Age | Commit message (Collapse) | Author | Files | Lines |
|
There is no reason now not to use kvmalloc, so replace the internal
metadata allocation scheme.
Reviewed-by: Javier González <javier@javigon.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Hans Holmberg <hans@owltronix.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Now that blk_rq_map_kern can map both kmem and vmem, move internal
metadata mapping down to the lower level driver.
Reviewed-by: Javier González <javier@javigon.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Hans Holmberg <hans@owltronix.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This patch changes the approach to handling partial read path.
In old approach merging of data from round buffer and drive was fully
made by drive. This had some disadvantages - code was complex and
relies on bio internals, so it was hard to maintain and was strongly
dependent on bio changes.
In new approach most of the handling is done mostly by block layer
functions such as bio_split(), bio_chain() and generic_make request()
and generally is less complex and easier to maintain. Below some more
details of the new approach.
When read bio arrives, it is cloned for pblk internal purposes. All
the L2P mapping, which includes copying data from round buffer to bio
and thus bio_advance() calls is done on the cloned bio, so the original
bio is untouched. If we found that we have partial read case, we
still have original bio untouched, so we can split it and continue to
process only first part of it in current context, when the rest will be
called as separate bio request which is passed to generic_make_request()
for further processing.
Signed-off-by: Igor Konopko <igor.j.konopko@intel.com>
Reviewed-by: Heiner Litz <hlitz@ucsc.edu>
Reviewed-by: Javier González <javier@javigon.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This patch is made in order to prepare read path for new approach to
partial read handling, which is simpler in compare with previous one.
The most important change is to move the handling of completed and
failed bio from the pblk_make_rq() to particular read and write
functions. This is needed, since after partial read path changes,
sometimes completed/failed bio will be different from original one, so
we cannot do this any longer in pblk_make_rq().
Other changes are small read path refactor in order to reduce the size
of the following patch with partial read changes.
Generally the goal of this patch is not to change the functionality,
but just to prepare the code for the following changes.
Signed-off-by: Igor Konopko <igor.j.konopko@intel.com>
Reviewed-by: Javier González <javier@javigon.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Currently when there is an IO error (or similar) on GC read path, pblk
still move the line, which was currently under GC process to free state.
Such a behaviour can lead to silent data mismatch issue.
With this patch, the line which was under GC process on which some IO
errors occurred, will be putted back to closed state (instead of free
state as it was without this patch) and the L2P mapping for such a
failed sectors will not be updated.
Then in case of any user IOs to such a failed sectors, pblk would be
able to return at least real IO error instead of stale data as it is
right now.
Signed-off-by: Igor Konopko <igor.j.konopko@intel.com>
Reviewed-by: Javier González <javier@javigon.com>
Reviewed-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Currently during pblk padding, there is internal IO timeout introduced,
which is smaller than default NVMe timeout. This can lead to various
use-after-free issues. Since in case of any IO timeouts NVMe and block
layer will handle timeout by themselves and report it back to use,
there is no need to keep this internal timeout in pblk.
Signed-off-by: Igor Konopko <igor.j.konopko@intel.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
smeta_ssec field in pblk_line is never used after it was replaced by
the function pblk_line_smeta_start().
Signed-off-by: Igor Konopko <igor.j.konopko@intel.com>
Reviewed-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Reviewed-by: Javier González <javier@javigon.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Currently L2P map size is calculated based on the total number of
available sectors, which is redundant, since it contains mapping for
overprovisioning as well (11% by default).
Change this size to the real capacity and thus reduce the memory
footprint significantly - with default op value it is approx.
110MB of DRAM less for every 1TB of media.
Signed-off-by: Igor Konopko <igor.j.konopko@intel.com>
Reviewed-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Reviewed-by: Javier González <javier@javigon.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This patch fixes a race condition where a write is mapped to the last
sectors of a line. The write is synced to the device but the L2P is not
updated yet. When the line is garbage collected before the L2P update
is performed, the sectors are ignored by the GC logic and the line is
freed before all sectors are moved. When the L2P is finally updated, it
contains a mapping to a freed line, subsequent reads of the
corresponding LBAs fail.
This patch introduces a per line counter specifying the number of
sectors that are synced to the device but have not been updated in the
L2P. Lines with a counter of greater than zero will not be selected
for GC.
Signed-off-by: Heiner Litz <hlitz@ucsc.edu>
Reviewed-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Reviewed-by: Javier González <javier@javigon.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
In order to respect mw_cuinits, pblk's write buffer maintains a
backpointer to protect data not yet persisted; when writing to the write
buffer, this backpointer defines a threshold that pblk's rate-limiter
enforces.
On small PU configurations, the following scenarios might take place: (i)
the threshold is larger than the write buffer and (ii) the threshold is
smaller than the write buffer, but larger than the maximun allowed
split bio - 256KB at this moment (Note that writes are not always
split - we only do this when we the size of the buffer is smaller
than the buffer). In both cases, pblk's rate-limiter prevents the I/O to
be written to the buffer, thus stalling.
This patch fixes the original backpointer implementation by considering
the threshold both on buffer creation and on the rate-limiters path,
when bio_split is triggered (case (ii) above).
Fixes: 766c8ceb16fc ("lightnvm: pblk: guarantee that backpointer is respected on writer stall")
Signed-off-by: Javier González <javier@javigon.com>
Reviewed-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
There are new types and helpers that are supposed to be used in new code.
As a preparation to get rid of legacy types and API functions do
the conversion here.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Javier González <javier@javigon.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Sparse complains about using strict data types:
drivers/lightnvm/pblk-read.c:254:43: warning: incorrect type in assignment (different base types)
drivers/lightnvm/pblk-read.c:254:43: expected restricted __le64 <noident>
drivers/lightnvm/pblk-read.c:254:43: got unsigned long long [unsigned] [usertype] <noident>
drivers/lightnvm/pblk-read.c:255:29: warning: cast from restricted __le64
drivers/lightnvm/pblk-read.c:268:29: warning: cast from restricted __le64
drivers/lightnvm/pblk-read.c:328:41: warning: incorrect type in assignment (different base types)
drivers/lightnvm/pblk-read.c:328:41: expected restricted __le64 <noident>
drivers/lightnvm/pblk-read.c:328:41: got unsigned long long [unsigned] [usertype] <noident>
In the code it seems explicit that lba_list_mem and lba_list_media members
of struct pblk_pr_ctx are used on CPU side, which means they should not be
of strict types.
Change types of lba_list_mem and lba_list_media members to be u64.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Javier González <javier@javigon.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Ehen using pblk with 0 sized metadata both ppa list and meta list
points to the same memory since pblk_dma_meta_size() returns 0 in
that case.
This patch fix that issue by ensuring that pblk_dma_meta_size()
always returns space equal to sizeof(struct pblk_sec_meta) and thus
ppa list and meta list points to different memory address.
Even that in that case drive does not really care about meta_list
pointer, this is the easiest way to fix that issue without introducing
changes in many places in the code just for 0 sized metadata case.
The same approach needs to be also done for pblk_get_sec_meta()
since we also cannot point to the same memory address in meta buffer
when we are using it for pblk recovery process
Reported-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Tested-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Igor Konopko <igor.j.konopko@intel.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
pblk performs recovery of open lines by storing the LBA in the per LBA
metadata field. Recovery therefore only works for drives that has this
field.
This patch adds support for packed metadata, which store l2p mapping
for open lines in last sector of every write unit and enables drives
without per IO metadata to recover open lines.
After this patch, drives with OOB size <16B will use packed metadata
and metadata size larger than16B will continue to use the device per
IO metadata.
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Igor Konopko <igor.j.konopko@intel.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Currently lightnvm and pblk uses single DMA pool, for which the entry
size always is equal to PAGE_SIZE. The contents of each entry allocated
from the DMA pool consists of a PPA list (8bytes * 64), leaving
56bytes * 64 space for metadata. Since the metadata field can be bigger,
such as 128 bytes, the static size does not cover this use-case.
This patch adds support for I/O metadata above 56 bytes by changing DMA
pool size based on device meta size and allows pblk to use OOB metadata
>=16B.
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Igor Konopko <igor.j.konopko@intel.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
pblk currently assumes that size of OOB metadata on drive is always
equal to size of pblk_sec_meta struct. This commit add helpers which will
allow to handle different sizes of OOB metadata on drive in the future.
After this patch only OOB metadata equal to 16 bytes is supported.
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Igor Konopko <igor.j.konopko@intel.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Currently DMA allocated memory is reused on partial read
for lba_list_mem and lba_list_media arrays. In preparation
for dynamic DMA pool sizes we need to move this arrays
into pblk_pr_ctx structures.
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Igor Konopko <igor.j.konopko@intel.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
In a worst-case scenario (random writes), OP% of sectors
in each line will be invalid, and we will then need
to move data out of 100/OP% lines to free a single line.
So, to prevent the possibility of running out of lines,
temporarily block user writes when there is less than
100/OP% free lines.
Also ensure that pblk creation does not produce instances
with insufficient over provisioning.
Insufficient over-provising is not a problem on real hardware,
but often an issue when running QEMU simulations (with few lines).
100 lines is enough to create a sane instance with the standard
(11%) over provisioning.
Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Reviewed-by: Javier González <javier@javigon.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
If mapping fails (i.e. when running out of lines), handle the error
and stop writing.
Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Reviewed-by: Javier González <javier@javigon.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
pblk's write buffer must guarantee that it respects the device's
constrains for reads (i.e., mw_cunits). This is done by maintaining a
backpointer that updates the L2P table as entries wrap up, making them
point to the media instead of pointing to the write buffer.
This mechanism can race in case that the write thread stalls, as the
write pointer will protect the last written entry, thus disregarding the
read constrains.
This patch adds an extra check on wrap up, making sure that the
threshold is respected at all times, preventing new entries to overwrite
committed data, also in case of write thread stall.
Reported-by: Heiner Litz <hlitz@ucsc.edu>
Signed-off-by: Javier González <javier@cnexlabs.com>
Reviewed-by: Heiner Litz <hlitz@ucsc.edu>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
pblk's read/write buffer currently takes a buffer and its size and uses
it to create the metadata around it to use it as a ring buffer. This
puts the responsibility of allocating/freeing ring buffer memory on the
ring buffer user. Instead, move it inside of the ring buffer helpers
(pblk-rb.c). This simplifies creation/destruction routines.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
pblk's read/write buffer is always a power-of-2, thus wrapping up the
buffer can be done with a bit mask. Since this is an implementation
detail internal to the write buffer, make a helper that hides pointer
increment + wrap, and allows to transparently relax this assumption in
the future.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Removed unused function in pblk-rb.c
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Add GLP-2.0 SPDX license tag to all pblk files
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
pblk guarantees write ordering at a chunk level through a per open chunk
semaphore. At this point, since we only have an open I/O stream for both
user and GC data, the semaphore is per parallel unit.
For the metadata I/O that is synchronous, the semaphore is not needed as
ordering is guaranteed. However, if the metadata scheme changes or
multiple streams are open, this guarantee might not be preserved.
This patch makes sure that all writes go through the semaphore, even for
synchronous I/O. This is consistent with pblk's write I/O model. It also
simplifies maintenance since changes in the metadata scheme could cause
ordering issues.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
pblk maintains two different metadata paths for smeta and emeta, which
store metadata at the start of the line and at the end of the line,
respectively. Until now, these path has been common for writing and
retrieving metadata, however, as these paths diverge, the common code
becomes less clear and unnecessary complicated.
In preparation for further changes to the metadata write path, this
patch separates the write and read paths for smeta and emeta and
removes the synchronous emeta path as it not used anymore (emeta is
scheduled asynchronously to prevent jittering due to internal I/Os).
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
dma allocations for ppa_list and meta_list in rqd are replicated in
several places across the pblk codebase. Make helpers to encapsulate
creation and deletion to simplify the code.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
If a line is padded, calculate the pad distance directly on the helper
being used for this purpose.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Continuing the effort of moving 1.2 and 2.0 specific code to core, move
64_to_32 and 32_to_64 ppa helpers from pblk to core.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Trace state of chunk resets.
Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Introduce trace points for tracking chunk states in pblk - this is
useful for inspection of the entire state of the drive, and real handy
for both fw and pblk debugging.
Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Remove the debug only iteration within __pblk_down_page, which
then allows us to reduce the number of arguments down to pblk and
the parallel unit from the functions that calls it. Simplifying the
callers logic considerably.
Also, rename the functions pblk_[down/up]_page to
pblk_[down/up]_chunk, to communicate that it manages the write
pointer of the chunk. Note that it also protects the parallel unit
such that at most one chunk is active per parallel unit.
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
The parameters nr_ppas and ppa_list are not used, so remove them.
Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Line map bitmap allocations are fairly large and can fail. Allocation
failures are fatal to pblk, stopping the write pipeline. To avoid this,
allocate the bitmaps using a mempool instead.
Mempool allocations never fail if called from a process context,
and pblk *should* only allocate map bitmaps in process context,
but keep the failure handling for robustness sake.
Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
There is a number of places in the lightnvm subsystem where the user
iterates over the ppa list. Before iterating, the user must know if it
is a single or multiple LBAs due to vector commands using either the
nvm_rq ->ppa_addr or ->ppa_list fields on command submission, which
leads to open-coding the if/else statement.
Instead of having multiple if/else's, move it into a function that can
be called by its users.
A nice side effect of this cleanup is that this patch fixes up a
bunch of cases where we don't consider the single-ppa case in pblk.
Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Removed unused struct ppa_addr variable.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
The current helper to obtain a line from a ppa returns the line id,
which requires its users to explicitly retrieve the pointer to the line
with the id.
Make 2 different helpers: one returning the line id and one returning
the line directly.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Implement helpers to go from ppas to a chunk within a line and an
address within a chunk.
These helpers will be used on the patches adding trace support in pblk,
which will be sent in this window.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
The read completion path uses the put_line variable to decide whether
the reference on a line should be released. The function name used for
that is pblk_read_put_rqd_kref, which could lead one to believe that it
is the rqd that is releasing the reference, while it is the line
reference that is put.
Rename and also split the function in two to account for either rqd or
single ppa callers and move it to core, such that it later can be used
in the write path as well.
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Reviewed-by: Javier González <javier@cnexlabs.com>
Reviewed-by: Heiner Litz <hlitz@ucsc.edu>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Both NVM_MAX_VLBA and PBLK_MAX_REQ_ADDRS define how many LBAs that
are available in a vector command. pblk uses them interchangeably
in its implementation. Use NVM_MAX_VLBA as the main one and remove
usages of PBLK_MAX_REQ_ADDRS.
Also remove the power representation that only has one user, and
instead calculate it at runtime.
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
pblk implements two data paths for recovery line state. One for 1.2
and another for 2.0, instead of having pblk implement these, combine
them in the core to reduce complexity and make available to other
targets.
The new interface will adhere to the 2.0 chunk definition,
including managing open chunks with an active write pointer. To provide
this interface, a 1.2 device recovers the state of the chunks by
manually detecting if a chunk is either free/open/close/offline, and if
open, scanning the flash pages sequentially to find the next writeable
page. This process takes on average ~10 seconds on a device with 64 dies,
1024 blocks and 60us read access time. The process can be parallelized
but is left out for maintenance simplicity, as the 1.2 specification is
deprecated. For 2.0 devices, the logic is maintained internally in the
drive and retrieved through the 2.0 interface.
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Add nvm_set_flags helper to enable core to appropriately
set the command flags for read/write/erase depending on which version
a drive supports.
The flags arguments can be distilled into the access hint,
scrambling, and program/erase suspend. Replace the access hint with
a "is_seq" parameter. The rest of the flags are dependent on the
command opcode, which is trivial to detect and set.
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
In the read path, partial reads are currently performed synchronously
which affects performance for workloads that generate many partial
reads. This patch adds an asynchronous partial read path as well as
the required partial read ctx.
Signed-off-by: Heiner Litz <hlitz@ucsc.edu>
Reviewed-by: Igor Konopko <igor.j.konopko@intel.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
The error messages in pblk does not say which pblk instance that
a message occurred from. Update each error message to reflect the
instance it belongs to, and also prefix it with pblk, so we know
the message comes from the pblk module.
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
There is no users of CONFIG_NVM_DEBUG in the LightNVM subsystem. All
users are in pblk. Rename NVM_DEBUG to NVM_PBLK_DEBUG and enable
only for pblk.
Also fix up the CONFIG_NVM_PBLK entry to follow the code style for
Kconfig files.
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Some devices can expose mw_cunits equal to 0, it can cause the
creation of too small write buffer and cause performance to drop
on write workloads.
Additionally, write buffer size must cover write data requirements,
such as WS_MIN and MW_CUNITS - it must be greater than or equal to
the larger one multiplied by the number of PUs. However, for
performance reasons, use the WS_OPT value to calculation instead of
WS_MIN.
Because the place where buffer size is calculated was changed, this
patch also removes pgs_in_buffer filed in pblk structure.
Signed-off-by: Marcin Dziegielewski <marcin.dziegielewski@intel.com>
Signed-off-by: Igor Konopko <igor.j.konopko@intel.com>
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Unless we kick the writer directly when setting a new flush point, the
user risks having to wait for up to one second (the default timeout for
the write thread to be kicked) for the IO to complete.
Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Write failures should not happen under normal circumstances,
so in order to bring the chunk back into a known state as soon
as possible, evacuate all the valid data out of the line and let the
fw judge if the block can be written to in the next reset cycle.
Do this by introducing a new gc list for lines with failed writes,
and ensure that the rate limiter allocates a small portion of
the write bandwidth to get the job done.
The lba list is saved in memory for use during gc as we
cannot gurantee that the emeta data is readable if a write
error occurred.
Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
The write error recovery path is incomplete, so rework
the write error recovery handling to do resubmits directly
from the write buffer.
When a write error occurs, the remaining sectors in the chunk are
mapped out and invalidated and the request inserted in a resubmit list.
The writer thread checks if there are any requests to resubmit,
scans and invalidates any lbas that have been overwritten by later
writes and resubmits the failed entries.
Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com>
Reviewed-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Remove dead function for manual sync. I/O
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <mb@lightnvm.io>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|