summaryrefslogtreecommitdiff
path: root/drivers
AgeCommit message (Collapse)AuthorFilesLines
2019-07-01Merge tag 'v5.2-rc6' into for-5.3/blockJens Axboe2105-11334/+3917
Merge 5.2-rc6 into for-5.3/block, so we get the same page merge leak fix. Otherwise we end up having conflicts with future patches between for-5.3/block and master that touch this area. In particular, it makes the bio_full() fix hard to backport to stable. * tag 'v5.2-rc6': (482 commits) Linux 5.2-rc6 Revert "iommu/vt-d: Fix lock inversion between iommu->lock and device_domain_lock" Bluetooth: Fix regression with minimum encryption key size alignment tcp: refine memory limit test in tcp_fragment() x86/vdso: Prevent segfaults due to hoisted vclock reads SUNRPC: Fix a credential refcount leak Revert "SUNRPC: Declare RPC timers as TIMER_DEFERRABLE" net :sunrpc :clnt :Fix xps refcount imbalance on the error path NFS4: Only set creation opendata if O_CREAT ARM: 8867/1: vdso: pass --be8 to linker if necessary KVM: nVMX: reorganize initial steps of vmx_set_nested_state KVM: PPC: Book3S HV: Invalidate ERAT when flushing guest TLB entries habanalabs: use u64_to_user_ptr() for reading user pointers nfsd: replace Jeff by Chuck as nfsd co-maintainer inet: clear num_timeout reqsk_alloc() PCI/P2PDMA: Ignore root complex whitelist when an IOMMU is present net: mvpp2: debugfs: Add pmap to fs dump ipv6: Default fib6_type to RTN_UNICAST when not set net: hns3: Fix inconsistent indenting net/af_iucv: always register net_device notifier ...
2019-06-29block: never take page references for ITER_BVECChristoph Hellwig1-12/+4
If we pass pages through an iov_iter we always already have a reference in the caller. Thus remove the ITER_BVEC_FLAG_NO_REF and don't take reference to pages by default for bvec backed iov_iters. Reviewed-by: Minwoo Im <minwoo.im.dev@gmail.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-29block: skd_main.c: Remove call to memset after dma_alloc_coherentFuqian Huang1-1/+0
In commit af7ddd8a627c ("Merge tag 'dma-mapping-4.21' of git://git.infradead.org/users/hch/dma-mapping"), dma_alloc_coherent has already zeroed the memory. So memset is not needed. Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Fuqian Huang <huangfq.daxian@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-29block: mtip32xx: Remove call to memset after dma_alloc_coherentFuqian Huang1-5/+0
In commit af7ddd8a627c ("Merge tag 'dma-mapping-4.21' of git://git.infradead.org/users/hch/dma-mapping"), dma_alloc_coherent has already zeroed the memory. So memset is not needed. Signed-off-by: Fuqian Huang <huangfq.daxian@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-29null_blk: fix type mismatch null_handle_cmd()Chaitanya Kulkarni1-1/+1
In null_handle_cmd() when device is configured as zoned, variable op is decalred as an int, where it is used to hold values of type REQ_OP_XXX which is of type enum req_opf. Change the type from int to enum req_opf. Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: add reclaimed_journal_buckets to struct cache_setColy Li3-0/+7
Now we have counters for how many times jouranl is reclaimed, how many times cached dirty btree nodes are flushed, but we don't know how many jouranl buckets are really reclaimed. This patch adds reclaimed_journal_buckets into struct cache_set, this is an increasing only counter, to tell how many journal buckets are reclaimed since cache set runs. From all these three counters (reclaim, reclaimed_journal_buckets, flush_write), we can have idea how well current journal space reclaim code works. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: performance improvement for btree_flush_write()Coly Li2-22/+67
This patch improves performance for btree_flush_write() in following ways, - Use another spinlock journal.flush_write_lock to replace the very hot journal.lock. We don't have to use journal.lock here, selecting candidate btree nodes takes a lot of time, hold journal.lock here will block other jouranling threads and drop the overall I/O performance. - Only select flushing btree node from c->btree_cache list. When the machine has a large system memory, mca cache may have a huge number of cached btree nodes. Iterating all the cached nodes will take a lot of CPU time, and most of the nodes on c->btree_cache_freeable and c->btree_cache_freed lists are cleared and have need to flush. So only travel mca list c->btree_cache to select flushing btree node should be enough for most of the cases. - Don't iterate whole c->btree_cache list, only reversely select first BTREE_FLUSH_NR btree nodes to flush. Iterate all btree nodes from c->btree_cache and select the oldest journal pin btree nodes consumes huge number of CPU cycles if the list is huge (push and pop a node into/out of a heap is expensive). The last several dirty btree nodes on the tail of c->btree_cache list are earlest allocated and cached btree nodes, they are relative to the oldest journal pin btree nodes. Therefore only flushing BTREE_FLUSH_NR btree nodes from tail of c->btree_cache probably includes the oldest journal pin btree nodes. In my testing, the above change decreases 50%+ CPU consumption when journal space is full. Some times IOPS drops to 0 for 5-8 seconds, comparing blocking I/O for 120+ seconds in previous code, this is much better. Maybe there is room to improve in future, but at this momment the fix looks fine and performs well in my testing. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: fix race in btree_flush_write()Coly Li3-1/+36
There is a race between mca_reap(), btree_node_free() and journal code btree_flush_write(), which results very rare and strange deadlock or panic and are very hard to reproduce. Let me explain how the race happens. In btree_flush_write() one btree node with oldest journal pin is selected, then it is flushed to cache device, the select-and-flush is a two steps operation. Between these two steps, there are something may happen inside the race window, - The selected btree node was reaped by mca_reap() and allocated to other requesters for other btree node. - The slected btree node was selected, flushed and released by mca shrink callback bch_mca_scan(). When btree_flush_write() tries to flush the selected btree node, firstly b->write_lock is held by mutex_lock(). If the race happens and the memory of selected btree node is allocated to other btree node, if that btree node's write_lock is held already, a deadlock very probably happens here. A worse case is the memory of the selected btree node is released, then all references to this btree node (e.g. b->write_lock) will trigger NULL pointer deference panic. This race was introduced in commit cafe56359144 ("bcache: A block layer cache"), and enlarged by commit c4dc2497d50d ("bcache: fix high CPU occupancy during journal"), which selected 128 btree nodes and flushed them one-by-one in a quite long time period. Such race is not easy to reproduce before. On a Lenovo SR650 server with 48 Xeon cores, and configure 1 NVMe SSD as cache device, a MD raid0 device assembled by 3 NVMe SSDs as backing device, this race can be observed around every 10,000 times btree_flush_write() gets called. Both deadlock and kernel panic all happened as aftermath of the race. The idea of the fix is to add a btree flag BTREE_NODE_journal_flush. It is set when selecting btree nodes, and cleared after btree nodes flushed. Then when mca_reap() selects a btree node with this bit set, this btree node will be skipped. Since mca_reap() only reaps btree node without BTREE_NODE_journal_flush flag, such race is avoided. Once corner case should be noticed, that is btree_node_free(). It might be called in some error handling code path. For example the following code piece from btree_split(), 2149 err_free2: 2150 bkey_put(b->c, &n2->key); 2151 btree_node_free(n2); 2152 rw_unlock(true, n2); 2153 err_free1: 2154 bkey_put(b->c, &n1->key); 2155 btree_node_free(n1); 2156 rw_unlock(true, n1); At line 2151 and 2155, the btree node n2 and n1 are released without mac_reap(), so BTREE_NODE_journal_flush also needs to be checked here. If btree_node_free() is called directly in such error handling path, and the selected btree node has BTREE_NODE_journal_flush bit set, just delay for 1 us and retry again. In this case this btree node won't be skipped, just retry until the BTREE_NODE_journal_flush bit cleared, and free the btree node memory. Fixes: cafe56359144 ("bcache: A block layer cache") Signed-off-by: Coly Li <colyli@suse.de> Reported-and-tested-by: kbuild test robot <lkp@intel.com> Cc: stable@vger.kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: remove retry_flush_write from struct cache_setColy Li3-7/+0
In struct cache_set, retry_flush_write is added for commit c4dc2497d50d ("bcache: fix high CPU occupancy during journal") which is reverted in previous patch. Now it is useless anymore, and this patch removes it from bcache code. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: add comments for mutex_lock(&b->write_lock)Coly Li1-0/+10
When accessing or modifying BTREE_NODE_dirty bit, it is not always necessary to acquire b->write_lock. In bch_btree_cache_free() and mca_reap() acquiring b->write_lock is necessary, and this patch adds comments to explain why mutex_lock(&b->write_lock) is necessary for checking or clearing BTREE_NODE_dirty bit there. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: only clear BTREE_NODE_dirty bit when it is setColy Li1-5/+6
In bch_btree_cache_free() and btree_node_free(), BTREE_NODE_dirty is always set no matter btree node is dirty or not. The code looks like this, if (btree_node_dirty(b)) btree_complete_write(b, btree_current_write(b)); clear_bit(BTREE_NODE_dirty, &b->flags); Indeed if btree_node_dirty(b) returns false, it means BTREE_NODE_dirty bit is cleared, then it is unnecessary to clear the bit again. This patch only clears BTREE_NODE_dirty when btree_node_dirty(b) is true (the bit is set), to save a few CPU cycles. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: Revert "bcache: fix high CPU occupancy during journal"Coly Li3-36/+15
This reverts commit c4dc2497d50d9c6fb16aa0d07b6a14f3b2adb1e0. This patch enlarges a race between normal btree flush code path and flush_btree_write(), which causes deadlock when journal space is exhausted. Reverts this patch makes the race window from 128 btree nodes to only 1 btree nodes. Fixes: c4dc2497d50d ("bcache: fix high CPU occupancy during journal") Signed-off-by: Coly Li <colyli@suse.de> Cc: stable@vger.kernel.org Cc: Tang Junhui <tang.junhui.linux@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: Revert "bcache: free heap cache_set->flush_btree in bch_journal_free"Coly Li1-1/+0
This reverts commit 6268dc2c4703aabfb0b35681be709acf4c2826c6. This patch depends on commit c4dc2497d50d ("bcache: fix high CPU occupancy during journal") which is reverted in previous patch. So revert this one too. Fixes: 6268dc2c4703 ("bcache: free heap cache_set->flush_btree in bch_journal_free") Signed-off-by: Coly Li <colyli@suse.de> Cc: stable@vger.kernel.org Cc: Shenghui Wang <shhuiw@foxmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: shrink btree node cache after bch_btree_check()Coly Li1-0/+17
When cache set starts, bch_btree_check() will check all bkeys on cache device by calculating the checksum. This operation will consume a huge number of system memory if there are a lot of data cached. Since bcache uses its own mca cache to maintain all its read-in btree nodes, and only releases the cache space when system memory manage code starts to shrink caches. Then before memory manager code to call the mca cache shrinker callback, bcache mca cache will compete memory resource with user space application, which may have nagive effect to performance of user space workloads (e.g. data base, or I/O service of distributed storage node). This patch tries to call bcache mca shrinker routine to proactively release mca cache memory, to decrease the memory pressure of system and avoid negative effort of the overall system I/O performance. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: set largest seq to ja->seq[bucket_index] in journal_read_bucket()Coly Li1-1/+2
In journal_read_bucket() when setting ja->seq[bucket_index], there might be potential case that a later non-maximum overwrites a better sequence number to ja->seq[bucket_index]. This patch adds a check to make sure that ja->seq[bucket_index] will be only set a new value if it is bigger then current value. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: add code comments for journal_read_bucket()Coly Li1-0/+24
This patch adds more code comments in journal_read_bucket(), this is an effort to make the code to be more understandable. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: fix potential deadlock in cached_def_free()Coly Li2-2/+4
When enable lockdep and reboot system with a writeback mode bcache device, the following potential deadlock warning is reported by lockdep engine. [ 101.536569][ T401] kworker/2:2/401 is trying to acquire lock: [ 101.538575][ T401] 00000000bbf6e6c7 ((wq_completion)bcache_writeback_wq){+.+.}, at: flush_workqueue+0x87/0x4c0 [ 101.542054][ T401] [ 101.542054][ T401] but task is already holding lock: [ 101.544587][ T401] 00000000f5f305b3 ((work_completion)(&cl->work)#2){+.+.}, at: process_one_work+0x21e/0x640 [ 101.548386][ T401] [ 101.548386][ T401] which lock already depends on the new lock. [ 101.548386][ T401] [ 101.551874][ T401] [ 101.551874][ T401] the existing dependency chain (in reverse order) is: [ 101.555000][ T401] [ 101.555000][ T401] -> #1 ((work_completion)(&cl->work)#2){+.+.}: [ 101.557860][ T401] process_one_work+0x277/0x640 [ 101.559661][ T401] worker_thread+0x39/0x3f0 [ 101.561340][ T401] kthread+0x125/0x140 [ 101.562963][ T401] ret_from_fork+0x3a/0x50 [ 101.564718][ T401] [ 101.564718][ T401] -> #0 ((wq_completion)bcache_writeback_wq){+.+.}: [ 101.567701][ T401] lock_acquire+0xb4/0x1c0 [ 101.569651][ T401] flush_workqueue+0xae/0x4c0 [ 101.571494][ T401] drain_workqueue+0xa9/0x180 [ 101.573234][ T401] destroy_workqueue+0x17/0x250 [ 101.575109][ T401] cached_dev_free+0x44/0x120 [bcache] [ 101.577304][ T401] process_one_work+0x2a4/0x640 [ 101.579357][ T401] worker_thread+0x39/0x3f0 [ 101.581055][ T401] kthread+0x125/0x140 [ 101.582709][ T401] ret_from_fork+0x3a/0x50 [ 101.584592][ T401] [ 101.584592][ T401] other info that might help us debug this: [ 101.584592][ T401] [ 101.588355][ T401] Possible unsafe locking scenario: [ 101.588355][ T401] [ 101.590974][ T401] CPU0 CPU1 [ 101.592889][ T401] ---- ---- [ 101.594743][ T401] lock((work_completion)(&cl->work)#2); [ 101.596785][ T401] lock((wq_completion)bcache_writeback_wq); [ 101.600072][ T401] lock((work_completion)(&cl->work)#2); [ 101.602971][ T401] lock((wq_completion)bcache_writeback_wq); [ 101.605255][ T401] [ 101.605255][ T401] *** DEADLOCK *** [ 101.605255][ T401] [ 101.608310][ T401] 2 locks held by kworker/2:2/401: [ 101.610208][ T401] #0: 00000000cf2c7d17 ((wq_completion)events){+.+.}, at: process_one_work+0x21e/0x640 [ 101.613709][ T401] #1: 00000000f5f305b3 ((work_completion)(&cl->work)#2){+.+.}, at: process_one_work+0x21e/0x640 [ 101.617480][ T401] [ 101.617480][ T401] stack backtrace: [ 101.619539][ T401] CPU: 2 PID: 401 Comm: kworker/2:2 Tainted: G W 5.2.0-rc4-lp151.20-default+ #1 [ 101.623225][ T401] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018 [ 101.627210][ T401] Workqueue: events cached_dev_free [bcache] [ 101.629239][ T401] Call Trace: [ 101.630360][ T401] dump_stack+0x85/0xcb [ 101.631777][ T401] print_circular_bug+0x19a/0x1f0 [ 101.633485][ T401] __lock_acquire+0x16cd/0x1850 [ 101.635184][ T401] ? __lock_acquire+0x6a8/0x1850 [ 101.636863][ T401] ? lock_acquire+0xb4/0x1c0 [ 101.638421][ T401] ? find_held_lock+0x34/0xa0 [ 101.640015][ T401] lock_acquire+0xb4/0x1c0 [ 101.641513][ T401] ? flush_workqueue+0x87/0x4c0 [ 101.643248][ T401] flush_workqueue+0xae/0x4c0 [ 101.644832][ T401] ? flush_workqueue+0x87/0x4c0 [ 101.646476][ T401] ? drain_workqueue+0xa9/0x180 [ 101.648303][ T401] drain_workqueue+0xa9/0x180 [ 101.649867][ T401] destroy_workqueue+0x17/0x250 [ 101.651503][ T401] cached_dev_free+0x44/0x120 [bcache] [ 101.653328][ T401] process_one_work+0x2a4/0x640 [ 101.655029][ T401] worker_thread+0x39/0x3f0 [ 101.656693][ T401] ? process_one_work+0x640/0x640 [ 101.658501][ T401] kthread+0x125/0x140 [ 101.660012][ T401] ? kthread_create_worker_on_cpu+0x70/0x70 [ 101.661985][ T401] ret_from_fork+0x3a/0x50 [ 101.691318][ T401] bcache: bcache_device_free() bcache0 stopped Here is how the above potential deadlock may happen in reboot/shutdown code path, 1) bcache_reboot() is called firstly in the reboot/shutdown code path, then in bcache_reboot(), bcache_device_stop() is called. 2) bcache_device_stop() sets BCACHE_DEV_CLOSING on d->falgs, then call closure_queue(&d->cl) to invoke cached_dev_flush(). And in turn cached_dev_flush() calls cached_dev_free() via closure_at() 3) In cached_dev_free(), after stopped writebach kthread dc->writeback_thread, the kwork dc->writeback_write_wq is stopping by destroy_workqueue(). 4) Inside destroy_workqueue(), drain_workqueue() is called. Inside drain_workqueue(), flush_workqueue() is called. Then wq->lockdep_map is acquired by lock_map_acquire() in flush_workqueue(). After the lock acquired the rest part of flush_workqueue() just wait for the workqueue to complete. 5) Now we look back at writeback thread routine bch_writeback_thread(), in the main while-loop, write_dirty() is called via continue_at() in read_dirty_submit(), which is called via continue_at() in while-loop level called function read_dirty(). Inside write_dirty() it may be re-called on workqueeu dc->writeback_write_wq via continue_at(). It means when the writeback kthread is stopped in cached_dev_free() there might be still one kworker queued on dc->writeback_write_wq to execute write_dirty() again. 6) Now this kworker is scheduled on dc->writeback_write_wq to run by process_one_work() (which is called by worker_thread()). Before calling the kwork routine, wq->lockdep_map is acquired. 7) But wq->lockdep_map is acquired already in step 4), so a A-A lock (lockdep terminology) scenario happens. Indeed on multiple cores syatem, the above deadlock is very rare to happen, just as the code comments in process_one_work() says, 2263 * AFAICT there is no possible deadlock scenario between the 2264 * flush_work() and complete() primitives (except for single-threaded 2265 * workqueues), so hiding them isn't a problem. But it is still good to fix such lockdep warning, even no one running bcache on single core system. The fix is simple. This patch solves the above potential deadlock by, - Do not destroy workqueue dc->writeback_write_wq in cached_dev_free(). - Flush and destroy dc->writeback_write_wq in writebach kthread routine bch_writeback_thread(), where after quit the thread main while-loop and before cached_dev_put() is called. By this fix, dc->writeback_write_wq will be stopped and destroy before the writeback kthread stopped, so the chance for a A-A locking on wq->lockdep_map is disappeared, such A-A deadlock won't happen any more. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: acquire bch_register_lock later in cached_dev_free()Coly Li1-2/+2
When enable lockdep engine, a lockdep warning can be observed when reboot or shutdown system, [ 3142.764557][ T1] bcache: bcache_reboot() Stopping all devices: [ 3142.776265][ T2649] [ 3142.777159][ T2649] ====================================================== [ 3142.780039][ T2649] WARNING: possible circular locking dependency detected [ 3142.782869][ T2649] 5.2.0-rc4-lp151.20-default+ #1 Tainted: G W [ 3142.785684][ T2649] ------------------------------------------------------ [ 3142.788479][ T2649] kworker/3:67/2649 is trying to acquire lock: [ 3142.790738][ T2649] 00000000aaf02291 ((wq_completion)bcache_writeback_wq){+.+.}, at: flush_workqueue+0x87/0x4c0 [ 3142.794678][ T2649] [ 3142.794678][ T2649] but task is already holding lock: [ 3142.797402][ T2649] 000000004fcf89c5 (&bch_register_lock){+.+.}, at: cached_dev_free+0x17/0x120 [bcache] [ 3142.801462][ T2649] [ 3142.801462][ T2649] which lock already depends on the new lock. [ 3142.801462][ T2649] [ 3142.805277][ T2649] [ 3142.805277][ T2649] the existing dependency chain (in reverse order) is: [ 3142.808902][ T2649] [ 3142.808902][ T2649] -> #2 (&bch_register_lock){+.+.}: [ 3142.812396][ T2649] __mutex_lock+0x7a/0x9d0 [ 3142.814184][ T2649] cached_dev_free+0x17/0x120 [bcache] [ 3142.816415][ T2649] process_one_work+0x2a4/0x640 [ 3142.818413][ T2649] worker_thread+0x39/0x3f0 [ 3142.820276][ T2649] kthread+0x125/0x140 [ 3142.822061][ T2649] ret_from_fork+0x3a/0x50 [ 3142.823965][ T2649] [ 3142.823965][ T2649] -> #1 ((work_completion)(&cl->work)#2){+.+.}: [ 3142.827244][ T2649] process_one_work+0x277/0x640 [ 3142.829160][ T2649] worker_thread+0x39/0x3f0 [ 3142.830958][ T2649] kthread+0x125/0x140 [ 3142.832674][ T2649] ret_from_fork+0x3a/0x50 [ 3142.834915][ T2649] [ 3142.834915][ T2649] -> #0 ((wq_completion)bcache_writeback_wq){+.+.}: [ 3142.838121][ T2649] lock_acquire+0xb4/0x1c0 [ 3142.840025][ T2649] flush_workqueue+0xae/0x4c0 [ 3142.842035][ T2649] drain_workqueue+0xa9/0x180 [ 3142.844042][ T2649] destroy_workqueue+0x17/0x250 [ 3142.846142][ T2649] cached_dev_free+0x52/0x120 [bcache] [ 3142.848530][ T2649] process_one_work+0x2a4/0x640 [ 3142.850663][ T2649] worker_thread+0x39/0x3f0 [ 3142.852464][ T2649] kthread+0x125/0x140 [ 3142.854106][ T2649] ret_from_fork+0x3a/0x50 [ 3142.855880][ T2649] [ 3142.855880][ T2649] other info that might help us debug this: [ 3142.855880][ T2649] [ 3142.859663][ T2649] Chain exists of: [ 3142.859663][ T2649] (wq_completion)bcache_writeback_wq --> (work_completion)(&cl->work)#2 --> &bch_register_lock [ 3142.859663][ T2649] [ 3142.865424][ T2649] Possible unsafe locking scenario: [ 3142.865424][ T2649] [ 3142.868022][ T2649] CPU0 CPU1 [ 3142.869885][ T2649] ---- ---- [ 3142.871751][ T2649] lock(&bch_register_lock); [ 3142.873379][ T2649] lock((work_completion)(&cl->work)#2); [ 3142.876399][ T2649] lock(&bch_register_lock); [ 3142.879727][ T2649] lock((wq_completion)bcache_writeback_wq); [ 3142.882064][ T2649] [ 3142.882064][ T2649] *** DEADLOCK *** [ 3142.882064][ T2649] [ 3142.885060][ T2649] 3 locks held by kworker/3:67/2649: [ 3142.887245][ T2649] #0: 00000000e774cdd0 ((wq_completion)events){+.+.}, at: process_one_work+0x21e/0x640 [ 3142.890815][ T2649] #1: 00000000f7df89da ((work_completion)(&cl->work)#2){+.+.}, at: process_one_work+0x21e/0x640 [ 3142.894884][ T2649] #2: 000000004fcf89c5 (&bch_register_lock){+.+.}, at: cached_dev_free+0x17/0x120 [bcache] [ 3142.898797][ T2649] [ 3142.898797][ T2649] stack backtrace: [ 3142.900961][ T2649] CPU: 3 PID: 2649 Comm: kworker/3:67 Tainted: G W 5.2.0-rc4-lp151.20-default+ #1 [ 3142.904789][ T2649] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018 [ 3142.909168][ T2649] Workqueue: events cached_dev_free [bcache] [ 3142.911422][ T2649] Call Trace: [ 3142.912656][ T2649] dump_stack+0x85/0xcb [ 3142.914181][ T2649] print_circular_bug+0x19a/0x1f0 [ 3142.916193][ T2649] __lock_acquire+0x16cd/0x1850 [ 3142.917936][ T2649] ? __lock_acquire+0x6a8/0x1850 [ 3142.919704][ T2649] ? lock_acquire+0xb4/0x1c0 [ 3142.921335][ T2649] ? find_held_lock+0x34/0xa0 [ 3142.923052][ T2649] lock_acquire+0xb4/0x1c0 [ 3142.924635][ T2649] ? flush_workqueue+0x87/0x4c0 [ 3142.926375][ T2649] flush_workqueue+0xae/0x4c0 [ 3142.928047][ T2649] ? flush_workqueue+0x87/0x4c0 [ 3142.929824][ T2649] ? drain_workqueue+0xa9/0x180 [ 3142.931686][ T2649] drain_workqueue+0xa9/0x180 [ 3142.933534][ T2649] destroy_workqueue+0x17/0x250 [ 3142.935787][ T2649] cached_dev_free+0x52/0x120 [bcache] [ 3142.937795][ T2649] process_one_work+0x2a4/0x640 [ 3142.939803][ T2649] worker_thread+0x39/0x3f0 [ 3142.941487][ T2649] ? process_one_work+0x640/0x640 [ 3142.943389][ T2649] kthread+0x125/0x140 [ 3142.944894][ T2649] ? kthread_create_worker_on_cpu+0x70/0x70 [ 3142.947744][ T2649] ret_from_fork+0x3a/0x50 [ 3142.970358][ T2649] bcache: bcache_device_free() bcache0 stopped Here is how the deadlock happens. 1) bcache_reboot() calls bcache_device_stop(), then inside bcache_device_stop() BCACHE_DEV_CLOSING bit is set on d->flags. Then closure_queue(&d->cl) is called to invoke cached_dev_flush(). 2) In cached_dev_flush(), cached_dev_free() is called by continu_at(). 3) In cached_dev_free(), when stopping the writeback kthread of the cached device by kthread_stop(), dc->writeback_thread will be waken up to quite the kthread while-loop, then cached_dev_put() is called in bch_writeback_thread(). 4) Calling cached_dev_put() in writeback kthread may drop dc->count to 0, then dc->detach kworker is scheduled, which is initialized as cached_dev_detach_finish(). 5) Inside cached_dev_detach_finish(), the last line of code is to call closure_put(&dc->disk.cl), which drops the last reference counter of closrure dc->disk.cl, then the callback cached_dev_flush() gets called. Now cached_dev_flush() is called for second time in the code path, the first time is in step 2). And again bch_register_lock will be acquired again, and a A-A lock (lockdep terminology) is happening. The root cause of the above A-A lock is in cached_dev_free(), mutex bch_register_lock is held before stopping writeback kthread and other kworkers. Fortunately now we have variable 'bcache_is_reboot', which may prevent device registration or unregistration during reboot/shutdown time, so it is unncessary to hold bch_register_lock such early now. This is how this patch fixes the reboot/shutdown time A-A lock issue: After moving mutex_lock(&bch_register_lock) to a later location where before atomic_read(&dc->running) in cached_dev_free(), such A-A lock problem can be solved without any reboot time registration race. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: acquire bch_register_lock later in cached_dev_detach_finish()Coly Li1-1/+2
Now there is variable bcache_is_reboot to prevent device register or unregister during reboot, it is unncessary to still hold mutex lock bch_register_lock before stopping writeback_rate_update kworker and writeback kthread. And if the stopping kworker or kthread holding bch_register_lock inside their routine (we used to have such problem in writeback thread, thanks to Junhui Wang fixed it), it is very easy to introduce deadlock during reboot/shutdown procedure. Therefore in this patch, the location to acquire bch_register_lock is moved to the location before calling calc_cached_dev_sectors(). Which is later then original location in cached_dev_detach_finish(). Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: avoid a deadlock in bcache_reboot()Coly Li2-1/+65
It is quite frequently to observe deadlock in bcache_reboot() happens and hang the system reboot process. The reason is, in bcache_reboot() when calling bch_cache_set_stop() and bcache_device_stop() the mutex bch_register_lock is held. But in the process to stop cache set and bcache device, bch_register_lock will be acquired again. If this mutex is held here, deadlock will happen inside the stopping process. The aftermath of the deadlock is, whole system reboot gets hung. The fix is to avoid holding bch_register_lock for the following loops in bcache_reboot(), list_for_each_entry_safe(c, tc, &bch_cache_sets, list) bch_cache_set_stop(c); list_for_each_entry_safe(dc, tdc, &uncached_devices, list) bcache_device_stop(&dc->disk); A module range variable 'bcache_is_reboot' is added, it sets to true in bcache_reboot(). In register_bcache(), if bcache_is_reboot is checked to be true, reject the registration by returning -EBUSY immediately. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: stop writeback kthread and kworker when bch_cached_dev_run() failedColy Li1-0/+8
In bch_cached_dev_attach() after bch_cached_dev_writeback_start() called, the wrireback kthread and writeback rate update kworker of the cached device are created, if the following bch_cached_dev_run() failed, bch_cached_dev_attach() will return with -ENOMEM without stopping the writeback related kthread and kworker. This patch stops writeback kthread and writeback rate update kworker before returning -ENOMEM if bch_cached_dev_run() returns error. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: destroy dc->writeback_write_wq if failed to create dc->writeback_threadColy Li1-0/+1
Commit 9baf30972b55 ("bcache: fix for gc and write-back race") added a new work queue dc->writeback_write_wq, but forgot to destroy it in the error condition when creating dc->writeback_thread failed. This patch destroys dc->writeback_write_wq if kthread_create() returns error pointer to dc->writeback_thread, then a memory leak is avoided. Fixes: 9baf30972b55 ("bcache: fix for gc and write-back race") Signed-off-by: Coly Li <colyli@suse.de> Cc: stable@vger.kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: fix mistaken sysfs entry for io_error counterColy Li1-2/+2
In bch_cached_dev_files[] from driver/md/bcache/sysfs.c, sysfs_errors is incorrectly inserted in. The correct entry should be sysfs_io_errors. This patch fixes the problem and now I/O errors of cached device can be read from /sys/block/bcache<N>/bcache/io_errors. Fixes: c7b7bd07404c5 ("bcache: add io_disable to struct cached_dev") Signed-off-by: Coly Li <colyli@suse.de> Cc: stable@vger.kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: add pendings_cleanup to stop pending bcache deviceColy Li1-0/+55
If a bcache device is in dirty state and its cache set is not registered, this bcache device will not appear in /dev/bcache<N>, and there is no way to stop it or remove the bcache kernel module. This is an as-designed behavior, but sometimes people has to reboot whole system to release or stop the pending backing device. This sysfs interface may remove such pending bcache devices when write anything into the sysfs file manually. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: make bset_search_tree() be more understandableColy Li1-19/+11
The purpose of following code in bset_search_tree() is to avoid a branch instruction, 994 if (likely(f->exponent != 127)) 995 n = j * 2 + (((unsigned int) 996 (f->mantissa - 997 bfloat_mantissa(search, f))) >> 31); 998 else 999 n = (bkey_cmp(tree_to_bkey(t, j), search) > 0) 1000 ? j * 2 1001 : j * 2 + 1; This piece of code is not very clear to understand, even when I tried to add code comment for it, I made mistake. This patch removes the implict bit operation and uses explicit branch to calculate next location in binary tree search. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: remove "XXX:" comment line from run_cache_set()Coly Li1-1/+1
In previous bcache patches for Linux v5.2, the failure code path of run_cache_set() is tested and fixed. So now the following comment line can be removed from run_cache_set(), /* XXX: test this, it's broken */ Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: improve error message in bch_cached_dev_run()Coly Li1-2/+7
This patch adds more error message in bch_cached_dev_run() to indicate the exact reason why an error value is returned. Please notice when printing out the "is running already" message, pr_info() is used here, because in this case also -EBUSY is returned, the bcache device can continue to attach to the cache devince and run, so it won't be an error level message in kernel message. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: add more error message in bch_cached_dev_attach()Coly Li1-0/+4
This patch adds more error message for attaching cached device, this is helpful to debug code failure during bache device start up. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: more detailed error message to bcache_device_link()Coly Li1-3/+8
This patch adds more accurate error message for specific ssyfs_create_link() call, to help debugging failure during bcache device start tup. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: check CACHE_SET_IO_DISABLE bit in bch_journal()Coly Li1-0/+4
When too many I/O errors happen on cache set and CACHE_SET_IO_DISABLE bit is set, bch_journal() may continue to work because the journaling bkey might be still in write set yet. The caller of bch_journal() may believe the journal still work but the truth is in-memory journal write set won't be written into cache device any more. This behavior may introduce potential inconsistent metadata status. This patch checks CACHE_SET_IO_DISABLE bit at the head of bch_journal(), if the bit is set, bch_journal() returns NULL immediately to notice caller to know journal does not work. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: check CACHE_SET_IO_DISABLE in allocator codeColy Li1-0/+9
If CACHE_SET_IO_DISABLE of a cache set flag is set by too many I/O errors, currently allocator routines can still continue allocate space which may introduce inconsistent metadata state. This patch checkes CACHE_SET_IO_DISABLE bit in following allocator routines, - bch_bucket_alloc() - __bch_bucket_alloc_set() Once CACHE_SET_IO_DISABLE is set on cache set, the allocator routines may reject allocation request earlier to avoid potential inconsistent metadata. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: remove unncessary code in bch_btree_keys_init()Coly Li2-9/+10
Function bch_btree_keys_init() initializes b->set[].size and b->set[].data to zero. As the code comments indicates, these code indeed is unncessary, because both struct btree_keys and struct bset_tree are nested embedded into struct btree, when struct btree is filled with 0 bits by kzalloc() in mca_bucket_alloc(), b->set[].size and b->set[].data are initialized to 0 (a.k.a NULL) already. This patch removes the redundant code, and add comments in bch_btree_keys_init() and mca_bucket_alloc() to explain why it's safe. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: add return value check to bch_cached_dev_run()Coly Li3-10/+32
This patch adds return value check to bch_cached_dev_run(), now if there is error happens inside bch_cached_dev_run(), it can be catched. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: use sysfs_match_string() instead of __sysfs_match_string()Alexandru Ardelean1-12/+8
The arrays (of strings) that are passed to __sysfs_match_string() are static, so use sysfs_match_string() which does an implicit ARRAY_SIZE() over these arrays. Functionally, this doesn't change anything. The change is more cosmetic. It only shrinks the static arrays by 1 byte each. Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com> Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: remove unnecessary prefetch() in bset_search_tree()Coly Li1-14/+2
In function bset_search_tree(), when p >= t->size, t->tree[0] will be prefetched by the following code piece, 974 unsigned int p = n << 4; 975 976 p &= ((int) (p - t->size)) >> 31; 977 978 prefetch(&t->tree[p]); The purpose of the above code is to avoid a branch instruction, but when p >= t->size, prefetch(&t->tree[0]) has no positive performance contribution at all. This patch avoids the unncessary prefetch by only calling prefetch() when p < t->size. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: add io error counting in write_bdev_super_endio()Coly Li1-1/+3
When backing device super block is written by bch_write_bdev_super(), the bio complete callback write_bdev_super_endio() simply ignores I/O status. Indeed such write request also contribute to backing device health status if the request failed. This patch checkes bio->bi_status in write_bdev_super_endio(), if there is error, bch_count_backing_io_errors() will be called to count an I/O error to dc->io_errors. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: ignore read-ahead request failure on backing deviceColy Li1-0/+12
When md raid device (e.g. raid456) is used as backing device, read-ahead requests on a degrading and recovering md raid device might be failured immediately by md raid code, but indeed this md raid array can still be read or write for normal I/O requests. Therefore such failed read-ahead request are not real hardware failure. Further more, after degrading and recovering accomplished, read-ahead requests will be handled by md raid array again. For such condition, I/O failures of read-ahead requests don't indicate real health status (because normal I/O still be served), they should not be counted into I/O error counter dc->io_errors. Since there is no simple way to detect whether the backing divice is a md raid device, this patch simply ignores I/O failures for read-ahead bios on backing device, to avoid bogus backing device failure on a degrading md raid array. Suggested-and-tested-by: Thorsten Knabe <linux@thorsten-knabe.de> Signed-off-by: Coly Li <colyli@suse.de> Cc: stable@vger.kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: avoid flushing btree node in cache_set_flush() if io disabledColy Li1-7/+11
When cache_set_flush() is called for too many I/O errors detected on cache device and the cache set is retiring, inside the function it doesn't make sense to flushing cached btree nodes from c->btree_cache because CACHE_SET_IO_DISABLE is set on c->flags already and all I/Os onto cache device will be rejected. This patch checks in cache_set_flush() that whether CACHE_SET_IO_DISABLE is set. If yes, then avoids to flush the cached btree nodes to reduce more time and make cache set retiring more faster. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28Revert "bcache: set CACHE_SET_IO_DISABLE in bch_cached_dev_error()"Coly Li1-17/+0
This reverts commit 6147305c73e4511ca1a975b766b97a779d442567. Although this patch helps the failed bcache device to stop faster when too many I/O errors detected on corresponding cached device, setting CACHE_SET_IO_DISABLE bit to cache set c->flags was not a good idea. This operation will disable all I/Os on cache set, which means other attached bcache devices won't work neither. Without this patch, the failed bcache device can also be stopped eventually if internal I/O accomplished (e.g. writeback). Therefore here I revert it. Fixes: 6147305c73e4 ("bcache: set CACHE_SET_IO_DISABLE in bch_cached_dev_error()") Reported-by: Yong Li <mr.liyong@qq.com> Signed-off-by: Coly Li <colyli@suse.de> Cc: stable@vger.kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: fix return value error in bch_journal_read()Coly Li1-1/+1
When everything is OK in bch_journal_read(), finally the return value is returned by, return ret; which assumes ret will be 0 here. This assumption is wrong when all journal buckets as are full and filled with valid journal entries. In such cache the last location referencess read_bucket() sets 'ret' to 1, which means new jset added into jset list. The jset list is list 'journal' in caller run_cache_set(). Return 1 to run_cache_set() means something wrong and the cache set won't start, but indeed everything is OK. This patch changes the line at end of bch_journal_read() to directly return 0 since everything if verything is good. Then a bogus error is fixed. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: check c->gc_thread by IS_ERR_OR_NULL in cache_set_flush()Coly Li1-1/+1
When system memory is in heavy pressure, bch_gc_thread_start() from run_cache_set() may fail due to out of memory. In such condition, c->gc_thread is assigned to -ENOMEM, not NULL pointer. Then in following failure code path bch_cache_set_error(), when cache_set_flush() gets called, the code piece to stop c->gc_thread is broken, if (!IS_ERR_OR_NULL(c->gc_thread)) kthread_stop(c->gc_thread); And KASAN catches such NULL pointer deference problem, with the warning information: [ 561.207881] ================================================================== [ 561.207900] BUG: KASAN: null-ptr-deref in kthread_stop+0x3b/0x440 [ 561.207904] Write of size 4 at addr 000000000000001c by task kworker/15:1/313 [ 561.207913] CPU: 15 PID: 313 Comm: kworker/15:1 Tainted: G W 5.0.0-vanilla+ #3 [ 561.207916] Hardware name: Lenovo ThinkSystem SR650 -[7X05CTO1WW]-/-[7X05CTO1WW]-, BIOS -[IVE136T-2.10]- 03/22/2019 [ 561.207935] Workqueue: events cache_set_flush [bcache] [ 561.207940] Call Trace: [ 561.207948] dump_stack+0x9a/0xeb [ 561.207955] ? kthread_stop+0x3b/0x440 [ 561.207960] ? kthread_stop+0x3b/0x440 [ 561.207965] kasan_report+0x176/0x192 [ 561.207973] ? kthread_stop+0x3b/0x440 [ 561.207981] kthread_stop+0x3b/0x440 [ 561.207995] cache_set_flush+0xd4/0x6d0 [bcache] [ 561.208008] process_one_work+0x856/0x1620 [ 561.208015] ? find_held_lock+0x39/0x1d0 [ 561.208028] ? drain_workqueue+0x380/0x380 [ 561.208048] worker_thread+0x87/0xb80 [ 561.208058] ? __kthread_parkme+0xb6/0x180 [ 561.208067] ? process_one_work+0x1620/0x1620 [ 561.208072] kthread+0x326/0x3e0 [ 561.208079] ? kthread_create_worker_on_cpu+0xc0/0xc0 [ 561.208090] ret_from_fork+0x3a/0x50 [ 561.208110] ================================================================== [ 561.208113] Disabling lock debugging due to kernel taint [ 561.208115] irq event stamp: 11800231 [ 561.208126] hardirqs last enabled at (11800231): [<ffffffff83008538>] do_syscall_64+0x18/0x410 [ 561.208127] BUG: unable to handle kernel NULL pointer dereference at 000000000000001c [ 561.208129] #PF error: [WRITE] [ 561.312253] hardirqs last disabled at (11800230): [<ffffffff830052ff>] trace_hardirqs_off_thunk+0x1a/0x1c [ 561.312259] softirqs last enabled at (11799832): [<ffffffff850005c7>] __do_softirq+0x5c7/0x8c3 [ 561.405975] PGD 0 P4D 0 [ 561.442494] softirqs last disabled at (11799821): [<ffffffff831add2c>] irq_exit+0x1ac/0x1e0 [ 561.791359] Oops: 0002 [#1] SMP KASAN NOPTI [ 561.791362] CPU: 15 PID: 313 Comm: kworker/15:1 Tainted: G B W 5.0.0-vanilla+ #3 [ 561.791363] Hardware name: Lenovo ThinkSystem SR650 -[7X05CTO1WW]-/-[7X05CTO1WW]-, BIOS -[IVE136T-2.10]- 03/22/2019 [ 561.791371] Workqueue: events cache_set_flush [bcache] [ 561.791374] RIP: 0010:kthread_stop+0x3b/0x440 [ 561.791376] Code: 00 00 65 8b 05 26 d5 e0 7c 89 c0 48 0f a3 05 ec aa df 02 0f 82 dc 02 00 00 4c 8d 63 20 be 04 00 00 00 4c 89 e7 e8 65 c5 53 00 <f0> ff 43 20 48 8d 7b 24 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 [ 561.791377] RSP: 0018:ffff88872fc8fd10 EFLAGS: 00010286 [ 561.838895] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree. [ 561.838916] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree. [ 561.838934] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree. [ 561.838948] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree. [ 561.838966] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree. [ 561.838979] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree. [ 561.838996] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree. [ 563.067028] RAX: 0000000000000000 RBX: fffffffffffffffc RCX: ffffffff832dd314 [ 563.067030] RDX: 0000000000000000 RSI: 0000000000000004 RDI: 0000000000000297 [ 563.067032] RBP: ffff88872fc8fe88 R08: fffffbfff0b8213d R09: fffffbfff0b8213d [ 563.067034] R10: 0000000000000001 R11: fffffbfff0b8213c R12: 000000000000001c [ 563.408618] R13: ffff88dc61cc0f68 R14: ffff888102b94900 R15: ffff88dc61cc0f68 [ 563.408620] FS: 0000000000000000(0000) GS:ffff888f7dc00000(0000) knlGS:0000000000000000 [ 563.408622] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 563.408623] CR2: 000000000000001c CR3: 0000000f48a1a004 CR4: 00000000007606e0 [ 563.408625] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 563.408627] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 563.904795] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree. [ 563.915796] PKRU: 55555554 [ 563.915797] Call Trace: [ 563.915807] cache_set_flush+0xd4/0x6d0 [bcache] [ 563.915812] process_one_work+0x856/0x1620 [ 564.001226] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree. [ 564.033563] ? find_held_lock+0x39/0x1d0 [ 564.033567] ? drain_workqueue+0x380/0x380 [ 564.033574] worker_thread+0x87/0xb80 [ 564.062823] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree. [ 564.118042] ? __kthread_parkme+0xb6/0x180 [ 564.118046] ? process_one_work+0x1620/0x1620 [ 564.118048] kthread+0x326/0x3e0 [ 564.118050] ? kthread_create_worker_on_cpu+0xc0/0xc0 [ 564.167066] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree. [ 564.252441] ret_from_fork+0x3a/0x50 [ 564.252447] Modules linked in: msr rpcrdma sunrpc rdma_ucm ib_iser ib_umad rdma_cm ib_ipoib i40iw configfs iw_cm ib_cm libiscsi scsi_transport_iscsi mlx4_ib ib_uverbs mlx4_en ib_core nls_iso8859_1 nls_cp437 vfat fat intel_rapl skx_edac x86_pkg_temp_thermal coretemp iTCO_wdt iTCO_vendor_support crct10dif_pclmul crc32_pclmul crc32c_intel ghash_clmulni_intel ses raid0 aesni_intel cdc_ether enclosure usbnet ipmi_ssif joydev aes_x86_64 i40e scsi_transport_sas mii bcache md_mod crypto_simd mei_me ioatdma crc64 ptp cryptd pcspkr i2c_i801 mlx4_core glue_helper pps_core mei lpc_ich dca wmi ipmi_si ipmi_devintf nd_pmem dax_pmem nd_btt ipmi_msghandler device_dax pcc_cpufreq button hid_generic usbhid mgag200 i2c_algo_bit drm_kms_helper syscopyarea sysfillrect xhci_pci sysimgblt fb_sys_fops xhci_hcd ttm megaraid_sas drm usbcore nfit libnvdimm sg dm_multipath dm_mod scsi_dh_rdac scsi_dh_emc scsi_dh_alua efivarfs [ 564.299390] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree. [ 564.348360] CR2: 000000000000001c [ 564.348362] ---[ end trace b7f0e5cc7b2103b0 ]--- Therefore, it is not enough to only check whether c->gc_thread is NULL, we should use IS_ERR_OR_NULL() to check both NULL pointer and error value. This patch changes the above buggy code piece in this way, if (!IS_ERR_OR_NULL(c->gc_thread)) kthread_stop(c->gc_thread); Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-28bcache: don't set max writeback rate if gc is runningColy Li1-0/+3
When gc is running, user space I/O processes may wait inside bcache code, so no new I/O coming. Indeed this is not a real idle time, maximum writeback rate should not be set in such situation. Otherwise a faster writeback thread may compete locks with gc thread and makes garbage collection slower, which results a longer I/O freeze period. This patch checks c->gc_mark_valid in set_at_max_writeback_rate(). If c->gc_mark_valid is 0 (gc running), set_at_max_writeback_rate() returns false, then update_writeback_rate() will not set writeback rate to maximum value even c->idle_counter reaches an idle threshold. Now writeback thread won't interfere gc thread performance. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-06-26md/raid1: Fix a warning message in remove_wb()Dan Carpenter1-1/+1
The WARN_ON() macro doesn't take an error message, it just takes a condition. I've changed this to use WARN(1, "...") instead. Fixes: 3e148a320979 ("md/raid1: fix potential data inconsistency issue with write behind device") Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Song Liu <songliubraving@fb.com>
2019-06-24Merge branch 'nvme-5.3' of git://git.infradead.org/nvme into for-5.3/blockJens Axboe26-133/+983
Pull NVMe updates from Christoph: "A large chunk of NVMe updates for 5.3. Highlights: - improved PCIe suspent support (Keith Busch) - error injection support for the admin queue (Akinobu Mita) - Fibre Channel discovery improvements (James Smart) - tracing improvements including nvmetc tracing support (Minwoo Im) - misc fixes and cleanups (Anton Eidelman, Minwoo Im, Chaitanya Kulkarni)" * 'nvme-5.3' of git://git.infradead.org/nvme: (26 commits) Documentation: nvme: add an example for nvme fault injection nvme: enable to inject errors into admin commands nvme: prepare for fault injection into admin commands nvmet: introduce target-side trace nvme-trace: print result and status in hex format nvme-trace: support for fabrics commands in host-side nvme-trace: move opcode symbol print to nvme.h nvme-trace: do not export nvme_trace_disk_name nvme-pci: clean up nvme_remove_dead_ctrl a bit nvme-pci: properly report state change failure in nvme_reset_work nvme-pci: set the errno on ctrl state change error nvme-pci: adjust irq max_vector using num_possible_cpus() nvme-pci: remove queue_count_ops for write_queues and poll_queues nvme-pci: remove unnecessary zero for static var nvme-pci: use host managed power state for suspend nvme: introduce nvme_is_fabrics to check fabrics cmd nvme: export get and set features nvme: fix possible io failures when removing multipathed ns nvme-fc: add message when creating new association lpfc: add sysfs interface to post NVME RSCN ...
2019-06-23Merge tag 'iommu-fix-v5.2-rc5' of ↵Linus Torvalds1-4/+3
git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu Pull iommu fix from Joerg Roedel: "Revert a commit from the previous pile of fixes which causes new lockdep splats. It is better to revert it for now and work on a better and more well tested fix" * tag 'iommu-fix-v5.2-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: Revert "iommu/vt-d: Fix lock inversion between iommu->lock and device_domain_lock"
2019-06-22Revert "iommu/vt-d: Fix lock inversion between iommu->lock and ↵Peter Xu1-4/+3
device_domain_lock" This reverts commit 7560cc3ca7d9d11555f80c830544e463fcdb28b8. With 5.2.0-rc5 I can easily trigger this with lockdep and iommu=pt: ====================================================== WARNING: possible circular locking dependency detected 5.2.0-rc5 #78 Not tainted ------------------------------------------------------ swapper/0/1 is trying to acquire lock: 00000000ea2b3beb (&(&iommu->lock)->rlock){+.+.}, at: domain_context_mapping_one+0xa5/0x4e0 but task is already holding lock: 00000000a681907b (device_domain_lock){....}, at: domain_context_mapping_one+0x8d/0x4e0 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (device_domain_lock){....}: _raw_spin_lock_irqsave+0x3c/0x50 dmar_insert_one_dev_info+0xbb/0x510 domain_add_dev_info+0x50/0x90 dev_prepare_static_identity_mapping+0x30/0x68 intel_iommu_init+0xddd/0x1422 pci_iommu_init+0x16/0x3f do_one_initcall+0x5d/0x2b4 kernel_init_freeable+0x218/0x2c1 kernel_init+0xa/0x100 ret_from_fork+0x3a/0x50 -> #0 (&(&iommu->lock)->rlock){+.+.}: lock_acquire+0x9e/0x170 _raw_spin_lock+0x25/0x30 domain_context_mapping_one+0xa5/0x4e0 pci_for_each_dma_alias+0x30/0x140 dmar_insert_one_dev_info+0x3b2/0x510 domain_add_dev_info+0x50/0x90 dev_prepare_static_identity_mapping+0x30/0x68 intel_iommu_init+0xddd/0x1422 pci_iommu_init+0x16/0x3f do_one_initcall+0x5d/0x2b4 kernel_init_freeable+0x218/0x2c1 kernel_init+0xa/0x100 ret_from_fork+0x3a/0x50 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(device_domain_lock); lock(&(&iommu->lock)->rlock); lock(device_domain_lock); lock(&(&iommu->lock)->rlock); *** DEADLOCK *** 2 locks held by swapper/0/1: #0: 00000000033eb13d (dmar_global_lock){++++}, at: intel_iommu_init+0x1e0/0x1422 #1: 00000000a681907b (device_domain_lock){....}, at: domain_context_mapping_one+0x8d/0x4e0 stack backtrace: CPU: 2 PID: 1 Comm: swapper/0 Not tainted 5.2.0-rc5 #78 Hardware name: LENOVO 20KGS35G01/20KGS35G01, BIOS N23ET50W (1.25 ) 06/25/2018 Call Trace: dump_stack+0x85/0xc0 print_circular_bug.cold.57+0x15c/0x195 __lock_acquire+0x152a/0x1710 lock_acquire+0x9e/0x170 ? domain_context_mapping_one+0xa5/0x4e0 _raw_spin_lock+0x25/0x30 ? domain_context_mapping_one+0xa5/0x4e0 domain_context_mapping_one+0xa5/0x4e0 ? domain_context_mapping_one+0x4e0/0x4e0 pci_for_each_dma_alias+0x30/0x140 dmar_insert_one_dev_info+0x3b2/0x510 domain_add_dev_info+0x50/0x90 dev_prepare_static_identity_mapping+0x30/0x68 intel_iommu_init+0xddd/0x1422 ? printk+0x58/0x6f ? lockdep_hardirqs_on+0xf0/0x180 ? do_early_param+0x8e/0x8e ? e820__memblock_setup+0x63/0x63 pci_iommu_init+0x16/0x3f do_one_initcall+0x5d/0x2b4 ? do_early_param+0x8e/0x8e ? rcu_read_lock_sched_held+0x55/0x60 ? do_early_param+0x8e/0x8e kernel_init_freeable+0x218/0x2c1 ? rest_init+0x230/0x230 kernel_init+0xa/0x100 ret_from_fork+0x3a/0x50 domain_context_mapping_one() is taking device_domain_lock first then iommu lock, while dmar_insert_one_dev_info() is doing the reverse. That should be introduced by commit: 7560cc3ca7d9 ("iommu/vt-d: Fix lock inversion between iommu->lock and device_domain_lock", 2019-05-27) So far I still cannot figure out how the previous deadlock was triggered (I cannot find iommu lock taken before calling of iommu_flush_dev_iotlb()), however I'm pretty sure that that change should be incomplete at least because it does not fix all the places so we're still taking the locks in different orders, while reverting that commit is very clean to me so far that we should always take device_domain_lock first then the iommu lock. We can continue to try to find the real culprit mentioned in 7560cc3ca7d9, but for now I think we should revert it to fix current breakage. CC: Joerg Roedel <joro@8bytes.org> CC: Lu Baolu <baolu.lu@linux.intel.com> CC: dave.jiang@intel.com Signed-off-by: Peter Xu <peterx@redhat.com> Tested-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Joerg Roedel <jroedel@suse.de>
2019-06-22Merge tag 'pci-v5.2-fixes-1' of ↵Linus Torvalds1-0/+4
git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci Pull PCI fix from Bjorn Helgaas: "If an IOMMU is present, ignore the P2PDMA whitelist we added for v5.2 because we don't yet know how to support P2PDMA in that case (Logan Gunthorpe)" * tag 'pci-v5.2-fixes-1' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: PCI/P2PDMA: Ignore root complex whitelist when an IOMMU is present
2019-06-22Merge tag 'scsi-fixes' of ↵Linus Torvalds4-11/+11
git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi Pull SCSI fixes from James Bottomley: "Three driver fixes (and one version number update): a suspend hang in ufs, a qla hard lock on module removal and a qedi panic during discovery" * tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: scsi: qla2xxx: Fix hardlockup in abort command during driver remove scsi: ufs: Avoid runtime suspend possibly being blocked forever scsi: qedi: update driver version to 8.37.0.20 scsi: qedi: Check targetname while finding boot target information
2019-06-22Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netLinus Torvalds7-14/+18
Pull networking fixes from David Miller: 1) Fix leak of unqueued fragments in ipv6 nf_defrag, from Guillaume Nault. 2) Don't access the DDM interface unless the transceiver implements it in bnx2x, from Mauro S. M. Rodrigues. 3) Don't double fetch 'len' from userspace in sock_getsockopt(), from JingYi Hou. 4) Sign extension overflow in lio_core, from Colin Ian King. 5) Various netem bug fixes wrt. corrupted packets from Jakub Kicinski. 6) Fix epollout hang in hvsock, from Sunil Muthuswamy. 7) Fix regression in default fib6_type, from David Ahern. 8) Handle memory limits in tcp_fragment more appropriately, from Eric Dumazet. * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (24 commits) tcp: refine memory limit test in tcp_fragment() inet: clear num_timeout reqsk_alloc() net: mvpp2: debugfs: Add pmap to fs dump ipv6: Default fib6_type to RTN_UNICAST when not set net: hns3: Fix inconsistent indenting net/af_iucv: always register net_device notifier net/af_iucv: build proper skbs for HiperTransport net/af_iucv: remove GFP_DMA restriction for HiperTransport net: dsa: mv88e6xxx: fix shift of FID bits in mv88e6185_g1_vtu_loadpurge() hvsock: fix epollout hang from race condition net/udp_gso: Allow TX timestamp with UDP GSO net: netem: fix use after free and double free with packet corruption net: netem: fix backlog accounting for corrupted GSO frames net: lio_core: fix potential sign-extension overflow on large shift tipc: pass tunnel dev as NULL to udp_tunnel(6)_xmit_skb ip6_tunnel: allow not to count pkts on tstats by passing dev as NULL ip_tunnel: allow not to count pkts on tstats by setting skb's dev to NULL tun: wake up waitqueues after IFF_UP is set net: remove duplicate fetch in sock_getsockopt tipc: fix issues with early FAILOVER_MSG from peer ...
2019-06-22Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdmaLinus Torvalds17-62/+174
Pull rdma fixes from Doug Ledford: "This is probably our last -rc pull request. We don't have anything else outstanding at the moment anyway, and with the summer months on us and people taking trips, I expect the next weeks leading up to the merge window to be pretty calm and sedate. This has two simple, no brainer fixes for the EFA driver. Then it has ten not quite so simple fixes for the hfi1 driver. The problem with them is that they aren't simply one liner typo fixes. They're still fixes, but they're more complex issues like livelock under heavy load where the answer was to change work queue usage and spinlock usage to resolve the problem, or issues with orphaned requests during certain types of failures like link down which required some more complex work to fix too. They all look like legitimate fixes to me, they just aren't small like I wish they were. Summary: - 2 minor EFA fixes - 10 hfi1 fixes related to scaling issues" * tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: RDMA/efa: Handle mmap insertions overflow RDMA/efa: Fix success return value in case of error IB/hfi1: Handle port down properly in pio IB/hfi1: Handle wakeup of orphaned QPs for pio IB/hfi1: Wakeup QPs orphaned on wait list after flush IB/hfi1: Use aborts to trigger RC throttling IB/hfi1: Create inline to get extended headers IB/hfi1: Silence txreq allocation warnings IB/hfi1: Avoid hardlockup with flushlist_lock IB/hfi1: Correct tid qp rcd to match verbs context IB/hfi1: Close PSM sdma_progress sleep window IB/hfi1: Validate fault injection opcode user input