Age | Commit message (Collapse) | Author | Files | Lines |
|
Only providing the input and output RGB/YUV space to the IC task init
functions is not sufficient. To fully characterize a colorspace
conversion, the Y'CbCr encoding standard, and quantization also
need to be specified.
Define a 'struct ipu_ic_colorspace' that includes all the above.
This allows to actually enforce the fact that the IC:
- can only encode to/from YUV and RGB full range. A follow-up patch will
remove this restriction.
- can only encode using BT.601 standard. A follow-up patch will add
Rec.709 encoding support.
The determination of the CSC coefficients based on the input/output
'struct ipu_ic_colorspace' are moved to a new exported function
ipu_ic_calc_csc(), and 'struct ic_csc_params' is exported as
'struct ipu_ic_csc_params'. ipu_ic_calc_csc() fills a 'struct ipu_ic_csc'
with the input/output 'struct ipu_ic_colorspace' and the calculated
'struct ic_csc_params' from those input/output colorspaces.
The functions ipu_ic_task_init(_rsc)() now take a filled 'struct
ipu_ic_csc'.
The existing CSC coefficient tables and ipu_ic_calc_csc() are moved
to a new module ipu-ic-csc.c. This is in preparation for adding more
coefficient tables for limited range quantization and more encoding
standards.
The existing ycbcr2rgb and inverse rgb2ycbcr tables defined the BT.601
Y'CbCr encoding coefficients. The rgb2ycbcr table specifically described
the BT.601 encoding from full range RGB to full range YUV. Table
comments have been added in ipu-ic-csc.c to make this more clear.
The ycbcr2rgb inverse table described encoding YUV limited range to RGB
full range. To be consistent with the rgb2ycbcr table, this table is
converted to YUV full range to RGB full range, and the comments are
expanded in ipu-ic-csc.c.
The ic_csc_rgb2rgb table was just an identity matrix, so it is renamed
'identity' in ipu-ic-csc.c.
Signed-off-by: Steve Longerbeam <slongerbeam@gmail.com>
[p.zabel@pengutronix.de: removed a superfluous blank line]
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The PRE/PRG drivers, which need the DRM infrastructure, are only used
from the output path, so we skip building them into the ipu-v3 driver
if CONFIG_DRM is not enabled.
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
|
|
This adds support for the i.MX6 QUadPlus PRG unit. It glues together the
IPU and the PRE units.
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
---
v4: add missing ipu_soc->prg_priv
|
|
This adds support for the i.MX6 QuadPlus PRE units. Currently only
linear prefetch into SRAM is supported, other modes of operation
like the tiled-to-linear conversion will be added later.
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
|
|
This patch implements image conversion support using the IC tasks, with
tiling to support scaling to and from images up to 4096x4096. Image
rotation is also supported. Image conversion requests are added to
a run queue under the IC tasks.
The internal API is subsystem agnostic (no V4L2 dependency except
for the use of V4L2 fourcc pixel formats).
Callers prepare for image conversion by calling
ipu_image_convert_prepare(), which initializes the parameters of
the conversion. The caller passes in the ipu and IC task to use for
the conversion, the input and output image formats, a rotation mode,
and a completion callback and completion context pointer:
struct ipu_image_converter_ctx *
ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
struct ipu_image *in, struct ipu_image *out,
enum ipu_rotate_mode rot_mode,
ipu_image_converter_cb_t complete,
void *complete_context);
A new conversion context is created that is added to an IC task
context queue. The caller is given the new conversion context,
which can then be passed to the further APIs:
int ipu_image_convert_queue(struct ipu_image_converter_run *run);
This queues the given image conversion request run to a run queue,
and starts the conversion immediately if the run queue is empty. Only
the physaddr's of the input and output image buffers are needed,
since the conversion context was created previously with
ipu_image_convert_prepare(). When the conversion completes, the run
pointer is returned to the completion callback.
void ipu_image_convert_abort(struct ipu_image_converter_ctx *ctx);
This will abort any active or pending conversions for this context.
Any currently active or pending runs belonging to this context are
returned via the completion callback with an error status.
void ipu_image_convert_unprepare(struct ipu_image_converter_ctx *ctx);
Unprepares the conversion context. Any active or pending runs will
be aborted by calling ipu_image_convert_abort().
Signed-off-by: Steve Longerbeam <steve_longerbeam@mentor.com>
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
|
|
Adds the Video Deinterlacer (VDIC) unit.
Signed-off-by: Steve Longerbeam <steve_longerbeam@mentor.com>
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
|
|
Adds the Image Converter (IC) unit.
Signed-off-by: Steve Longerbeam <steve_longerbeam@mentor.com>
Condensed the three CSC setup functions into a single one that
uses static tables to set up the CSC task parameters.
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
|
|
Adds the Camera Sensor Interface (CSI) unit required for video capture.
Signed-off-by: Steve Longerbeam <steve_longerbeam@mentor.com>
Removed the unused clk_get_rate in ipu_csi_init_interface and the
ipu_csi_ccir_err_detection_enable/disable functions.
Checkpatch cleanup.
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
|
|
Move channel parameter memory setup functions and macros into a new
submodule ipu-cpmem. In the process, cleanup arguments to the functions
to take a channel pointer instead of a pointer into cpmem for that
channel. That allows the structure of the parameter memory to be
private to ipu-cpmem.c.
Signed-off-by: Steve Longerbeam <steve_longerbeam@mentor.com>
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
|
|
The Sensor Multi Fifo Controller (SMFC) is used as a buffer between
the two CSIs (writing simultaneously) and up to four IDMAC channels.
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
|
|
The i.MX Image Processing Unit (IPU) contains a number of image processing
blocks that sit right in the middle between DRM and V4L2. Some of the modules,
such as Display Controller, Processor, and Interface (DC, DP, DI) or CMOS
Sensor Interface (CSI) and their FIFOs could be assigned to either framework,
but others, such as the dma controller (IDMAC) and image converter (IC) can
be used by both.
The IPUv3 core driver provides an internal API to access the modules, to be
used by both DRM and V4L2 IPUv3 drivers.
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|