Age | Commit message (Collapse) | Author | Files | Lines |
|
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Just like btrfs_add_delayed_tree_ref(), use btrfs_ref to refactor
btrfs_add_delayed_data_ref().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
btrfs_add_delayed_tree_ref() has a longer and longer parameter list, and
some callers like btrfs_inc_extent_ref() are using @owner as level for
delayed tree ref.
Instead of making the parameter list longer, use btrfs_ref to refactor
it, so each parameter assignment should be self-explaining without dirty
level/owner trick, and provides the basis for later refactoring.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
btrfs_qgroup_extent_record
[BUG]
Btrfs/139 will fail with a high probability if the testing machine (VM)
has only 2G RAM.
Resulting the final write success while it should fail due to EDQUOT,
and the fs will have quota exceeding the limit by 16K.
The simplified reproducer will be: (needs a 2G ram VM)
$ mkfs.btrfs -f $dev
$ mount $dev $mnt
$ btrfs subv create $mnt/subv
$ btrfs quota enable $mnt
$ btrfs quota rescan -w $mnt
$ btrfs qgroup limit -e 1G $mnt/subv
$ for i in $(seq -w 1 8); do
xfs_io -f -c "pwrite 0 128M" $mnt/subv/file_$i > /dev/null
echo "file $i written" > /dev/kmsg
done
$ sync
$ btrfs qgroup show -pcre --raw $mnt
The last pwrite will not trigger EDQUOT and final 'qgroup show' will
show something like:
qgroupid rfer excl max_rfer max_excl parent child
-------- ---- ---- -------- -------- ------ -----
0/5 16384 16384 none none --- ---
0/256 1073758208 1073758208 none 1073741824 --- ---
And 1073758208 is larger than
> 1073741824.
[CAUSE]
It's a bug in btrfs qgroup data reserved space management.
For quota limit, we must ensure that:
reserved (data + metadata) + rfer/excl <= limit
Since rfer/excl is only updated at transaction commmit time, reserved
space needs to be taken special care.
One important part of reserved space is data, and for a new data extent
written to disk, we still need to take the reserved space until
rfer/excl numbers get updated.
Originally when an ordered extent finishes, we migrate the reserved
qgroup data space from extent_io tree to delayed ref head of the data
extent, expecting delayed ref will only be cleaned up at commit
transaction time.
However for small RAM machine, due to memory pressure dirty pages can be
flushed back to disk without committing a transaction.
The related events will be something like:
file 1 written
btrfs_finish_ordered_io: ino=258 ordered offset=0 len=54947840
btrfs_finish_ordered_io: ino=258 ordered offset=54947840 len=5636096
btrfs_finish_ordered_io: ino=258 ordered offset=61153280 len=57344
btrfs_finish_ordered_io: ino=258 ordered offset=61210624 len=8192
btrfs_finish_ordered_io: ino=258 ordered offset=60583936 len=569344
cleanup_ref_head: num_bytes=54947840
cleanup_ref_head: num_bytes=5636096
cleanup_ref_head: num_bytes=569344
cleanup_ref_head: num_bytes=57344
cleanup_ref_head: num_bytes=8192
^^^^^^^^^^^^^^^^ This will free qgroup data reserved space
file 2 written
...
file 8 written
cleanup_ref_head: num_bytes=8192
...
btrfs_commit_transaction <<< the only transaction committed during
the test
When file 2 is written, we have already freed 128M reserved qgroup data
space for ino 258. Thus later write won't trigger EDQUOT.
This allows us to write more data beyond qgroup limit.
In my 2G ram VM, it could reach about 1.2G before hitting EDQUOT.
[FIX]
By moving reserved qgroup data space from btrfs_delayed_ref_head to
btrfs_qgroup_extent_record, we can ensure that reserved qgroup data
space won't be freed half way before commit transaction, thus fix the
problem.
Fixes: f64d5ca86821 ("btrfs: delayed_ref: Add new function to record reserved space into delayed ref")
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Traditionally we've had voodoo in btrfs to account for the space that
delayed refs may take up by having a global_block_rsv. This works most
of the time, except when it doesn't. We've had issues reported and seen
in production where sometimes the global reserve is exhausted during
transaction commit before we can run all of our delayed refs, resulting
in an aborted transaction. Because of this voodoo we have equally
dubious flushing semantics around throttling delayed refs which we often
get wrong.
So instead give them their own block_rsv. This way we can always know
exactly how much outstanding space we need for delayed refs. This
allows us to make sure we are constantly filling that reservation up
with space, and allows us to put more precise pressure on the enospc
system. Instead of doing math to see if its a good time to throttle,
the normal enospc code will be invoked if we have a lot of delayed refs
pending, and they will be run via the normal flushing mechanism.
For now the delayed_refs_rsv will hold the reservations for the delayed
refs, the block group updates, and deleting csums. We could have a
separate rsv for the block group updates, but the csum deletion stuff is
still handled via the delayed_refs so that will stay there.
Historical background:
The global reserve has grown to cover everything we don't reserve space
explicitly for, and we've grown a lot of weird ad-hoc heuristics to know
if we're running short on space and when it's time to force a commit. A
failure rate of 20-40 file systems when we run hundreds of thousands of
them isn't super high, but cleaning up this code will make things less
ugly and more predictible.
Thus the delayed refs rsv. We always know how many delayed refs we have
outstanding, and although running them generates more we can use the
global reserve for that spill over, which fits better into it's desired
use than a full blown reservation. This first approach is to simply
take how many times we're reserving space for and multiply that by 2 in
order to save enough space for the delayed refs that could be generated.
This is a niave approach and will probably evolve, but for now it works.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com> # high-level review
[ added background notes from the cover letter ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We use this number to figure out how many delayed refs to run, but
__btrfs_run_delayed_refs really only checks every time we need a new
delayed ref head, so we always run at least one ref head completely no
matter what the number of items on it. Fix the accounting to only be
adjusted when we add/remove a ref head.
In addition to using this number to limit the number of delayed refs
run, a future patch is also going to use it to calculate the amount of
space required for delayed refs space reservation.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We do this dance in cleanup_ref_head and check_ref_cleanup, unify it
into a helper and cleanup the calling functions.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The find_ref_head shouldn't return the first entry even if no exact match
is found. So move the hidden behavior to higher level.
Besides, remove the useless local variables in the btrfs_select_ref_head.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
[ reformat comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Using bool is more suitable than int here, and add the comment about the
return_bigger.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Since trans is only used for referring to delayed_refs, there is no need
to pass it instead of delayed_refs to btrfs_delayed_ref_lock().
No functional change.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Since trans is only used for referring to delayed_refs, there is no need
to pass it instead of delayed_refs to btrfs_select_ref_head(). No
functional change.
Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
rb_first_cached() trades an extra pointer "leftmost" for doing the same
job as rb_first() but in O(1).
Functions manipulating href->ref_tree need to get the first entry, this
converts href->ref_tree to use rb_first_cached().
For more details about the optimization see patch "Btrfs: delayed-refs:
use rb_first_cached for href_root".
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
rb_first_cached() trades an extra pointer "leftmost" for doing the same
job as rb_first() but in O(1).
Functions manipulating href_root need to get the first entry, this
converts href_root to use rb_first_cached().
This patch is first in the sequenct of similar updates to other rbtrees
and this is analysis of the expected behaviour and improvements.
There's a common pattern:
while (node = rb_first) {
entry = rb_entry(node)
next = rb_next(node)
rb_erase(node)
cleanup(entry)
}
rb_first needs to traverse the tree up to logN depth, rb_erase can
completely reshuffle the tree. With the caching we'll skip the traversal
in rb_first. That's a cached memory access vs looped pointer
dereference trade-off that IMHO has a clear winner.
Measurements show there's not much difference in a sample tree with
10000 nodes: 4.5s / rb_first and 4.8s / rb_first_cached. Real effects of
caching and pointer chasing are unpredictable though.
Further optimzations can be done to avoid the expensive rb_erase step.
In some cases it's ok to process the nodes in any order, so the tree can
be traversed in post-order, not rebalancing the children nodes and just
calling free. Care must be taken regarding the next node.
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog from mail discussions ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
btrfs_add_delayed_tree_ref
Currently the function uses 2 goto labels to properly handle allocation
failures. This could be simplified by simply re-arranging the code so
that allocations are the in the beginning of the function. This allows
to use simple return statements. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Su Yue <suy.fnst@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This function is always called with a valid transaction handle from
where fs_info can be referenced. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This function is always called with a valid transaction handle from
where fs_info can be referenced. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
add_delayed_ref_head really performed 2 independent operations -
initialisting the ref head and adding it to a list. Now that the init
part is in a separate function let's complete the separation between
both operations. This results in a lot simpler interface for
add_delayed_ref_head since the function now deals solely with either
adding the newly initialised delayed ref head or merging it into an
existing delayed ref head. This results in vastly simplified function
signature since 5 arguments are dropped. The only other thing worth
mentioning is that due to this split the WARN_ON catching reinit of
existing. In this patch the condition is extended such that:
qrecord && head_ref->qgroup_ref_root && head_ref->qgroup_reserved
is added. This is done because the two qgroup_* prefixed member are
set only if both ref_root and reserved are passed. So functionally
it's equivalent to the old WARN_ON and allows to remove the two args
from add_delayed_ref_head.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Use the newly introduced function when initialising the head_ref in
add_delayed_ref_head. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
add_delayed_ref_head implements the logic to both initialize a head_ref
structure as well as perform the necessary operations to add it to the
delayed ref machinery. This has resulted in a very cumebrsome interface
with loads of parameters and code, which at first glance, looks very
unwieldy. Begin untangling it by first extracting the initialization
only code in its own function. It's more or less verbatim copy of the
first part of add_delayed_ref_head.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Now that the initialization part and the critical section code have been
split it's a lot easier to open code add_delayed_data_ref. Do so in the
following manner:
1. The common init function is put immediately after memory-to-be-initialized
is allocated, followed by the specific data ref initialization.
2. The only piece of code that remains in the critical section is
insert_delayed_ref call.
3. Tracing and memory freeing code is moved outside of the critical
section.
No functional changes, just an overall shorter critical section.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Now that the initialization part and the critical section code have been
split it's a lot easier to open code add_delayed_tree_ref. Do so in the
following manner:
1. The comming init code is put immediately after memory-to-be-initialized
is allocated, followed by the ref-specific member initialization.
2. The only piece of code that remains in the critical section is
insert_delayed_ref call.
3. Tracing and memory freeing code is put outside of the critical
section as well.
The only real change here is an overall shorter critical section when
dealing with delayed tree refs. From functional point of view - the code
is unchanged.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Use the newly introduced helper and remove the duplicate code. No
functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Use the newly introduced common helper. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
THe majority of the init code for struct btrfs_delayed_ref_node is
duplicated in add_delayed_data_ref and add_delayed_tree_ref. Factor out
the common bits in init_delayed_ref_common. This function is going to be
used in future patches to clean that up. No functional changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
It's provided by the transaction handle.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
It's provided by the transaction handle.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
It's provided by the transaction handle.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
It's used to print its pointer in a debug statement but doesn't really
bring any useful information to the error message.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When the delayed refs for a head are all run, eventually
cleanup_ref_head is called which (in case of deletion) obtains a
reference for the relevant btrfs_space_info struct by querying the bg
for the range. This is problematic because when the last extent of a
bg is deleted a race window emerges between removal of that bg and the
subsequent invocation of cleanup_ref_head. This can result in cache being null
and either a null pointer dereference or assertion failure.
task: ffff8d04d31ed080 task.stack: ffff9e5dc10cc000
RIP: 0010:assfail.constprop.78+0x18/0x1a [btrfs]
RSP: 0018:ffff9e5dc10cfbe8 EFLAGS: 00010292
RAX: 0000000000000044 RBX: 0000000000000000 RCX: 0000000000000000
RDX: ffff8d04ffc1f868 RSI: ffff8d04ffc178c8 RDI: ffff8d04ffc178c8
RBP: ffff8d04d29e5ea0 R08: 00000000000001f0 R09: 0000000000000001
R10: ffff9e5dc0507d58 R11: 0000000000000001 R12: ffff8d04d29e5ea0
R13: ffff8d04d29e5f08 R14: ffff8d04efe29b40 R15: ffff8d04efe203e0
FS: 00007fbf58ead500(0000) GS:ffff8d04ffc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fe6c6975648 CR3: 0000000013b2a000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
__btrfs_run_delayed_refs+0x10e7/0x12c0 [btrfs]
btrfs_run_delayed_refs+0x68/0x250 [btrfs]
btrfs_should_end_transaction+0x42/0x60 [btrfs]
btrfs_truncate_inode_items+0xaac/0xfc0 [btrfs]
btrfs_evict_inode+0x4c6/0x5c0 [btrfs]
evict+0xc6/0x190
do_unlinkat+0x19c/0x300
do_syscall_64+0x74/0x140
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
RIP: 0033:0x7fbf589c57a7
To fix this, introduce a new flag "is_system" to head_ref structs,
which is populated at insertion time. This allows to decouple the
querying for the spaceinfo from querying the possibly deleted bg.
Fixes: d7eae3403f46 ("Btrfs: rework delayed ref total_bytes_pinned accounting")
CC: stable@vger.kernel.org # 4.14+
Suggested-by: Omar Sandoval <osandov@osandov.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Remove GPL boilerplate text (long, short, one-line) and keep the rest,
ie. personal, company or original source copyright statements. Add the
SPDX header.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Using lockdep_assert_held is preferred, replace assert_spin_locked.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The __cold functions are placed to a special section, as they're
expected to be called rarely. This could help i-cache prefetches or help
compiler to decide which branches are more/less likely to be taken
without any other annotations needed.
Though we can't add more __exit annotations, it's still possible to add
__cold (that's also added with __exit). That way the following function
categories are tagged:
- printf wrappers, error messages
- exit helpers
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Running generic/019 with qgroups on the scratch device enabled is almost
guaranteed to trigger the BUG_ON in btrfs_free_tree_block. It's supposed
to trigger only on -ENOMEM, in reality, however, it's possible to get
-EIO from btrfs_qgroup_trace_extent_post. This function just finds the
roots of the extent being tracked and sets the qrecord->old_roots list.
If this operation fails nothing critical happens except the quota
accounting can be considered wrong. In such case just set the
INCONSISTENT flag for the quota and print a warning, rather than killing
off the system. Additionally, it's possible to trigger a BUG_ON in
btrfs_truncate_inode_items as well.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
[ error message adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Adding __init macro gives kernel a hint that this function is only used
during the initialization phase and its memory resources can be freed up
after.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
If we get a significant amount of delayed refs for a single block (think
modifying multiple snapshots) we can end up spending an ungodly amount
of time looping through all of the entries trying to see if they can be
merged. This is because we only add them to a list, so we have O(2n)
for every ref head. This doesn't make any sense as we likely have refs
for different roots, and so they cannot be merged. Tracking in a tree
will allow us to break as soon as we hit an entry that doesn't match,
making our worst case O(n).
With this we can also merge entries more easily. Before we had to hope
that matching refs were on the ends of our list, but with the tree we
can search down to exact matches and merge them at insert time.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Instead of open-coding the delayed ref comparisons, add a helper to do
the comparisons generically and use that everywhere. We compare
sequence numbers last for following patches.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Make it more consistent, we want the inserted ref to be compared against
what's already in there. This will make the order go from lowest seq ->
highest seq, which will make us more likely to make forward progress if
there's a seqlock currently held.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We can get this from the ref we've passed in.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This is just excessive information in the ref_head, and makes the code
complicated. It is a relic from when we had the heads and the refs in
the same tree, which is no longer the case. With this removal I've
cleaned up a bunch of the cruft around this old assumption as well.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We need this to decide when to account pinned bytes.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Just as Filipe pointed out, the most time consuming parts of qgroup are
btrfs_qgroup_account_extents() and
btrfs_qgroup_prepare_account_extents().
Which both call btrfs_find_all_roots() to get old_roots and new_roots
ulist.
What makes things worse is, we're calling that expensive
btrfs_find_all_roots() at transaction committing time with
TRANS_STATE_COMMIT_DOING, which will blocks all incoming transaction.
Such behavior is necessary for @new_roots search as current
btrfs_find_all_roots() can't do it correctly so we do call it just
before switch commit roots.
However for @old_roots search, it's not necessary as such search is
based on commit_root, so it will always be correct and we can move it
out of transaction committing.
This patch moves the @old_roots search part out of
commit_transaction(), so in theory we can half the time qgroup time
consumption at commit_transaction().
But please note that, this won't speedup qgroup overall, the total time
consumption is still the same, just reduce the performance stall.
Cc: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
All we need is @delayed_refs, all callers have get it ahead of calling
btrfs_find_delayed_ref_head since lock needs to be acquired firstly,
there is no reason to deference it again inside the function.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
btrfs_add_delayed_data_ref is always called with a NULL extent_op,
so let's drop the argument.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This issue was found when I tried to delete a heavily reflinked file,
when deleting such files, other transaction operation will not have a
chance to make progress, for example, start_transaction() will blocked
in wait_current_trans(root) for long time, sometimes it even triggers
soft lockups, and the time taken to delete such heavily reflinked file
is also very large, often hundreds of seconds. Using perf top, it reports
that:
PerfTop: 7416 irqs/sec kernel:99.8% exact: 0.0% [4000Hz cpu-clock], (all, 4 CPUs)
---------------------------------------------------------------------------------------
84.37% [btrfs] [k] __btrfs_run_delayed_refs.constprop.80
11.02% [kernel] [k] delay_tsc
0.79% [kernel] [k] _raw_spin_unlock_irq
0.78% [kernel] [k] _raw_spin_unlock_irqrestore
0.45% [kernel] [k] do_raw_spin_lock
0.18% [kernel] [k] __slab_alloc
It seems __btrfs_run_delayed_refs() took most cpu time, after some debug
work, I found it's select_delayed_ref() causing this issue, for a delayed
head, in our case, it'll be full of BTRFS_DROP_DELAYED_REF nodes, but
select_delayed_ref() will firstly try to iterate node list to find
BTRFS_ADD_DELAYED_REF nodes, obviously it's a disaster in this case, and
waste much time.
To fix this issue, we introduce a new ref_add_list in struct btrfs_delayed_ref_head,
then in select_delayed_ref(), if this list is not empty, we can directly use
nodes in this list. With this patch, it just took about 10~15 seconds to
delte the same file. Now using perf top, it reports that:
PerfTop: 2734 irqs/sec kernel:99.5% exact: 0.0% [4000Hz cpu-clock], (all, 4 CPUs)
----------------------------------------------------------------------------------------
20.74% [kernel] [k] _raw_spin_unlock_irqrestore
16.33% [kernel] [k] __slab_alloc
5.41% [kernel] [k] lock_acquired
4.42% [kernel] [k] lock_acquire
4.05% [kernel] [k] lock_release
3.37% [kernel] [k] _raw_spin_unlock_irq
For normal files, this patch also gives help, at least we do not need to
iterate whole list to found BTRFS_ADD_DELAYED_REF nodes.
Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Rename btrfs_qgroup_insert_dirty_extent(_nolock) to
btrfs_qgroup_trace_extent(_nolock), according to the new
reserve/trace/account naming schema.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-and-Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
For many printks, we want to know which file system issued the message.
This patch converts most pr_* calls to use the btrfs_* versions instead.
In some cases, this means adding plumbing to allow call sites access to
an fs_info pointer.
fs/btrfs/check-integrity.c is left alone for another day.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We have a lot of random ints in btrfs_fs_info that can be put into flags. This
is mostly equivalent with the exception of how we deal with quota going on or
off, now instead we set a flag when we are turning it on or off and deal with
that appropriately, rather than just having a pending state that the current
quota_enabled gets set to. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Refactor btrfs_qgroup_insert_dirty_extent() function, to two functions:
1. btrfs_qgroup_insert_dirty_extent_nolock()
Almost the same with original code.
For delayed_ref usage, which has delayed refs locked.
Change the return value type to int, since caller never needs the
pointer, but only needs to know if they need to free the allocated
memory.
2. btrfs_qgroup_insert_dirty_extent()
The more encapsulated version.
Will do the delayed_refs lock, memory allocation, quota enabled check
and other things.
The original design is to keep exported functions to minimal, but since
more btrfs hacks exposed, like replacing path in balance, we need to
record dirty extents manually, so we have to add such functions.
Also, add comment for both functions, to info developers how to keep
qgroup correct when doing hacks.
Cc: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-and-Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/fdmanana/linux into for-linus-4.8
|