Age | Commit message (Collapse) | Author | Files | Lines |
|
We need this in advance of the module.h cleanup, or we'll
get compile errors like this:
CC drivers/lguest/lguest_device.o
drivers/lguest/lguest_device.c: In function ‘lguest_devices_init’:
drivers/lguest/lguest_device.c:490: error: ‘THIS_MODULE’ undeclared (first use in this function)
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
|
|
Also removes a long-unused #define and an extraneous semicolon.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
Fixes generated by 'codespell' and manually reviewed.
Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
|
|
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
|
|
implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
|
|
[akpm@linux-foundation.org: fix KVM]
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Every so often, after code shuffles, I need to go through and unbitrot
the Lguest Journey (see drivers/lguest/README). Since we now use RCU in
a simple form in one place I took the opportunity to expand that explanation.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
|
|
I don't really notice it (except to begrudge the extra vertical
space), but Ingo does. And he pointed out that one excuse of lguest
is as a teaching tool, it should set a good example.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Ingo Molnar <mingo@redhat.com>
|
|
"new" was freed and then dereferenced. Also the return value wasn't being
used so I modified the caller as well.
Compile tested only. Found by smatch (http://repo.or.cz/w/smatch.git).
regards,
dan carpenter
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
Change the eventfd interface to de-couple the eventfd memory context, from
the file pointer instance.
Without such change, there is no clean way to racely free handle the
POLLHUP event sent when the last instance of the file* goes away. Also,
now the internal eventfd APIs are using the eventfd context instead of the
file*.
This patch is required by KVM's IRQfd code, which is still under
development.
Signed-off-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Gregory Haskins <ghaskins@novell.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Cc: Avi Kivity <avi@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We no longer need an efficient mechanism to force the Guest back into
host userspace, as each device is serviced without bothering the main
Guest process (aka. the Launcher).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
Currently, when a Guest wants to perform I/O it calls LHCALL_NOTIFY with
an address: the main Launcher process returns with this address, and figures
out what device to run.
A far nicer model is to let processes bind an eventfd to an address: if we
find one, we simply signal the eventfd.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Davide Libenzi <davidel@xmailserver.org>
|
|
We currently only allow the Launcher process to send interrupts, but it
as we already send interrupts from the hrtimer, it's a simple matter of
extracting that code into a common set_interrupt routine.
As we switch to a thread per virtqueue, this avoids a bottleneck through the
main Launcher process.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
The Launcher could be inside the Guest on another CPU; wake_up_process
will do nothing because it is "running". kick_process will knock it
back into our kernel in this case, otherwise we'll miss it until the
next guest exit.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
Fix a memory leak identified by Rusty Russell during LCA09 by
kfree'ing the lg object instead of just clearing it when the
launcher closes.
Signed-off-by: Mark Wallis <mwallis@serialmonkey.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
This patch moves the initial guest page table creation code to the host,
so the launcher keeps working with PAE enabled configs.
Signed-off-by: Matias Zabaljauregui <zabaljauregui@gmail.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
If lg isn't NULL, and cpu_id is sane, &lg->cpus[cpu_id] can't be NULL.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
NR_CPUS (being a host number) is an arbitrary limit for the Guest.
Using the array size directly (which currently happes to be NR_CPUS)
is more futureproof.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Took some cycles to re-read the Lguest Journey end-to-end, fix some
rot and tighten some phrases.
Only comments change. No new jokes, but a couple of recycled old jokes.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
If req is LHREQ_INITIALIZE, and the guest has been initialized before
(unlikely), it will attempt to access cpu->tsk even though cpu is not yet
initialized.
Signed-off-by: Eugene Teo <eugeneteo@kernel.sg>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
explicitly use ktime.h include
explicitly use hrtimer.h include
explicitly use sched.h include
This patch adds headers explicitly to lguest sources file,
to avoid depending on them being included somewhere else.
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
in our new model, pages are assigned to a virtual cpu, not to a guest.
We move it to the lg_cpu structure.
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
this patch makes the pending_notify field, used to control
pending notifications, per-vcpu, instead of per-guest
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
lguest uses tasks to control its running behaviour (like sending
breaks, controlling halted state, etc). In a per-vcpu environment,
each vcpu will have its own underlying task. So this patch
makes the infrastructure for that possible
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
This is the most obvious per-vcpu field: registers.
So this patch moves it from struct lguest to struct vcpu,
and patch the places in which they are used, accordingly
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
This patch adapts interrupt processing for using the vcpu struct.
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
Here, I introduce per-vcpu timers. With this, we can have
local expiries, needed for accounting time in smp guests
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
This patch makes the write() file operation smp aware. Which means, receiving
the vcpu_id value through the offset parameter, and being well aware to which
vcpu we're talking to.
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
This patch makes the run_guest() routine use the lg_cpu struct.
This is required since in a smp guest environment, there's no
more the notion of "running the guest", but rather, it is "running the vcpu"
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
this patch initializes the first vcpu in the initialize() routing,
which is responsible for starting the process of putting the guest up.
right now, as much of the fields are still not per-vcpu, it does not
do much.
Signed-off-by: Glauber de Oliveira Costa <gcosta@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
This patch fixes a memory leak spotted by the Coverity checker.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Went through the documentation doing typo and content fixes. This
patch contains only comment and whitespace changes.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
This patch gets rid of the old lguest host I/O infrastructure and
replaces it with a single hypercall "LHCALL_NOTIFY" which takes an
address.
The main change is the removal of io.c: that mainly did inter-guest
I/O, which virtio doesn't yet support.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
1) This allows us to get alot closer to booting bzImages.
2) It means we don't have to know page_offset.
3) The Guest needs to modify the boot pagetables to create the
PAGE_OFFSET mapping before jumping to C code.
4) guest_pa() walks the page tables rather than using page_offset.
5) We don't use page_offset to figure out whether to emulate: it was
always kinda quesationable, and won't work for instructions done
before remapping (bzImage unpacking in particular).
6) We still want the kernel address for tlb flushing: have the initial
hypercall give us that, too.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
Move setup_regs() to lguest_arch_setup_regs() in i386_core.c given
that this is very architecture specific.
Signed-off-by: Jes Sorensen <jes@sgi.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
Apply Clue 2x4 to lguest userland<->kernel handling code and the
lguest launcher. Pointers are not to be passed in u32's!
Basic rule of thumb: Anything passing u32's back and forth should be
passing unsigned longs to be portable to 64 bit archs.
For those who forgotten already, I repeat: NO POINTERS IN u32!
Signed-off-by: Jes Sorensen <jes@sgi.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
Back when we had all the Guest state in the switcher, we had a fixed
array of them. This is no longer necessary.
If we switch the network code to using random_ether_addr (46 bits is
enough to avoid clashes), we can get rid of the concept of "guest id"
altogether.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
In order to avoid problematic special linking of the Launcher, we give
the Host an offset: this means we can use any memory region in the
Launcher as Guest memory rather than insisting on mmap() at 0.
The result is quite pleasing: a number of casts are replaced with
simple additions.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
Documentation: The Launcher
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The netfilter code had very good documentation: the Netfilter Hacking HOWTO.
Noone ever read it.
So this time I'm trying something different, using a bit of Knuthiness.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This is the code for the "lg.ko" module, which allows lguest guests to
be launched.
[akpm@linux-foundation.org: update for futex-new-private-futexes]
[akpm@linux-foundation.org: build fix]
[jmorris@namei.org: lguest: use hrtimers]
[akpm@linux-foundation.org: x86_64 build fix]
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Andi Kleen <ak@suse.de>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|