Age | Commit message (Collapse) | Author | Files | Lines |
|
This is a preparation for adding support for metadata in fabric
controllers. New flag will imply that NVMe namespace supports getting
metadata that was originally generated by host's block layer.
Signed-off-by: Max Gurtovoy <maxg@mellanox.com>
Reviewed-by: Israel Rukshin <israelr@mellanox.com>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: James Smart <james.smart@broadcom.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
Replace the specific ext boolean (that implies on extended LBA format)
with a feature in the new namespace features flag. This is a preparation
for adding more namespace features (such as metadata specific features).
Signed-off-by: Max Gurtovoy <maxg@mellanox.com>
Reviewed-by: Israel Rukshin <israelr@mellanox.com>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: James Smart <james.smart@broadcom.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
Add a new attribute "revalidate_size" for the namespace which allows
user to revalidate and generate the AEN if needed. This attribute is
needed so that we can install userspace rules with systemd service based
on inotify/fsnotify/uevent. The registered callback for such a service
will end up writing to this attribute to generate AEN if needed.
Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Reviewed-by: Sagi Grimberg <sagi@grimbeg.me>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
The newly added function nvmet_ns_revalidate() does update the ns size
in the identify namespace in-core target data structure when host issues
id-ns command. This can lead to host having inconsistencies between size
of the namespace present in the id-ns command result and size of the
corresponding block device until host scans the namespaces explicitly.
To avoid this scenario generate AEN if old size is not same as the new
one in nvmet_ns_revalidate().
This will allow automatic AEN generation when host calls id-ns command
and also allows target to install userspace rules so that it can trigger
nvmet_ns_revalidate() (using configfs interface with the help of next
patch) resulting in appropriate AEN generation when underlying namespace
size change is detected.
Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Reviewed-by: Sagi Grimberg <sagi@grimbeg.me>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
This patch adds a wrapper helper to indicate size change in the bdev &
file-backed namespace when revalidating ns. This helper is needed in
order to minimize code repetition in the next patch for configfs.c and
existing admin-cmd.c.
Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Reviewed-by: Sagi Grimberg <sagi@grimbeg.me>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
This adds a new tracepoint for the target to trace async event. This is
helpful in debugging and comparing host and target side async events
especially when host is connected to different targets on different
machines and now that we rely on userspace components to generate AEN.
Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
The nvme_put_ctrl() is implemented earlier as an inline function so
this declaration isn't required.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
sizeof(flexible-array-member) triggers a warning because flexible array
members have incomplete type[1]. There are some instances of code in
which the sizeof operator is being incorrectly/erroneously applied to
zero-length arrays and the result is zero. Such instances may be hiding
some bugs. So, this work (flexible-array member conversions) will also
help to get completely rid of those sorts of issues.
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
Currently, a namespace io_opt queue limit is set by default to the
physical sector size of the namespace and to the the write optimal
size (NOWS) when the namespace reports optimal IO sizes. This causes
problems with block limits stacking in blk_stack_limits() when a
namespace block device is combined with an HDD which generally do not
report any optimal transfer size (io_opt limit is 0). The code:
/* Optimal I/O a multiple of the physical block size? */
if (t->io_opt & (t->physical_block_size - 1)) {
t->io_opt = 0;
t->misaligned = 1;
ret = -1;
}
in blk_stack_limits() results in an error return for this function when
the combined devices have different but compatible physical sector
sizes (e.g. 512B sector SSD with 4KB sector disks).
Fix this by not setting the optimal IO size queue limit if the namespace
does not report an optimal write size value.
Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com>
Reviewed-by: Bart van Assche <bvanassche@acm.org>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
Disable streams again if getting the stream params fails.
Signed-off-by: Wu Bo <wubo40@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
The nvme-fc devloss_tmo is computed as the min of either the
ctrl_loss_tmo (max_retries * reconnect_delay) or the remote port's
devloss_tmo. But what gets printed as the nvme-fc devloss_tmo in
nvme_fc_reconnect_or_delete() is always the remote port's devloss_tmo
value. So correct this by printing the min value instead.
Signed-off-by: Martin George <marting@netapp.com>
Reviewed-by: James Smart <james.smart@broadcom.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
Check module parameter write/poll_queues before using it to catch
too large values.
Reproducer:
modprobe -r nvme
modprobe nvme write_queues=`nproc`
echo $((`nproc`+1)) > /sys/module/nvme/parameters/write_queues
echo 1 > /sys/block/nvme0n1/device/reset_controller
[ 657.069000] ------------[ cut here ]------------
[ 657.069022] WARNING: CPU: 10 PID: 1163 at kernel/irq/affinity.c:390 irq_create_affinity_masks+0x47c/0x4a0
[ 657.069056] dm_region_hash dm_log dm_mod
[ 657.069059] CPU: 10 PID: 1163 Comm: kworker/u193:9 Kdump: loaded Tainted: G W 5.6.0+ #8
[ 657.069060] Hardware name: Inspur SA5212M5/YZMB-00882-104, BIOS 4.0.9 08/27/2019
[ 657.069064] Workqueue: nvme-reset-wq nvme_reset_work [nvme]
[ 657.069066] RIP: 0010:irq_create_affinity_masks+0x47c/0x4a0
[ 657.069067] Code: fe ff ff 48 c7 c0 b0 89 14 95 48 89 46 20 e9 e9 fb ff ff 31 c0 e9 90 fc ff ff 0f 0b 48 c7 44 24 08 00 00 00 00 e9 e9 fc ff ff <0f> 0b e9 87 fe ff ff 48 8b 7c 24 28 e8 33 a0 80 00 e9 b6 fc ff ff
[ 657.069068] RSP: 0018:ffffb505ce1ffc78 EFLAGS: 00010202
[ 657.069069] RAX: 0000000000000060 RBX: ffff9b97921fe5c0 RCX: 0000000000000000
[ 657.069069] RDX: ffff9b67bad80000 RSI: 00000000ffffffa0 RDI: 0000000000000000
[ 657.069070] RBP: 0000000000000000 R08: 0000000000000000 R09: ffff9b97921fe718
[ 657.069070] R10: ffff9b97921fe710 R11: 0000000000000001 R12: 0000000000000064
[ 657.069070] R13: 0000000000000060 R14: 0000000000000000 R15: 0000000000000001
[ 657.069071] FS: 0000000000000000(0000) GS:ffff9b67c0880000(0000) knlGS:0000000000000000
[ 657.069072] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 657.069072] CR2: 0000559eac6fc238 CR3: 000000057860a002 CR4: 00000000007606e0
[ 657.069073] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 657.069073] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 657.069073] PKRU: 55555554
[ 657.069074] Call Trace:
[ 657.069080] __pci_enable_msix_range+0x233/0x5a0
[ 657.069085] ? kernfs_put+0xec/0x190
[ 657.069086] pci_alloc_irq_vectors_affinity+0xbb/0x130
[ 657.069089] nvme_reset_work+0x6e6/0xeab [nvme]
[ 657.069093] ? __switch_to_asm+0x34/0x70
[ 657.069094] ? __switch_to_asm+0x40/0x70
[ 657.069095] ? nvme_irq_check+0x30/0x30 [nvme]
[ 657.069098] process_one_work+0x1a7/0x370
[ 657.069101] worker_thread+0x1c9/0x380
[ 657.069102] ? max_active_store+0x80/0x80
[ 657.069103] kthread+0x112/0x130
[ 657.069104] ? __kthread_parkme+0x70/0x70
[ 657.069105] ret_from_fork+0x35/0x40
[ 657.069106] ---[ end trace f4f06b7d24513d06 ]---
[ 657.077110] nvme nvme0: 95/1/0 default/read/poll queues
Signed-off-by: Weiping Zhang <zhangweiping@didiglobal.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
call-sites
Have routines handle errors and just bail out of the poll loop.
This simplifies the code and will help as we may enhance the poll
loop logic and these are somewhat in the way.
Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
when trying to send the pdu data digest, we should set this
flag.
Reported-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
We can signal the stack that this is not the last page coming and the
stack can build a larger tso segment, so go ahead and use it.
Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
We can signal the stack that this is not the last page coming and the
stack can build a larger tso segment, so go ahead and use it.
Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Max Gurtovoy <maxg@mellanox.com>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
|
|
It is more efficient to use kmemdup_nul() if the size is known exactly.
The doc in kernel:
"Note: Use kmemdup_nul() instead if the size is known exactly."
Signed-off-by: Chen Zhou <chenzhou10@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
Since the switch of floppy driver to blk-mq, the contended (fdc_busy) case
in floppy_queue_rq() is not handled correctly.
In case we reach floppy_queue_rq() with fdc_busy set (i.e. with the floppy
locked due to another request still being in-flight), we put the request
on the list of requests and return BLK_STS_OK to the block core, without
actually scheduling delayed work / doing further processing of the
request. This means that processing of this request is postponed until
another request comes and passess uncontended.
Which in some cases might actually never happen and we keep waiting
indefinitely. The simple testcase is
for i in `seq 1 2000`; do echo -en $i '\r'; blkid --info /dev/fd0 2> /dev/null; done
run in quemu. That reliably causes blkid eventually indefinitely hanging
in __floppy_read_block_0() waiting for completion, as the BIO callback
never happens, and no further IO is ever submitted on the (non-existent)
floppy device. This was observed reliably on qemu-emulated device.
Fix that by not queuing the request in the contended case, and return
BLK_STS_RESOURCE instead, so that blk core handles the request
rescheduling and let it pass properly non-contended later.
Fixes: a9f38e1dec107a ("floppy: convert to blk-mq")
Cc: stable@vger.kernel.org
Tested-by: Libor Pechacek <lpechacek@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
The variable error is being assigned a value that is never
read so the assignment is redundant and can be removed.
Addresses-Coverity: ("Unused value")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
The IBM partition parser requires device type specific information only
available to the DASD driver to correctly register partitions. The
current approach of using ioctl_by_bdev with a fake user space pointer
is discouraged.
Fix this by replacing IOCTL calls with direct in-kernel function calls.
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Stefan Haberland <sth@linux.ibm.com>
Reviewed-by: Jan Hoeppner <hoeppner@linux.ibm.com>
Reviewed-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Prepare for in-kernel callers of this functionality.
Signed-off-by: Christoph Hellwig <hch@lst.de>
[sth@de.ibm.com: remove leftover kfree]
Signed-off-by: Stefan Haberland <sth@linux.ibm.com>
Reviewed-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Reviewed-by: Jan Hoeppner <hoeppner@linux.ibm.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This allows userspace to completely setup a loop device with a single
ioctl, removing the in-between state where the device can be partially
configured - eg the loop device has a backing file associated with it,
but is reading from the wrong offset.
Besides removing the intermediate state, another big benefit of this
ioctl is that LOOP_SET_STATUS can be slow; the main reason for this
slowness is that LOOP_SET_STATUS(64) calls blk_mq_freeze_queue() to
freeze the associated queue; this requires waiting for RCU
synchronization, which I've measured can take about 15-20ms on this
device on average.
In addition to doing what LOOP_SET_STATUS can do, LOOP_CONFIGURE can
also be used to:
- Set the correct block size immediately by setting
loop_config.block_size (avoids LOOP_SET_BLOCK_SIZE)
- Explicitly request direct I/O mode by setting LO_FLAGS_DIRECT_IO
in loop_config.info.lo_flags (avoids LOOP_SET_DIRECT_IO)
- Explicitly request read-only mode by setting LO_FLAGS_READ_ONLY
in loop_config.info.lo_flags
Here's setting up ~70 regular loop devices with an offset on an x86
Android device, using LOOP_SET_FD and LOOP_SET_STATUS:
vsoc_x86:/system/apex # time for i in `seq 30 100`;
do losetup -r -o 4096 /dev/block/loop$i com.android.adbd.apex; done
0m03.40s real 0m00.02s user 0m00.03s system
Here's configuring ~70 devices in the same way, but using a modified
losetup that uses the new LOOP_CONFIGURE ioctl:
vsoc_x86:/system/apex # time for i in `seq 30 100`;
do losetup -r -o 4096 /dev/block/loop$i com.android.adbd.apex; done
0m01.94s real 0m00.01s user 0m00.01s system
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
LOOP_SET_STATUS(64) will actually allow some lo_flags to be modified; in
particular, LO_FLAGS_AUTOCLEAR can be set and cleared, whereas
LO_FLAGS_PARTSCAN can be set to request a partition scan. Make this
explicit by updating the UAPI to include the flags that can be
set/cleared using this ioctl.
The implementation can then blindly take over the passed in flags,
and use the previous flags for those flags that can't be set / cleared
using LOOP_SET_STATUS.
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
In preparation for a new ioctl that needs to copy_from_user(); makes the
code easier to read as well.
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
So we can use it without forward declaration. This is a separate commit
to make it easier to verify that this is just a move, without functional
modifications.
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Factor out this code into a separate function, so it can be reused by
other code more easily.
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This function was now only used by loop_set_capacity(). Just open code
the remaining code in the caller instead.
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
figure_loop_size() calculates the loop size based on the passed in
parameters, but at the same time it updates the offset and sizelimit
parameters in the loop device configuration. That is a somewhat
unexpected side effect of a function with this name, and it is only only
needed by one of the two callers of this function - loop_set_status().
Move the lo_offset and lo_sizelimit assignment back into loop_set_status(),
and use the newly factored out functions to validate and apply the newly
calculated size. This allows us to get rid of figure_loop_size() in a
follow-up commit.
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This was recently added to block/genhd.c, and takes care of both
updating the capacity and notifying userspace of the new size.
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This code is used repeatedly.
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
sector_t is now always u64, so we don't need to check for truncation.
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
loop_set_status() calls loop_config_discard() to configure discard for
the loop device; however, the discard configuration depends on whether
the loop device uses encryption, and when we call it the encryption
configuration has not been updated yet. Move the call down so we apply
the correct discard configuration based on the new configuration.
Signed-off-by: Martijn Coenen <maco@android.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Bob Liu <bob.liu@oracle.com>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Use set_current_state macro instead of current->state = TASK_RUNNING.
Signed-off-by: Xu Wang <vulab@iscas.ac.cn>
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
sizeof(flexible-array-member) triggers a warning because flexible array
members have incomplete type[1]. There are some instances of code in
which the sizeof operator is being incorrectly/erroneously applied to
zero-length arrays and the result is zero. Such instances may be hiding
some bugs. So, this work (flexible-array member conversions) will also
help to get completely rid of those sorts of issues.
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Song Liu <songliubraving@fb.com>
|
|
Add a missing newline when printing module parameter 'start_ro' by
sysfs.
Signed-off-by: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Signed-off-by: Song Liu <songliubraving@fb.com>
|
|
Pointer to mddev is already available in private_data.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Song Liu <songliubraving@fb.com>
|
|
also finished
When using RAID1 and write-behind, md can deadlock when errors occur. With
write-behind, r1bio structs can be accounted by raid1 as queued but not
counted as pending. The pending count is dropped when the original bio is
returned complete but write-behind for the r1bio may still be active.
This breaks the accounting used in some conditions to know when the raid1
md device has reached an idle state. It can result in calls to
freeze_array deadlocking. freeze_array will never complete from a negative
"unqueued" value being calculated due to a queued count larger than the
pending count.
To properly account for write-behind, move the call to allow_barrier from
call_bio_endio to raid_end_bio_io. When using write-behind, md can call
call_bio_endio before all write-behind I/O is complete. Using
raid_end_bio_io for the point to call allow_barrier will release the
pending count at a point where all I/O for an r1bio, even write-behind, is
done.
Signed-off-by: David Jeffery <djeffery@redhat.com>
Signed-off-by: Song Liu <songliubraving@fb.com>
|
|
In mddev_create_serial_pool(), memalloc scope APIs memalloc_noio_save()
and memalloc_noio_restore() are used when allocating memory by calling
mempool_create_kmalloc_pool(). After adding the memalloc scope APIs in
raid array suspend context, it is unncessary to explicitly call them
around mempool_create_kmalloc_pool() any longer.
This patch removes the redundant memalloc scope APIs in
mddev_create_serial_pool().
Signed-off-by: Coly Li <colyli@suse.de>
Cc: Guoqing Jiang <guoqing.jiang@cloud.ionos.com>
Signed-off-by: Song Liu <songliubraving@fb.com>
|
|
Code comments of scribble_alloc() is outdated for a while. This patch
update the comments in function header for the new parameter list.
Suggested-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Song Liu <songliubraving@fb.com>
|
|
Using GFP_NOIO flag to call scribble_alloc() from resize_chunk() does
not have the expected behavior. kvmalloc_array() inside scribble_alloc()
which receives the GFP_NOIO flag will eventually call kmalloc_node() to
allocate physically continuous pages.
Now we have memalloc scope APIs in mddev_suspend()/mddev_resume() to
prevent memory reclaim I/Os during raid array suspend context, calling
to kvmalloc_array() with GFP_KERNEL flag may avoid deadlock of recursive
I/O as expected.
This patch removes the useless gfp flags from parameters list of
scribble_alloc(), and call kvmalloc_array() with GFP_KERNEL flag. The
incorrect GFP_NOIO flag does not exist anymore.
Fixes: b330e6a49dc3 ("md: convert to kvmalloc")
Suggested-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Song Liu <songliubraving@fb.com>
|
|
In raid5.c:resize_chunk(), scribble_alloc() is called with GFP_NOIO
flag, then it is sent into kvmalloc_array() inside scribble_alloc().
The problem is kvmalloc_array() eventually calls kvmalloc_node() which
does not accept non GFP_KERNEL compatible flag like GFP_NOIO, then
kmalloc_node() is called indeed to allocate physically continuous
pages. When system memory is under heavy pressure, and the requesting
size is large, there is high probability that allocating continueous
pages will fail.
But simply using GFP_KERNEL flag to call kvmalloc_array() is also
progblematic. In the code path where scribble_alloc() is called, the
raid array is suspended, if kvmalloc_node() triggers memory reclaim I/Os
and such I/Os go back to the suspend raid array, deadlock will happen.
What is desired here is to allocate non-physically (a.k.a virtually)
continuous pages and avoid memory reclaim I/Os. Michal Hocko suggests
to use the mmealloc sceope APIs to restrict memory reclaim I/O in
allocating context, specifically to call memalloc_noio_save() when
suspend the raid array and to call memalloc_noio_restore() when
resume the raid array.
This patch adds the memalloc scope APIs in mddev_suspend() and
mddev_resume(), to restrict memory reclaim I/Os during the raid array
is suspended. The benifit of adding the memalloc scope API in the
unified entry point mddev_suspend()/mddev_resume() is, no matter which
md raid array type (personality), we are sure the deadlock by recursive
memory reclaim I/O won't happen on the suspending context.
Please notice that the memalloc scope APIs only take effect on the raid
array suspending context, if the memory allocation is from another new
created kthread after raid array suspended, the recursive memory reclaim
I/Os won't be restricted. The mddev_suspend()/mddev_resume() entries are
used for the critical section where the raid metadata is modifying,
creating a kthread to allocate memory inside the critical section is
queer and very probably being buggy.
Fixes: b330e6a49dc3 ("md: convert to kvmalloc")
Suggested-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Song Liu <songliubraving@fb.com>
|
|
It is not not necessary to add a newline for them since they don't exceed
80 characters, and it is not intutive to distinguish ->hot_add_disk() from
hot_add_disk() too.
Signed-off-by: Guoqing Jiang <guoqing.jiang@cloud.ionos.com>
Signed-off-by: Song Liu <songliubraving@fb.com>
|
|
Since rdev->kobj is removed asynchronously, it is possible that the
rdev->kobj still exists when try to add the rdev again after rdev
is removed. But this path md_ioctl (HOT_ADD_DISK) -> hot_add_disk
-> bind_rdev_to_array missed it.
Signed-off-by: Guoqing Jiang <guoqing.jiang@cloud.ionos.com>
Signed-off-by: Song Liu <songliubraving@fb.com>
|
|
We need to check mddev->del_work before flush workqueu since the purpose
of flush is to ensure the previous md is disappeared. Otherwise the similar
deadlock appeared if LOCKDEP is enabled, it is due to md_open holds the
bdev->bd_mutex before flush workqueue.
kernel: [ 154.522645] ======================================================
kernel: [ 154.522647] WARNING: possible circular locking dependency detected
kernel: [ 154.522650] 5.6.0-rc7-lp151.27-default #25 Tainted: G O
kernel: [ 154.522651] ------------------------------------------------------
kernel: [ 154.522653] mdadm/2482 is trying to acquire lock:
kernel: [ 154.522655] ffff888078529128 ((wq_completion)md_misc){+.+.}, at: flush_workqueue+0x84/0x4b0
kernel: [ 154.522673]
kernel: [ 154.522673] but task is already holding lock:
kernel: [ 154.522675] ffff88804efa9338 (&bdev->bd_mutex){+.+.}, at: __blkdev_get+0x79/0x590
kernel: [ 154.522691]
kernel: [ 154.522691] which lock already depends on the new lock.
kernel: [ 154.522691]
kernel: [ 154.522694]
kernel: [ 154.522694] the existing dependency chain (in reverse order) is:
kernel: [ 154.522696]
kernel: [ 154.522696] -> #4 (&bdev->bd_mutex){+.+.}:
kernel: [ 154.522704] __mutex_lock+0x87/0x950
kernel: [ 154.522706] __blkdev_get+0x79/0x590
kernel: [ 154.522708] blkdev_get+0x65/0x140
kernel: [ 154.522709] blkdev_get_by_dev+0x2f/0x40
kernel: [ 154.522716] lock_rdev+0x3d/0x90 [md_mod]
kernel: [ 154.522719] md_import_device+0xd6/0x1b0 [md_mod]
kernel: [ 154.522723] new_dev_store+0x15e/0x210 [md_mod]
kernel: [ 154.522728] md_attr_store+0x7a/0xc0 [md_mod]
kernel: [ 154.522732] kernfs_fop_write+0x117/0x1b0
kernel: [ 154.522735] vfs_write+0xad/0x1a0
kernel: [ 154.522737] ksys_write+0xa4/0xe0
kernel: [ 154.522745] do_syscall_64+0x64/0x2b0
kernel: [ 154.522748] entry_SYSCALL_64_after_hwframe+0x49/0xbe
kernel: [ 154.522749]
kernel: [ 154.522749] -> #3 (&mddev->reconfig_mutex){+.+.}:
kernel: [ 154.522752] __mutex_lock+0x87/0x950
kernel: [ 154.522756] new_dev_store+0xc9/0x210 [md_mod]
kernel: [ 154.522759] md_attr_store+0x7a/0xc0 [md_mod]
kernel: [ 154.522761] kernfs_fop_write+0x117/0x1b0
kernel: [ 154.522763] vfs_write+0xad/0x1a0
kernel: [ 154.522765] ksys_write+0xa4/0xe0
kernel: [ 154.522767] do_syscall_64+0x64/0x2b0
kernel: [ 154.522769] entry_SYSCALL_64_after_hwframe+0x49/0xbe
kernel: [ 154.522770]
kernel: [ 154.522770] -> #2 (kn->count#253){++++}:
kernel: [ 154.522775] __kernfs_remove+0x253/0x2c0
kernel: [ 154.522778] kernfs_remove+0x1f/0x30
kernel: [ 154.522780] kobject_del+0x28/0x60
kernel: [ 154.522783] mddev_delayed_delete+0x24/0x30 [md_mod]
kernel: [ 154.522786] process_one_work+0x2a7/0x5f0
kernel: [ 154.522788] worker_thread+0x2d/0x3d0
kernel: [ 154.522793] kthread+0x117/0x130
kernel: [ 154.522795] ret_from_fork+0x3a/0x50
kernel: [ 154.522796]
kernel: [ 154.522796] -> #1 ((work_completion)(&mddev->del_work)){+.+.}:
kernel: [ 154.522800] process_one_work+0x27e/0x5f0
kernel: [ 154.522802] worker_thread+0x2d/0x3d0
kernel: [ 154.522804] kthread+0x117/0x130
kernel: [ 154.522806] ret_from_fork+0x3a/0x50
kernel: [ 154.522807]
kernel: [ 154.522807] -> #0 ((wq_completion)md_misc){+.+.}:
kernel: [ 154.522813] __lock_acquire+0x1392/0x1690
kernel: [ 154.522816] lock_acquire+0xb4/0x1a0
kernel: [ 154.522818] flush_workqueue+0xab/0x4b0
kernel: [ 154.522821] md_open+0xb6/0xc0 [md_mod]
kernel: [ 154.522823] __blkdev_get+0xea/0x590
kernel: [ 154.522825] blkdev_get+0x65/0x140
kernel: [ 154.522828] do_dentry_open+0x1d1/0x380
kernel: [ 154.522831] path_openat+0x567/0xcc0
kernel: [ 154.522834] do_filp_open+0x9b/0x110
kernel: [ 154.522836] do_sys_openat2+0x201/0x2a0
kernel: [ 154.522838] do_sys_open+0x57/0x80
kernel: [ 154.522840] do_syscall_64+0x64/0x2b0
kernel: [ 154.522842] entry_SYSCALL_64_after_hwframe+0x49/0xbe
kernel: [ 154.522844]
kernel: [ 154.522844] other info that might help us debug this:
kernel: [ 154.522844]
kernel: [ 154.522846] Chain exists of:
kernel: [ 154.522846] (wq_completion)md_misc --> &mddev->reconfig_mutex --> &bdev->bd_mutex
kernel: [ 154.522846]
kernel: [ 154.522850] Possible unsafe locking scenario:
kernel: [ 154.522850]
kernel: [ 154.522852] CPU0 CPU1
kernel: [ 154.522853] ---- ----
kernel: [ 154.522854] lock(&bdev->bd_mutex);
kernel: [ 154.522856] lock(&mddev->reconfig_mutex);
kernel: [ 154.522858] lock(&bdev->bd_mutex);
kernel: [ 154.522860] lock((wq_completion)md_misc);
kernel: [ 154.522861]
kernel: [ 154.522861] *** DEADLOCK ***
kernel: [ 154.522861]
kernel: [ 154.522864] 1 lock held by mdadm/2482:
kernel: [ 154.522865] #0: ffff88804efa9338 (&bdev->bd_mutex){+.+.}, at: __blkdev_get+0x79/0x590
kernel: [ 154.522868]
kernel: [ 154.522868] stack backtrace:
kernel: [ 154.522873] CPU: 1 PID: 2482 Comm: mdadm Tainted: G O 5.6.0-rc7-lp151.27-default #25
kernel: [ 154.522875] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
kernel: [ 154.522878] Call Trace:
kernel: [ 154.522881] dump_stack+0x8f/0xcb
kernel: [ 154.522884] check_noncircular+0x194/0x1b0
kernel: [ 154.522888] ? __lock_acquire+0x1392/0x1690
kernel: [ 154.522890] __lock_acquire+0x1392/0x1690
kernel: [ 154.522893] lock_acquire+0xb4/0x1a0
kernel: [ 154.522895] ? flush_workqueue+0x84/0x4b0
kernel: [ 154.522898] flush_workqueue+0xab/0x4b0
kernel: [ 154.522900] ? flush_workqueue+0x84/0x4b0
kernel: [ 154.522905] ? md_open+0xb6/0xc0 [md_mod]
kernel: [ 154.522908] md_open+0xb6/0xc0 [md_mod]
kernel: [ 154.522910] __blkdev_get+0xea/0x590
kernel: [ 154.522912] ? bd_acquire+0xc0/0xc0
kernel: [ 154.522914] blkdev_get+0x65/0x140
kernel: [ 154.522916] ? bd_acquire+0xc0/0xc0
kernel: [ 154.522918] do_dentry_open+0x1d1/0x380
kernel: [ 154.522921] path_openat+0x567/0xcc0
kernel: [ 154.522923] ? __lock_acquire+0x380/0x1690
kernel: [ 154.522926] do_filp_open+0x9b/0x110
kernel: [ 154.522929] ? __alloc_fd+0xe5/0x1f0
kernel: [ 154.522935] ? kmem_cache_alloc+0x28c/0x630
kernel: [ 154.522939] ? do_sys_openat2+0x201/0x2a0
kernel: [ 154.522941] do_sys_openat2+0x201/0x2a0
kernel: [ 154.522944] do_sys_open+0x57/0x80
kernel: [ 154.522946] do_syscall_64+0x64/0x2b0
kernel: [ 154.522948] entry_SYSCALL_64_after_hwframe+0x49/0xbe
kernel: [ 154.522951] RIP: 0033:0x7f98d279d9ae
And md_alloc also flushed the same workqueue, but the thing is different
here. Because all the paths call md_alloc don't hold bdev->bd_mutex, and
the flush is necessary to avoid race condition, so leave it as it is.
Signed-off-by: Guoqing Jiang <guoqing.jiang@cloud.ionos.com>
Signed-off-by: Song Liu <songliubraving@fb.com>
|
|
Since the purpose of call flush_workqueue in new_dev_store is to ensure
md_delayed_delete() has completed, so we should check rdev->del_work is
pending or not.
To suppress lockdep warning, we have to check mddev->del_work while
md_delayed_delete is attached to rdev->del_work, so it is not aligned
to the purpose of flush workquee. So a new workqueue is needed to avoid
the awkward situation, and introduce a new func flush_rdev_wq to flush
the new workqueue after check if there was pending work.
Also like new_dev_store, ADD_NEW_DISK ioctl has the same purpose to flush
workqueue while it holds bdev->bd_mutex, so make the same change applies
to the ioctl to avoid similar lock issue.
And md_delayed_delete actually wants to delete rdev, so rename the function
to rdev_delayed_delete.
Signed-off-by: Guoqing Jiang <guoqing.jiang@cloud.ionos.com>
Signed-off-by: Song Liu <songliubraving@fb.com>
|
|
Coly reported possible circular locking dependencyi with LOCKDEP enabled,
quote the below info from the detailed report [1].
[ 1607.673903] Chain exists of:
[ 1607.673903] kn->count#256 --> (wq_completion)md_misc -->
(work_completion)(&rdev->del_work)
[ 1607.673903]
[ 1607.827946] Possible unsafe locking scenario:
[ 1607.827946]
[ 1607.898780] CPU0 CPU1
[ 1607.952980] ---- ----
[ 1608.007173] lock((work_completion)(&rdev->del_work));
[ 1608.069690] lock((wq_completion)md_misc);
[ 1608.149887] lock((work_completion)(&rdev->del_work));
[ 1608.242563] lock(kn->count#256);
[ 1608.283238]
[ 1608.283238] *** DEADLOCK ***
[ 1608.283238]
[ 1608.354078] 2 locks held by kworker/5:0/843:
[ 1608.405152] #0: ffff8889eecc9948 ((wq_completion)md_misc){+.+.}, at:
process_one_work+0x42b/0xb30
[ 1608.512399] #1: ffff888a1d3b7e10
((work_completion)(&rdev->del_work)){+.+.}, at: process_one_work+0x42b/0xb30
[ 1608.632130]
Since works (rdev->del_work and mddev->del_work) are queued in md_misc_wq,
then lockdep_map lock is held if either of them are running, then both of
them try to hold kernfs lock by call kobject_del. Then if new_dev_store
or array_state_store are triggered by write to the related sysfs node, so
the write operation gets kernfs lock, but need the lockdep_map because all
of them would trigger flush_workqueue(md_misc_wq) finally, then the same
lockdep_map lock is needed.
To suppress the lockdep warnning, we should flush the workqueue in case the
related work is pending. And several works are attached to md_misc_wq, so
we need to check which work should be checked:
1. for __md_stop_writes, the purpose of call flush workqueue is ensure sync
thread is started if it was starting, so check mddev->del_work is pending
or not since md_start_sync is attached to mddev->del_work.
2. __md_stop flushes md_misc_wq to ensure event_work is done, check the
event_work is enough. Assume raid_{ctr,dtr} -> md_stop -> __md_stop doesn't
need the kernfs lock.
3. both new_dev_store (holds kernfs lock) and ADD_NEW_DISK ioctl (holds the
bdev->bd_mutex) call flush_workqueue to ensure md_delayed_delete has
completed, this case will be handled in next patch.
4. md_open flushes workqueue to ensure the previous md is disappeared, but
it holds bdev->bd_mutex then try to flush workqueue, so it is better to
check mddev->del_work as well to avoid potential lock issue, this will be
done in another patch.
[1]: https://marc.info/?l=linux-raid&m=158518958031584&w=2
Cc: Coly Li <colyli@suse.de>
Reported-by: Coly Li <colyli@suse.de>
Signed-off-by: Guoqing Jiang <guoqing.jiang@cloud.ionos.com>
Signed-off-by: Song Liu <songliubraving@fb.com>
|
|
UBSAN: array-index-out-of-bounds in drivers/block/floppy.c:1521:45
index 16 is out of range for type 'unsigned char [16]'
Call Trace:
...
setup_rw_floppy+0x5c3/0x7f0
floppy_ready+0x2be/0x13b0
process_one_work+0x2c1/0x5d0
worker_thread+0x56/0x5e0
kthread+0x122/0x170
ret_from_fork+0x35/0x40
From include/uapi/linux/fd.h:
struct floppy_raw_cmd {
...
unsigned char cmd_count;
unsigned char cmd[16];
unsigned char reply_count;
unsigned char reply[16];
...
}
This out-of-bounds access is intentional. The command in struct
floppy_raw_cmd may take up the space initially intended for the reply
and the reply count. It is needed for long 82078 commands such as
RESTORE, which takes 17 command bytes. Initial cmd size is not enough
and since struct setup_rw_floppy is a part of uapi we check that
cmd_count is in [0:16+1+16] in raw_cmd_copyin().
The patch adds union with original cmd,reply_count,reply fields and
fullcmd field of equivalent size. The cmd accesses are turned to
fullcmd where appropriate to suppress UBSAN warning.
Link: https://lore.kernel.org/r/20200501134416.72248-5-efremov@linux.com
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Denis Efremov <efremov@linux.com>
|
|
Use FD_RAW_CMD_SIZE, FD_RAW_REPLY_SIZE defines instead of magic numbers
for cmd & reply buffers of struct floppy_raw_cmd. Remove local to
floppy.c MAX_REPLIES define, as it is now FD_RAW_REPLY_SIZE.
FD_RAW_CMD_FULLSIZE added as we allow command to also fill reply_count
and reply fields.
Link: https://lore.kernel.org/r/20200501134416.72248-4-efremov@linux.com
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Denis Efremov <efremov@linux.com>
|
|
Use FD_AUTODETECT_SIZE for autodetect buffer size in struct
floppy_drive_params instead of a magic number.
Link: https://lore.kernel.org/r/20200501134416.72248-3-efremov@linux.com
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Denis Efremov <efremov@linux.com>
|