Age | Commit message (Collapse) | Author | Files | Lines |
|
Originally, commit d7157ff49a5b ("mtd: rawnand: Use the ECC framework
user input parsing bits") kind of broke the logic around the
initialization of several ECC engines.
Unfortunately, the fix (which indeed moved the ECC initialization to
the right place) did not take into account the fact that a different
ECC algorithm could have been used thanks to a DT property,
considering the "Hamming" algorithm entry a configuration while it was
only a default.
Add the necessary logic to be sure Hamming keeps being only a default.
Fixes: d525914b5bd8 ("mtd: rawnand: xway: Move the ECC initialization to ->attach_chip()")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201203190340.15522-10-miquel.raynal@bootlin.com
|
|
Originally, commit d7157ff49a5b ("mtd: rawnand: Use the ECC framework
user input parsing bits") kind of broke the logic around the
initialization of several ECC engines.
Unfortunately, the fix (which indeed moved the ECC initialization to
the right place) did not take into account the fact that a different
ECC algorithm could have been used thanks to a DT property,
considering the "Hamming" algorithm entry a configuration while it was
only a default.
Add the necessary logic to be sure Hamming keeps being only a default.
Fixes: b36bf0a0fe5d ("mtd: rawnand: socrates: Move the ECC initialization to ->attach_chip()")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201203190340.15522-9-miquel.raynal@bootlin.com
|
|
Originally, commit d7157ff49a5b ("mtd: rawnand: Use the ECC framework
user input parsing bits") kind of broke the logic around the
initialization of several ECC engines.
Unfortunately, the fix (which indeed moved the ECC initialization to
the right place) did not take into account the fact that a different
ECC algorithm could have been used thanks to a DT property,
considering the "Hamming" algorithm entry a configuration while it was
only a default.
Add the necessary logic to be sure Hamming keeps being only a default.
Fixes: 612e048e6aab ("mtd: rawnand: plat_nand: Move the ECC initialization to ->attach_chip()")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201203190340.15522-8-miquel.raynal@bootlin.com
|
|
Originally, commit d7157ff49a5b ("mtd: rawnand: Use the ECC framework
user input parsing bits") kind of broke the logic around the
initialization of several ECC engines.
Unfortunately, the fix (which indeed moved the ECC initialization to
the right place) did not take into account the fact that a different
ECC algorithm could have been used thanks to a DT property,
considering the "Hamming" algorithm entry a configuration while it was
only a default.
Add the necessary logic to be sure Hamming keeps being only a default.
Fixes: 8fc6f1f042b2 ("mtd: rawnand: pasemi: Move the ECC initialization to ->attach_chip()")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201203190340.15522-7-miquel.raynal@bootlin.com
|
|
Originally, commit d7157ff49a5b ("mtd: rawnand: Use the ECC framework
user input parsing bits") kind of broke the logic around the
initialization of several ECC engines.
Unfortunately, the fix (which indeed moved the ECC initialization to
the right place) did not take into account the fact that a different
ECC algorithm could have been used thanks to a DT property,
considering the "Hamming" algorithm entry a configuration while it was
only a default.
Add the necessary logic to be sure Hamming keeps being only a default.
Reported-by: Chris Packham <chris.packham@alliedtelesis.co.nz>
Fixes: 553508cec2e8 ("mtd: rawnand: orion: Move the ECC initialization to ->attach_chip()")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Tested-by: Chris Packham <chris.packham@alliedtelesis.co.nz>
Link: https://lore.kernel.org/linux-mtd/20201203190340.15522-6-miquel.raynal@bootlin.com
|
|
Originally, commit d7157ff49a5b ("mtd: rawnand: Use the ECC framework
user input parsing bits") kind of broke the logic around the
initialization of several ECC engines.
Unfortunately, the fix (which indeed moved the ECC initialization to
the right place) did not take into account the fact that a different
ECC algorithm could have been used thanks to a DT property,
considering the "Hamming" algorithm entry a configuration while it was
only a default.
Add the necessary logic to be sure Hamming keeps being only a default.
Fixes: 6dd09f775b72 ("mtd: rawnand: mpc5121: Move the ECC initialization to ->attach_chip()")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201203190340.15522-5-miquel.raynal@bootlin.com
|
|
Originally, commit d7157ff49a5b ("mtd: rawnand: Use the ECC framework
user input parsing bits") kind of broke the logic around the
initialization of several ECC engines.
Unfortunately, the fix (which indeed moved the ECC initialization to
the right place) did not take into account the fact that a different
ECC algorithm could have been used thanks to a DT property,
considering the "Hamming" algorithm entry a configuration while it was
only a default.
Add the necessary logic to be sure Hamming keeps being only a default.
Fixes: f6341f6448e0 ("mtd: rawnand: gpio: Move the ECC initialization to ->attach_chip()")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201203190340.15522-4-miquel.raynal@bootlin.com
|
|
Originally, commit d7157ff49a5b ("mtd: rawnand: Use the ECC framework
user input parsing bits") kind of broke the logic around the
initialization of several ECC engines.
Unfortunately, the fix (which indeed moved the ECC initialization to
the right place) did not take into account the fact that a different
ECC algorithm could have been used thanks to a DT property,
considering the "Hamming" algorithm entry a configuration while it was
only a default.
Add the necessary logic to be sure Hamming keeps being only a default.
Fixes: dbffc8ccdf3a ("mtd: rawnand: au1550: Move the ECC initialization to ->attach_chip()")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201203190340.15522-3-miquel.raynal@bootlin.com
|
|
Originally, commit d7157ff49a5b ("mtd: rawnand: Use the ECC framework
user input parsing bits") kind of broke the logic around the
initialization of several ECC engines.
Unfortunately, the fix (which indeed moved the ECC initialization to
the right place) did not take into account the fact that a different
ECC algorithm could have been used thanks to a DT property,
considering the "Hamming" algorithm entry a configuration while it was
only a default.
Add the necessary logic to be sure Hamming keeps being only a default.
Fixes: 59d93473323a ("mtd: rawnand: ams-delta: Move the ECC initialization to ->attach_chip()")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201203190340.15522-2-miquel.raynal@bootlin.com
|
|
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-20-miquel.raynal@bootlin.com
|
|
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
|
|
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Maxim Levitsky <maximlevitsky@gmail.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-18-miquel.raynal@bootlin.com
|
|
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-17-miquel.raynal@bootlin.com
|
|
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-16-miquel.raynal@bootlin.com
|
|
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-15-miquel.raynal@bootlin.com
|
|
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-14-miquel.raynal@bootlin.com
|
|
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-13-miquel.raynal@bootlin.com
|
|
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-12-miquel.raynal@bootlin.com
|
|
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Vladimir Zapolskiy <vz@mleia.com>
Cc: Sylvain Lemieux <slemieux.tyco@gmail.com>
|
|
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Vladimir Zapolskiy <vz@mleia.com>
Cc: Sylvain Lemieux <slemieux.tyco@gmail.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-10-miquel.raynal@bootlin.com
|
|
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
|
|
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-8-miquel.raynal@bootlin.com
|
|
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-7-miquel.raynal@bootlin.com
|
|
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
|
|
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-5-miquel.raynal@bootlin.com
|
|
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip().
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-4-miquel.raynal@bootlin.com
|
|
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip(), a NAND controller
hook.
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-3-miquel.raynal@bootlin.com
|
|
The probe function is only supposed to initialize the controller
hardware but not the ECC engine. Indeed, we don't know anything about
the NAND chip(s) at this stage. Let's move the logic initializing the
ECC engine, even pretty simple, to the ->attach_chip() hook which gets
called during nand_scan() routine, after the NAND chip discovery. As
the previously mentioned logic is supposed to parse the DT for us, it
is likely that the chip->ecc.* entries be overwritten. So let's avoid
this by moving these lines to ->attach_chip(), a NAND controller
hook.
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Reported-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Tested-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Link: https://lore.kernel.org/linux-mtd/20201113123424.32233-2-miquel.raynal@bootlin.com
|
|
Since commit d7157ff49a5b ("mtd: rawnand: Use the ECC framework user
input parsing bits"), ECC are broken in FMC2 driver in case of
nand-ecc-step-size and nand-ecc-strength are not set in the device tree.
To avoid this issue, the default settings are now set in
stm32_fmc2_nfc_attach_chip function.
Signed-off-by: Christophe Kerello <christophe.kerello@st.com>
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/1604064819-26861-1-git-send-email-christophe.kerello@st.com
|
|
If a flash chip has more than 16MB capacity but its BFPT reports
BFPT_DWORD1_ADDRESS_BYTES_3_OR_4, the spi-nor framework defaults to 3.
The check in spi_nor_set_addr_width() doesn't catch it because addr_width
did get set. This fixes that check.
Fixes: f9acd7fa80be ("mtd: spi-nor: sfdp: default to addr_width of 3 for configurable widths")
Signed-off-by: Bert Vermeulen <bert@biot.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Reviewed-by: Pratyush Yadav <p.yadav@ti.com>
Reviewed-by: Joel Stanley <joel@jms.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Joel Stanley <joel@jms.id.au>
Tested-by: Cédric Le Goater <clg@kaod.org>
Link: https://lore.kernel.org/r/20201006132346.12652-1-bert@biot.com
|
|
spi_nor_parse_sfdp() modifies the passed structure so that it points to
itself (params.erase_map.regions to params.erase_map.uniform_region). This
makes it impossible to copy the local struct anywhere else.
Therefore only use memcpy() in backup-restore scenario. The bug may show up
like below:
BUG: unable to handle page fault for address: ffffc90000b377f8
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 4 PID: 3500 Comm: flashcp Tainted: G O 5.4.53-... #1
...
RIP: 0010:spi_nor_erase+0x8e/0x5c0
Code: 64 24 18 89 db 4d 8b b5 d0 04 00 00 4c 89 64 24 18 4c 89 64 24 20 eb 12 a8 10 0f 85 59 02 00 00 49 83 c6 10 0f 84 4f 02 00 00 <49> 8b 06 48 89 c2 48 83 e2 c0 48 89 d1 49 03 4e 08 48 39 cb 73 d8
RSP: 0018:ffffc9000217fc48 EFLAGS: 00010206
RAX: 0000000000740000 RBX: 0000000000000000 RCX: 0000000000740000
RDX: ffff8884550c9980 RSI: ffff88844f9c0bc0 RDI: ffff88844ede7bb8
RBP: 0000000000740000 R08: ffffffff815bfbe0 R09: ffff88844f9c0bc0
R10: 0000000000000000 R11: 0000000000000000 R12: ffffc9000217fc60
R13: ffff88844ede7818 R14: ffffc90000b377f8 R15: 0000000000000000
FS: 00007f4699780500(0000) GS:ffff88846ff00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffc90000b377f8 CR3: 00000004538ee000 CR4: 0000000000340fe0
Call Trace:
part_erase+0x27/0x50
mtdchar_ioctl+0x831/0xba0
? filemap_map_pages+0x186/0x3d0
? do_filp_open+0xad/0x110
? _copy_to_user+0x22/0x30
? cp_new_stat+0x150/0x180
mtdchar_unlocked_ioctl+0x2a/0x40
do_vfs_ioctl+0xa0/0x630
? __do_sys_newfstat+0x3c/0x60
ksys_ioctl+0x70/0x80
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x6a/0x200
? prepare_exit_to_usermode+0x50/0xd0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f46996b6817
Cc: stable@vger.kernel.org
Fixes: c46872170a54 ("mtd: spi-nor: Move erase_map to 'struct spi_nor_flash_parameter'")
Co-developed-by: Matija Glavinic Pecotic <matija.glavinic-pecotic.ext@nokia.com>
Signed-off-by: Matija Glavinic Pecotic <matija.glavinic-pecotic.ext@nokia.com>
Signed-off-by: Alexander Sverdlin <alexander.sverdlin@nokia.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Tested-by: Baurzhan Ismagulov <ibr@radix50.net>
Reviewed-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Link: https://lore.kernel.org/r/20201005084803.23460-1-alexander.sverdlin@nokia.com
|
|
No ECC initialization should happen during the host controller probe.
In fact, we need the probe function to call nand_scan() in order to:
- identify the device, its capabilities and constraints (nand_scan_ident())
- configure the ECC engine accordingly (->attach_chip())
- scan its content and prepare the core (nand_scan_tail())
Moving these lines to fsl_ifc_attach_chip() fixes a regression caused by
a previous commit supposed to clarify these steps.
Based on a fix done for the mxc_nand driver by Miquel Raynal.
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Reported-by: Han Xu <xhnjupt@gmail.com>
Signed-off-by: Fabio Estevam <festevam@gmail.com>
Tested-by: Han Xu <xhnjupt@gmail.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201016132626.30112-1-festevam@gmail.com
|
|
No ECC initialization should happen during the host controller probe.
In fact, we need the probe function to call nand_scan() in order to:
- identify the device, its capabilities and constraints (nand_scan_ident())
- configure the ECC engine accordingly (->attach_chip())
- scan its content and prepare the core (nand_scan_tail())
Moving these lines to mxcnd_attach_chip() fixes a regression caused by
a previous commit supposed to clarify these steps.
When moving the ECC initialization from probe() to attach(), get rid
of the pdata usage to determine the engine type and let the core decide
instead.
Tested on a imx27-pdk board.
Fixes: d7157ff49a5b ("mtd: rawnand: Use the ECC framework user input parsing bits")
Reported-by: Fabio Estevam <festevam@gmail.com>
Co-developed-by: Miquel Raynal <miquel.raynal@bootlin.com>
Signed-off-by: Fabio Estevam <festevam@gmail.com>
Tested-by: Sascha Hauer <s.hauer@pengutronix.de>
Tested-by: Martin Kaiser <martin@kaiser.cx>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20201016213613.1450-1-festevam@gmail.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rw/ubifs
Pull more ubi and ubifs updates from Richard Weinberger:
"UBI:
- Correctly use kthread_should_stop in ubi worker
UBIFS:
- Fixes for memory leaks while iterating directory entries
- Fix for a user triggerable error message
- Fix for a space accounting bug in authenticated mode"
* tag 'for-linus-5.10-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git/rw/ubifs:
ubifs: journal: Make sure to not dirty twice for auth nodes
ubifs: setflags: Don't show error message when vfs_ioc_setflags_prepare() fails
ubifs: ubifs_jnl_change_xattr: Remove assertion 'nlink > 0' for host inode
ubi: check kthread_should_stop() after the setting of task state
ubifs: dent: Fix some potential memory leaks while iterating entries
ubifs: xattr: Fix some potential memory leaks while iterating entries
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux
Pull MTD updates from Richard Weinberger:
"NAND core changes:
- Drop useless 'depends on' in Kconfig
- Add an extra level in the Kconfig hierarchy
- Trivial spellings
- Dynamic allocation of the interface configurations
- Dropping the default ONFI timing mode
- Various cleanup (types, structures, naming, comments)
- Hide the chip->data_interface indirection
- Add the generic rb-gpios property
- Add the ->choose_interface_config() hook
- Introduce nand_choose_best_sdr_timings()
- Use default values for tPROG_max and tBERS_max
- Avoid redefining tR_max and tCCS_min
- Add a helper to find the closest ONFI mode
- bcm63xx MTD parsers: simplify CFE detection
Raw NAND controller drivers changes:
- fsl-upm: Deprecation of specific DT properties
- fsl_upm: Driver rework and cleanup in favor of ->exec_op()
- Ingenic: Cleanup ARRAY_SIZE() vs sizeof() use
- brcmnand: ECC error handling on EDU transfers
- brcmnand: Don't default to EDU transfers
- qcom: Set BAM mode only if not set already
- qcom: Avoid write to unavailable register
- gpio: Driver rework in favor of ->exec_op()
- tango: ->exec_op() conversion
- mtk: ->exec_op() conversion
Raw NAND chip drivers changes:
- toshiba: Implement ->choose_interface_config() for TH58NVG2S3HBAI4
- toshiba: Implement ->choose_interface_config() for TC58NVG0S3E
- toshiba: Implement ->choose_interface_config() for TC58TEG5DCLTA00
- hynix: Implement ->choose_interface_config() for H27UCG8T2ATR-BC
HyperBus changes:
- DMA support for TI's AM654 HyperBus controller driver.
- HyperBus frontend driver for Renesas RPC-IF driver.
SPI NOR core changes:
- Support for Winbond w25q64jwm flash
- Enable 4K sector support for mx25l12805d
SPI NOR controller drivers changes:
- intel-spi Add Alder Lake-S PCI ID
MTD Core changes:
- mtdoops: Don't run panic write twice
- mtdconcat: Correctly handle panic write
- Use DEFINE_SHOW_ATTRIBUTE"
* tag 'mtd/for-5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux: (76 commits)
mtd: hyperbus: Fix build failure when only RPCIF_HYPERBUS is enabled
mtd: hyperbus: add Renesas RPC-IF driver
Revert "mtd: spi-nor: Prefer asynchronous probe"
mtd: parsers: bcm63xx: Do not make it modular
mtd: spear_smi: Enable compile testing
mtd: maps: vmu-flash: fix typos for struct memcard
mtd: physmap: Add Baikal-T1 physically mapped ROM support
mtd: maps: vmu-flash: simplify the return expression of probe_maple_vmu
mtd: onenand: simplify the return expression of onenand_transfer_auto_oob
mtd: rawnand: cadence: remove a redundant dev_err call
mtd: rawnand: ams-delta: Fix non-OF build warning
mtd: rawnand: Don't overwrite the error code from nand_set_ecc_soft_ops()
mtd: rawnand: Introduce nand_set_ecc_on_host_ops()
mtd: rawnand: atmel: Check return values for nand_read_data_op
mtd: rawnand: vf610: Remove unused function vf610_nfc_transfer_size()
mtd: rawnand: qcom: Simplify with dev_err_probe()
mtd: rawnand: marvell: Fix and update kerneldoc
mtd: rawnand: marvell: Simplify with dev_err_probe()
mtd: rawnand: gpmi: Simplify with dev_err_probe()
mtd: rawnand: atmel: Simplify with dev_err_probe()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
Pull trivial updates from Jiri Kosina:
"The latest advances in computer science from the trivial queue"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial:
xtensa: fix Kconfig typo
spelling.txt: Remove some duplicate entries
mtd: rawnand: oxnas: cleanup/simplify code
selftests: vm: add fragment CONFIG_GUP_BENCHMARK
perf: Fix opt help text for --no-bpf-event
HID: logitech-dj: Fix spelling in comment
bootconfig: Fix kernel message mentioning CONFIG_BOOT_CONFIG
MAINTAINERS: rectify MMP SUPPORT after moving cputype.h
scif: Fix spelling of EACCES
printk: fix global comment
lib/bitmap.c: fix spello
fs: Fix missing 'bit' in comment
|
|
Pull block updates from Jens Axboe:
- Series of merge handling cleanups (Baolin, Christoph)
- Series of blk-throttle fixes and cleanups (Baolin)
- Series cleaning up BDI, seperating the block device from the
backing_dev_info (Christoph)
- Removal of bdget() as a generic API (Christoph)
- Removal of blkdev_get() as a generic API (Christoph)
- Cleanup of is-partition checks (Christoph)
- Series reworking disk revalidation (Christoph)
- Series cleaning up bio flags (Christoph)
- bio crypt fixes (Eric)
- IO stats inflight tweak (Gabriel)
- blk-mq tags fixes (Hannes)
- Buffer invalidation fixes (Jan)
- Allow soft limits for zone append (Johannes)
- Shared tag set improvements (John, Kashyap)
- Allow IOPRIO_CLASS_RT for CAP_SYS_NICE (Khazhismel)
- DM no-wait support (Mike, Konstantin)
- Request allocation improvements (Ming)
- Allow md/dm/bcache to use IO stat helpers (Song)
- Series improving blk-iocost (Tejun)
- Various cleanups (Geert, Damien, Danny, Julia, Tetsuo, Tian, Wang,
Xianting, Yang, Yufen, yangerkun)
* tag 'block-5.10-2020-10-12' of git://git.kernel.dk/linux-block: (191 commits)
block: fix uapi blkzoned.h comments
blk-mq: move cancel of hctx->run_work to the front of blk_exit_queue
blk-mq: get rid of the dead flush handle code path
block: get rid of unnecessary local variable
block: fix comment and add lockdep assert
blk-mq: use helper function to test hw stopped
block: use helper function to test queue register
block: remove redundant mq check
block: invoke blk_mq_exit_sched no matter whether have .exit_sched
percpu_ref: don't refer to ref->data if it isn't allocated
block: ratelimit handle_bad_sector() message
blk-throttle: Re-use the throtl_set_slice_end()
blk-throttle: Open code __throtl_de/enqueue_tg()
blk-throttle: Move service tree validation out of the throtl_rb_first()
blk-throttle: Move the list operation after list validation
blk-throttle: Fix IO hang for a corner case
blk-throttle: Avoid tracking latency if low limit is invalid
blk-throttle: Avoid getting the current time if tg->last_finish_time is 0
blk-throttle: Remove a meaningless parameter for throtl_downgrade_state()
block: Remove redundant 'return' statement
...
|
|
commit 5de15b610f78 ("mtd: hyperbus: add Renesas RPC-IF driver") leads
to build failure[1] with COMPILE_TEST and RPCIF_HYPERBUS enabled. This
is because driver needs functions RENESAS_RPCIF which is only buildable
for CONFIG_ARCH_RENESAS.
Fix this by dropping COMPILE_TEST from RPCIF_HYPERBUS Kconfig entry.
This ensures driver can be built only when RENESAS_RPCIF is also
selected.
[1]:
rpc-if.c:(.text+0x20): undefined reference to `rpcif_disable_rpm' ld:
drivers/mtd/hyperbus/rpc-if.o: in function `rpcif_hb_prepare_read':
rpc-if.c:(.text+0xd6): undefined reference to `rpcif_prepare' ld:
drivers/mtd/hyperbus/rpc-if.o: in function `rpcif_hb_read16':
[...]
Fixes: 5de15b610f78 ("mtd: hyperbus: add Renesas RPC-IF driver") leads
Reported-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
gitolite.kernel.org:pub/scm/linux/kernel/git/mtd/linux into mtd/next
HyperBus changes
* DMA support for TI's AM654 HyperBus controller driver.
* HyperBus frontend driver for Renesas RPC-IF driver.
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux into mtd/next
SPI NOR core changes:
- Support for Winbond w25q64jwm flash
- Enable 4K sector support for mx25l12805d
SPI NOR controller drivers changes:
- intel-spi:
- Add Alder Lake-S PCI ID
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux into mtd/next
NAND core changes:
* Use the new generic ECC object
* Create helpers to set/extract the ECC requirements
* Create a helper to extract the ECC configuration
* Add a NAND page I/O request type
* Introduce the ECC engine framework
Raw NAND core changes:
* Don't overwrite the error code from nand_set_ecc_soft_ops()
* Introduce nand_set_ecc_on_host_ops()
* Use the NAND framework user_conf object for ECC flags
* Use the ECC framework user input parsing bits
* Use the ECC framework nand_ecc_is_strong_enough() helper
* Use the ECC framework OOB layouts
* Make use of the ECC framework
* Use nanddev_get/set_ecc_requirements() when relevant
* Use the new ECC engine type enumeration
* Separate the ECC engine type and the ECC byte placement
* Move the nand_ecc_algo enum to the generic NAND layer
* Rename the ECC algorithm enumeration items
* Add a kernel doc to the ECC algorithm enumeration
* DT bindings:
- Document boolean NAND ECC properties
- Document nand-ecc-engine
- Document nand-ecc-placement
Raw NAND drivers changes:
* Ams-Delta: Fix non-OF build warning
* Atmel:
- Check return values for nand_read_data_op
- Simplify with dev_err_probe()
- Get rid of the legacy interface implementation
- Convert the driver to exec_op()
- Use nand_prog_page_end_op()
- Use nand_{write,read}_data_op()
- Drop redundant nand_read_page_op()
- Enable the NFC controller at probe time
- Disable clk on error handling path in probe
* Cadence: remove a redundant dev_err call
* Gpmi:
- Simplify with dev_err_probe()
* Marvell:
- Fix and update kerneldoc
- Simplify with dev_err_probe()
- Fix and update kerneldoc
- Simplify with dev_err_probe()
- Support panic_write for mtdoops
* Onenand:
- Simplify the return expression of onenand_transfer_auto_oob
- Simplify with dev_err_probe()
* Oxnas: cleanup/simplify code
* Pasemi: Make pasemi_device_ready() static
* Qcom: Simplify with dev_err_probe()
* Stm32_fmc2: fix a buffer overflow
* Vf610: Remove unused function vf610_nfc_transfer_size()
SPI-NAND changes:
* Use nanddev_get_ecc_conf() when relevant
* Gigadevice:
- Add support for GD5F4GQ4xC
- Add QE Bit
- Use only one dummy byte in QUADIO
* Macronix:
- Add support for MX31UF1GE4BC
- Add support for MX31LF1GE4BC
|
|
Add the HyperFLash driver for the Renesas RPC-IF. It's the "front end"
driver using the "back end" APIs in the main driver to talk to the real
hardware.
Signed-off-by: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Link: https://lore.kernel.org/r/78abb851-2beb-fe7d-87e5-ce58ee877d35@gmail.com
|
|
This reverts commit 03edda0e1edaa3c2e99239c66e3c14d749318fd6.
This leads to warn dump like [1] on some platforms and reorders MTD
devices which may break user space expectations [2]. So revert the change.
[1]:
[ 1.849801] ------------[ cut here ]------------
[ 1.854271] mscc_felix 0000:00:00.5: device is disabled, skipping
[ 1.858753] WARNING: CPU: 1 PID: 7 at kernel/kmod.c:136 __request_module+0x3a4/0x568
[...]
[2] Bug report: https://lore.kernel.org/linux-mtd/20201003150633.23416-1-michael@walle.cc/
Reported-by: Michael Walle <michael@walle.cc>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Link: https://lore.kernel.org/r/20201005090321.8724-1-vigneshr@ti.com
|
|
With commit 91e81150d388 ("mtd: parsers: bcm63xx: simplify CFE
detection"), we generate a reference to fw_arg3 which is the fourth
firmware/command line argument on MIPS platforms. That symbol is not
exported and would cause a linking failure.
The parser is typically necessary to boot a BCM63xx-based system anyway
so having it be part of the kernel image makes sense, therefore make it
'bool' instead of 'tristate'.
Fixes: 91e81150d388 ("mtd: parsers: bcm63xx: simplify CFE detection")
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200929172726.30469-1-f.fainelli@gmail.com
|
|
This driver does not contain any architecture specific code, enable
compile testing it.
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200928155715.14370-1-miquel.raynal@bootlin.com
|
|
Change struct memcard`s element "removeable" -> "removable".
Signed-off-by: Bernard Zhao <bernard@vivo.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200922112814.26761-1-bernard@vivo.com
|
|
Baikal-T1 Boot Controller provides an access to a RO storages, which are
physically mapped into the SoC MMIO space. In particularly there are
Internal ROM embedded into the SoC with a pre-installed firmware,
externally attached SPI flash (also accessed in the read-only mode) and a
memory region, which mirrors one of them in accordance with the currently
enabled system boot mode (also called Boot ROM).
This commit adds the Internal ROM support to the physmap driver of the MTD
kernel subsystem. The driver will create the Internal ROM MTD as long as
it is defined in the system dts file. The physically mapped SPI flash
region will be used to implement the SPI-mem interface. The mirroring
memory region won't be accessible directly since it's redundant due to
both bootable regions being exposed anyway.
Note we had to create a dedicated code for the ROMs since read from the
corresponding memory regions must be done via the dword-aligned addresses.
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Cc: Alexey Malahov <Alexey.Malahov@baikalelectronics.ru>
Cc: Pavel Parkhomenko <Pavel.Parkhomenko@baikalelectronics.ru>
Cc: Lee Jones <lee.jones@linaro.org>
Cc: linux-mips@vger.kernel.org
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200920111445.21816-1-Sergey.Semin@baikalelectronics.ru
|
|
Simplify the return expression.
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200919100854.1639267-1-liushixin2@huawei.com
|
|
Simplify the return expression.
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200921082441.2591669-1-liushixin2@huawei.com
|
|
There is an error message within devm_ioremap_resource already, so
remove the dev_err call to avoid a redundant error message.
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20200921013805.1724606-1-liushixin2@huawei.com
|