroup space. 1) Reserve at btrfs_start_transaction() time This is quite straightforward, caller will use the trans handler allocated to modify b-trees. In this case, reserved metadata should be kept until qgroup numbers are updated. 2) Reserve by using block_rsv first, and later btrfs_join_transaction() This is more complicated, caller will reserve space using block_rsv first, and then later call btrfs_join_transaction() to get a trans handle. In this case, before we modify trees, the reserved space can be modified on demand, and after btrfs_join_transaction(), such reserved space should also be kept until qgroup numbers are updated. Since these two types behave differently, split the original "META" reservation type into 2 sub-types: META_PERTRANS: For above case 1) META_PREALLOC: For reservations that happened before btrfs_join_transaction() of case 2) NOTE: This patch will only convert existing qgroup meta reservation callers according to its situation, not ensuring all callers are at correct timing. Such fix will be added in later patches. Signed-off-by: Qu Wenruo <wqu@suse.com> [ update comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: qgroup: Cleanup the remaining old reservation countersQu Wenruo1-1/+0
So qgroup is switched to new separate types reservation system. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: qgroup: Skeleton to support separate qgroup reservation typeQu Wenruo1-2/+25
Instead of single qgroup->reserved, use a new structure btrfs_qgroup_rsv to store different types of reservation. This patch only updates the header needed to compile. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-03-31btrfs: Drop fs_info parameter from btrfs_qgroup_account_extentsNikolay Borisov1-2/+1
It's provided by the transaction handle. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-06-29btrfs: qgroup: Fix qgroup reserved space underflow by only freeing reserved ↵Qu Wenruo1-1/+2
ranges [BUG] For the following case, btrfs can underflow qgroup reserved space at an error path: (Page size 4K, function name without "btrfs_" prefix) Task A | Task B ---------------------------------------------------------------------- Buffered_write [0, 2K) | |- check_data_free_space() | | |- qgroup_reserve_data() | | Range aligned to page | | range [0, 4K) <<< | | 4K bytes reserved <<< | |- copy pages to page cache | | Buffered_write [2K, 4K) | |- check_data_free_space() | | |- qgroup_reserved_data() | | Range alinged to page | | range [0, 4K) | | Already reserved by A <<< | | 0 bytes reserved <<< | |- delalloc_reserve_metadata() | | And it *FAILED* (Maybe EQUOTA) | |- free_reserved_data_space() |- qgroup_free_data() Range aligned to page range [0, 4K) Freeing 4K (Special thanks to Chandan for the detailed report and analyse) [CAUSE] Above Task B is freeing reserved data range [0, 4K) which is actually reserved by Task A. And at writeback time, page dirty by Task A will go through writeback routine, which will free 4K reserved data space at file extent insert time, causing the qgroup underflow. [FIX] For btrfs_qgroup_free_data(), add @reserved parameter to only free data ranges reserved by previous btrfs_qgroup_reserve_data(). So in above case, Task B will try to free 0 byte, so no underflow. Reported-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Tested-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-06-29btrfs: qgroup: Introduce extent changeset for qgroup reserve functionsQu Wenruo1-1/+2
Introduce a new parameter, struct extent_changeset for btrfs_qgroup_reserved_data() and its callers. Such extent_changeset was used in btrfs_qgroup_reserve_data() to record which range it reserved in current reserve, so it can free it in error paths. The reason we need to export it to callers is, at buffered write error path, without knowing what exactly which range we reserved in current allocation, we can free space which is not reserved by us. This will lead to qgroup reserved space underflow. Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-06-29btrfs: qgroup: Cleanup btrfs_qgroup_prepare_account_extents functionQu Wenruo1-2/+1
Quite a lot of qgroup corruption happens due to wrong time of calling btrfs_qgroup_prepare_account_extents(). Since the safest time is to call it just before btrfs_qgroup_account_extents(), there is no need to separate these 2 functions. Merging them will make code cleaner and less bug prone. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> [ changelog and comment adjustments ] Signed-off-by: David Sterba <dsterba@suse.com>
2017-04-18btrfs: qgroup: Re-arrange tracepoint timing to co-operate with reserved ↵Qu Wenruo1-5/+1
space tracepoint Newly introduced qgroup reserved space trace points are normally nested into several common qgroup operations. While some other trace points are not well placed to co-operate with them, causing confusing output. This patch re-arrange trace_btrfs_qgroup_release_data() and trace_btrfs_qgroup_free_delayed_ref() trace points so they are triggered before reserved space ones. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-by: Jeff Mahoney <jeffm@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-04-18btrfs: qgroup: Add trace point for qgroup reserved spaceQu Wenruo1-0/+44
Introduce the following trace points: qgroup_update_reserve qgroup_meta_reserve These trace points are handy to trace qgroup reserve space related problems. Also export btrfs_qgroup structure, as now we directly pass btrfs_qgroup structure to trace points, so that structure needs to be exported. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-04-18btrfs: remove unused qgroup members from btrfs_trans_handleDavid Sterba1-1/+0
The members have been effectively unused since "Btrfs: rework qgroup accounting" (fcebe4562dec83b3), there's no substitute for assert_qgroups_uptodate so it's removed as well. Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-17btrfs: qgroup: Move half of the qgroup accounting time out of commit transQu Wenruo1-3/+30
Just as Filipe pointed out, the most time consuming parts of qgroup are btrfs_qgroup_account_extents() and btrfs_qgroup_prepare_account_extents(). Which both call btrfs_find_all_roots() to get old_roots and new_roots ulist. What makes things worse is, we're calling that expensive btrfs_find_all_roots() at transaction committing time with TRANS_STATE_COMMIT_DOING, which will blocks all incoming transaction. Such behavior is necessary for @new_roots search as current btrfs_find_all_roots() can't do it correctly so we do call it just before switch commit roots. However for @old_roots search, it's not necessary as such search is based on commit_root, so it will always be correct and we can move it out of transaction committing. This patch moves the @old_roots search part out of commit_transaction(), so in theory we can half the time qgroup time consumption at commit_transaction(). But please note that, this won't speedup qgroup overall, the total time consumption is still the same, just reduce the performance stall. Cc: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2017-02-14btrfs: allow unlink to exceed subvolume quotaJeff Mahoney1-1/+2
Once a qgroup limit is exceeded, it's impossible to restore normal operation to the subvolume without modifying the limit or removing the subvolume. This is a surprising situation for many users used to the typical workflow with quotas on other file systems where it's possible to remove files until the used space is back under the limit. When we go to unlink a file and start the transaction, we'll hit the qgroup limit while trying to reserve space for the items we'll modify while removing the file. We discussed last month how best to handle this situation and agreed that there is no perfect solution. The best principle-of-least-surprise solution is to handle it similarly to how we already handle ENOSPC when unlinking, which is to allow the operation to succeed with the expectation that it will ultimately release space under most circumstances. This patch modifies the transaction start path to select whether to honor the qgroups limits. btrfs_start_transaction_fallback_global_rsv is the only caller that skips enforcement. The reservation and tracking still happens normally -- it just skips the enforcement step. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2016-12-06btrfs: take an fs_info directly when the root is not used otherwiseJeff Mahoney1-1/+1
There are loads of functions in btrfs that accept a root parameter but only use it to obtain an fs_info pointer. Let's convert those to just accept an fs_info pointer directly. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2016-11-30btrfs: Export and move leaf/subtree qgroup helpers to qgroup.cQu Wenruo1-0/+23
Move account_shared_subtree() to qgroup.c and rename it to btrfs_qgroup_trace_subtree(). Do the same thing for account_leaf_items() and rename it to btrfs_qgroup_trace_leaf_items(). Since all these functions are only for qgroup, move them to qgroup.c and export them is more appropriate. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-and-Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2016-11-30btrfs: qgroup: Rename functions to make it follow reserve,trace,account stepsQu Wenruo1-6/+7
Rename btrfs_qgroup_insert_dirty_extent(_nolock) to btrfs_qgroup_trace_extent(_nolock), according to the new reserve/trace/account naming schema. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-and-Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2016-11-30btrfs: qgroup: Add comments explaining how btrfs qgroup worksQu Wenruo1-0/+28
Add explaination how btrfs qgroups work. Qgroup is split into 3 main phrases: 1) Reserve To ensure qgroup doesn't exceed its limit 2) Trace To info qgroup to trace which extent 3) Account Calculate qgroup number change for each traced extent. This should save quite some time for new developers. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2016-08-25btrfs: qgroup: Refactor btrfs_qgroup_insert_dirty_extent()Qu Wenruo1-4/+29
Refactor btrfs_qgroup_insert_dirty_extent() function, to two functions: 1. btrfs_qgroup_insert_dirty_extent_nolock() Almost the same with original code. For delayed_ref usage, which has delayed refs locked. Change the return value type to int, since caller never needs the pointer, but only needs to know if they need to free the allocated memory. 2. btrfs_qgroup_insert_dirty_extent() The more encapsulated version. Will do the delayed_refs lock, memory allocation, quota enabled check and other things. The original design is to keep exported functions to minimal, but since more btrfs hacks exposed, like replacing path in balance, we need to record dirty extents manually, so we have to add such functions. Also, add comment for both functions, to info developers how to keep qgroup correct when doing hacks. Cc: Mark Fasheh <mfasheh@suse.de> Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-and-Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2016-08-25btrfs: waiting on qgroup rescan should not always be interruptibleJeff Mahoney1-1/+2
We wait on qgroup rescan completion in three places: file system shutdown, the quota disable ioctl, and the rescan wait ioctl. If the user sends a signal while we're waiting, we continue happily along. This is expected behavior for the rescan wait ioctl. It's racy in the shutdown path but mostly works due to other unrelated synchronization points. In the quota disable path, it Oopses the kernel pretty much immediately. Cc: <stable@vger.kernel.org> # v4.4+ Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2016-07-26btrfs: prefix fsid to all trace eventsJeff Mahoney1-4/+5
When using trace events to debug a problem, it's impossible to determine which file system generated a particular event. This patch adds a macro to prefix standard information to the head of a trace event. The extent_state alloc/free events are all that's left without an fs_info available. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2015-10-22btrfs: qgroup: Check if qgroup reserved space leakedQu Wenruo1-0/+1
Add check at btrfs_destroy_inode() time to detect qgroup reserved space leak. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-22btrfs: qgroup: Add new trace point for qgroup data reserveQu Wenruo1-0/+8
Now each qgroup reserve for data will has its ftrace event for better debugging. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-22btrfs: qgroup: Cleanup old inaccurate facilitiesQu Wenruo1-8/+0
Cleanup the old facilities which use old btrfs_qgroup_reserve() function call, replace them with the newer version, and remove the "__" prefix in them. Also, make btrfs_qgroup_reserve/free() functions private, as they are now only used inside qgroup codes. Now, the whole btrfs qgroup is swithed to use the new reserve facilities. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-22btrfs: qgroup: Introduce new functions to reserve/free metadataQu Wenruo1-0/+4
Introduce new functions btrfs_qgroup_reserve/free_meta() to reserve/free metadata reserved space. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-22btrfs: delayed_ref: release and free qgroup reserved at proper timingQu Wenruo1-1/+17
Qgroup reserved space needs to be released from inode dirty map and get freed at different timing: 1) Release when the metadata is written into tree After corresponding metadata is written into tree, any newer write will be COWed(don't include NOCOW case yet). So we must release its range from inode dirty range map, or we will forget to reserve needed range, causing accounting exceeding the limit. 2) Free reserved bytes when delayed ref is run When delayed refs are run, qgroup accounting will follow soon and turn the reserved bytes into rfer/excl numbers. As run_delayed_refs and qgroup accounting are all done at commit_transaction() time, we are safe to free reserved space in run_delayed_ref time(). With these timing to release/free reserved space, we should be able to resolve the long existing qgroup reserve space leak problem. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-22btrfs: qgroup: Introduce functions to release/free qgroup reserve dataQu Wenruo1-0/+2
space Introduce functions btrfs_qgroup_release/free_data() to release/free reserved data range. Release means, just remove the data range from io_tree, but doesn't free the reserved space. This is for normal buffered write case, when data is written into disc and its metadata is added into tree, its reserved space should still be kept until commit_trans(). So in that case, we only release dirty range, but keep the reserved space recorded some other place until commit_tran(). Free means not only remove data range, but also free reserved space. This is used for case for cleanup and invalidate page. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-10-22btrfs: qgroup: Introduce btrfs_qgroup_reserve_data functionQu Wenruo1-0/+2
Introduce a new function, btrfs_qgroup_reserve_data(), which will use io_tree to accurate qgroup reserve, to avoid reserved space leaking. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10btrfs: qgroup: Cleanup the old ref_node-oriented mechanism.Qu Wenruo1-49/+0
Goodbye, the old mechanisim. Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>