summaryrefslogtreecommitdiff
path: root/drivers/nvdimm/dimm_devs.c
AgeCommit message (Collapse)AuthorFilesLines
2016-03-05libnvdimm, nfit: centralize command status translationDan Williams1-3/+3
The return value from an 'ndctl_fn' reports the command execution status, i.e. was the command properly formatted and was it successfully submitted to the bus provider. The new 'cmd_rc' parameter allows the bus provider to communicate command specific results, translated into common error codes. Convert the ARS commands to this scheme to: 1/ Consolidate status reporting 2/ Prepare for for expanding ars unit test cases 3/ Make the implementation more generic Cc: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-08-28nvdimm: change to use generic kvfree()yalin wang1-4/+1
Signed-off-by: yalin wang <yalin.wang2010@gmail.com> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-26libnvdimm, nfit, nd_blk: driver for BLK-mode access persistent memoryRoss Zwisler1-0/+9
The libnvdimm implementation handles allocating dimm address space (DPA) between PMEM and BLK mode interfaces. After DPA has been allocated from a BLK-region to a BLK-namespace the nd_blk driver attaches to handle I/O as a struct bio based block device. Unlike PMEM, BLK is required to handle platform specific details like mmio register formats and memory controller interleave. For this reason the libnvdimm generic nd_blk driver calls back into the bus provider to carry out the I/O. This initial implementation handles the BLK interface defined by the ACPI 6 NFIT [1] and the NVDIMM DSM Interface Example [2] composed from DCR (dimm control region), BDW (block data window), IDT (interleave descriptor) NFIT structures and the hardware register format. [1]: http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf [2]: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25libnvdimm: write blk label setDan Williams1-0/+25
After 'uuid', 'size', 'sector_size', and optionally 'alt_name' have been set to valid values the labels on the dimm can be updated. The difference with the pmem case is that blk namespaces are limited to one dimm and can cover discontiguous ranges in dpa space. Also, after allocating label slots, it is useful for userspace to know how many slots are left. Export this information in sysfs. Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Neil Brown <neilb@suse.de> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25libnvdimm: write pmem label setDan Williams1-0/+49
After 'uuid', 'size', and optionally 'alt_name' have been set to valid values the labels on the dimms can be updated. Write procedure is: 1/ Allocate and write new labels in the "next" index 2/ Free the old labels in the working copy 3/ Write the bitmap and the label space on the dimm 4/ Write the index to make the update valid Label ranges directly mirror the dpa resource values for the given label_id of the namespace. Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Neil Brown <neilb@suse.de> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25libnvdimm: blk labels and namespace instantiationDan Williams1-0/+36
A blk label set describes a namespace comprised of one or more discontiguous dpa ranges on a single dimm. They may alias with one or more pmem interleave sets that include the given dimm. This is the runtime/volatile configuration infrastructure for sysfs manipulation of 'alt_name', 'uuid', 'size', and 'sector_size'. A later patch will make these settings persistent by writing back the label(s). Unlike pmem namespaces, multiple blk namespaces can be created per region. Once a blk namespace has been created a new seed device (unconfigured child of a parent blk region) is instantiated. As long as a region has 'available_size' != 0 new child namespaces may be created. Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Neil Brown <neilb@suse.de> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25libnvdimm: pmem label sets and namespace instantiation.Dan Williams1-0/+137
A complete label set is a PMEM-label per-dimm per-interleave-set where all the UUIDs match and the interleave set cookie matches the hosting interleave set. Present sysfs attributes for manipulation of a PMEM-namespace's 'alt_name', 'uuid', and 'size' attributes. A later patch will make these settings persistent by writing back the label. Note that PMEM allocations grow forwards from the start of an interleave set (lowest dimm-physical-address (DPA)). BLK-namespaces that alias with a PMEM interleave set will grow allocations backward from the highest DPA. Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Neil Brown <neilb@suse.de> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25libnvdimm: namespace indices: read and validateDan Williams1-1/+29
This on media label format [1] consists of two index blocks followed by an array of labels. None of these structures are ever updated in place. A sequence number tracks the current active index and the next one to write, while labels are written to free slots. +------------+ | | | nsindex0 | | | +------------+ | | | nsindex1 | | | +------------+ | label0 | +------------+ | label1 | +------------+ | | ....nslot... | | +------------+ | labelN | +------------+ After reading valid labels, store the dpa ranges they claim into per-dimm resource trees. [1]: http://pmem.io/documents/NVDIMM_Namespace_Spec.pdf Cc: Neil Brown <neilb@suse.de> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25libnvdimm, nfit: add interleave-set state-tracking infrastructureDan Williams1-1/+18
On platforms that have firmware support for reading/writing per-dimm label space, a portion of the dimm may be accessible via an interleave set PMEM mapping in addition to the dimm's BLK (block-data-window aperture(s)) interface. A label, stored in a "configuration data region" on the dimm, disambiguates which dimm addresses are accessed through which exclusive interface. Add infrastructure that allows the kernel to block modifications to a label in the set while any member dimm is active. Note that this is meant only for enforcing "no modifications of active labels" via the coarse ioctl command. Adding/deleting namespaces from an active interleave set is always possible via sysfs. Another aspect of tracking interleave sets is tracking their integrity when DIMMs in a set are physically re-ordered. For this purpose we generate an "interleave-set cookie" that can be recorded in a label and validated against the current configuration. It is the bus provider implementation's responsibility to calculate the interleave set cookie and attach it to a given region. Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25libnvdimm, nvdimm: dimm driver and base libnvdimm device-driver infrastructureDan Williams1-5/+131
* Implement the device-model infrastructure for loading modules and attaching drivers to nvdimm devices. This is a simple association of a nd-device-type number with a driver that has a bitmask of supported device types. To facilitate userspace bind/unbind operations 'modalias' and 'devtype', that also appear in the uevent, are added as generic sysfs attributes for all nvdimm devices. The reason for the device-type number is to support sub-types within a given parent devtype, be it a vendor-specific sub-type or otherwise. * The first consumer of this infrastructure is the driver for dimm devices. It simply uses control messages to retrieve and store the configuration-data image (label set) from each dimm. Note: nd_device_register() arranges for asynchronous registration of nvdimm bus devices by default. Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Neil Brown <neilb@suse.de> Acked-by: Christoph Hellwig <hch@lst.de> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25libnvdimm: control (ioctl) messages for nvdimm_bus and nvdimm devicesDan Williams1-3/+35
Most discovery/configuration of the nvdimm-subsystem is done via sysfs attributes. However, some nvdimm_bus instances, particularly the ACPI.NFIT bus, define a small set of messages that can be passed to the platform. For convenience we derive the initial libnvdimm-ioctl command formats directly from the NFIT DSM Interface Example formats. ND_CMD_SMART: media health and diagnostics ND_CMD_GET_CONFIG_SIZE: size of the label space ND_CMD_GET_CONFIG_DATA: read label space ND_CMD_SET_CONFIG_DATA: write label space ND_CMD_VENDOR: vendor-specific command passthrough ND_CMD_ARS_CAP: report address-range-scrubbing capabilities ND_CMD_ARS_START: initiate scrubbing ND_CMD_ARS_STATUS: report on scrubbing state ND_CMD_SMART_THRESHOLD: configure alarm thresholds for smart events If a platform later defines different commands than this set it is straightforward to extend support to those formats. Most of the commands target a specific dimm. However, the address-range-scrubbing commands target the bus. The 'commands' attribute in sysfs of an nvdimm_bus, or nvdimm, enumerate the supported commands for that object. Cc: <linux-acpi@vger.kernel.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reported-by: Nicholas Moulin <nicholas.w.moulin@linux.intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25libnvdimm, nfit: dimm/memory-devicesDan Williams1-0/+92
Enable nvdimm devices to be registered on a nvdimm_bus. The kernel assigned device id for nvdimm devicesis dynamic. If userspace needs a more static identifier it should consult a provider-specific attribute. In the case where NFIT is the provider, the 'nmemX/nfit/handle' or 'nmemX/nfit/serial' attributes may be used for this purpose. Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>