Age | Commit message (Collapse) | Author | Files | Lines |
|
Rather then duplicating the setting of valid, length, and offset for
each type, just convey a pointer to the register map to common code.
Yes, the change in cxl_probe_component_regs() does not save
any lines of code, but it is preparation for adding another component
register type to map (RAS Capability Structure).
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166974409293.1608150.17661353937678581423.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
A downstream port must be connected to a component register block.
For restricted hosts the base address is determined from the RCRB. The
RCRB is provided by the host's CEDT CHBS entry. Rework CEDT parser to
get the RCRB and add code to extract the component register block from
it.
RCRB's BAR[0..1] point to the component block containing CXL subsystem
component registers. MEMBAR extraction follows the PCI base spec here,
esp. 64 bit extraction and memory range alignment (6.0, 7.5.1.2.1). The
RCRB base address is cached in the cxl_dport per-host bridge so that the
upstream port component registers can be retrieved later by an RCD
(RCIEP) associated with the host bridge.
Note: Right now the component register block is used for HDM decoder
capability only which is optional for RCDs. If unsupported by the RCD,
the HDM init will fail. It is future work to bypass it in this case.
Co-developed-by: Terry Bowman <terry.bowman@amd.com>
Signed-off-by: Terry Bowman <terry.bowman@amd.com>
Signed-off-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/Y4dsGZ24aJlxSfI1@rric.localdomain
[djbw: introduce devm_cxl_add_rch_dport()]
Link: https://lore.kernel.org/r/166993044524.1882361.2539922887413208807.stgit@dwillia2-xfh.jf.intel.com
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
A "DPA invalidation event" is any scenario where the contents of a DPA
(Device Physical Address) is modified in a way that is incoherent with
CPU caches, or if the HPA (Host Physical Address) to DPA association
changes due to a remapping event.
PMEM security events like Unlock and Passphrase Secure Erase already
manage caches through LIBNVDIMM, so that leaves HPA to DPA remap events
that need cache management by the CXL core. Those only happen when the
boot time CXL configuration has changed. That event occurs when
userspace attaches an endpoint decoder to a region configuration, and
that region is subsequently activated.
The implications of not invalidating caches between remap events is that
reads from the region at different points in time may return different
results due to stale cached data from the previous HPA to DPA mapping.
Without a guarantee that the region contents after cxl_region_probe()
are written before being read (a layering-violation assumption that
cxl_region_probe() can not make) the CXL subsystem needs to ensure that
reads that precede writes see consistent results.
A CONFIG_CXL_REGION_INVALIDATION_TEST option is added to support debug
and unit testing of the CXL implementation in QEMU or other environments
where cpu_cache_has_invalidate_memregion() returns false. This may prove
too restrictive for QEMU where the HDM decoders are emulated, but in
that case the CXL subsystem needs some new mechanism / indication that
the HDM decoder is emulated and not a passthrough of real hardware.
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166993222098.1995348.16604163596374520890.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Preclude the possibility of user tooling sending device secrets in the
clear into the kernel by marking the security commands as exclusive.
This mandates the usage of the keyctl ABI for managing the device
passphrase.
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/166993221008.1995348.11651567302609703175.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
cxl_region_probe() allows for regions not in the 'commit' state to be
enabled. Fail probe when the region is not committed otherwise the
kernel may indicate that an address range is active when none of the
decoders are active.
Fixes: 8d48817df6ac ("cxl/region: Add region driver boiler plate")
Cc: <stable@vger.kernel.org>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/166993220462.1995348.1698008475198427361.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Set the cxlds->serial as the dimm_id to be fed to __nvdimm_create(). The
security code uses that as the key description for the security key of the
memory device. The nvdimm unlock code cannot find the respective key
without the dimm_id.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166863357043.80269.4337575149671383294.stgit@djiang5-desk3.ch.intel.com
Link: https://lore.kernel.org/r/166983620459.2734609.10175456773200251184.stgit@djiang5-desk3.ch.intel.com
Link: https://lore.kernel.org/r/166993219918.1995348.10786511454826454601.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Now that the cxl_mem driver has a need to take the root device lock, the
cxl_bus_rescan() needs to run outside of the root lock context. That
need arises from RCH topologies and the locking that the cxl_mem driver
does to attach a descendant to an upstream port. In the RCH case the
lock needed is the CXL root device lock [1].
Link: http://lore.kernel.org/r/166993045621.1882361.1730100141527044744.stgit@dwillia2-xfh.jf.intel.com [1]
Tested-by: Robert Richter <rrichter@amd.com>
Link: http://lore.kernel.org/r/166993042884.1882361.5633723613683058881.stgit@dwillia2-xfh.jf.intel.com
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Now that cxl_nvdimm and cxl_pmem_region objects are torn down
sychronously with the removal of either the bridge, or an endpoint, the
cxl_pmem_wq infrastructure can be jettisoned.
Tested-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/166993042335.1882361.17022872468068436287.stgit@dwillia2-xfh.jf.intel.com
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
The three objects 'struct cxl_nvdimm_bridge', 'struct cxl_nvdimm', and
'struct cxl_pmem_region' manage CXL persistent memory resources. The
bridge represents base platform resources, the nvdimm represents one or
more endpoints, and the region is a collection of nvdimms that
contribute to an assembled address range.
Their relationship is such that a region is torn down if any component
endpoints are removed. All regions and endpoints are torn down if the
foundational bridge device goes down.
A workqueue was deployed to manage these interdependencies, but it is
difficult to reason about, and fragile. A recent attempt to take the CXL
root device lock in the cxl_mem driver was reported by lockdep as
colliding with the flush_work() in the cxl_pmem flows.
Instead of the workqueue, arrange for all pmem/nvdimm devices to be torn
down immediately and hierarchically. A similar change is made to both
the 'cxl_nvdimm' and 'cxl_pmem_region' objects. For bisect-ability both
changes are made in the same patch which unfortunately makes the patch
bigger than desired.
Arrange for cxl_memdev and cxl_region to register a cxl_nvdimm and
cxl_pmem_region as a devres release action of the bridge device.
Additionally, include a devres release action of the cxl_memdev or
cxl_region device that triggers the bridge's release action if an endpoint
exits before the bridge. I.e. this allows either unplugging the bridge,
or unplugging and endpoint to result in the same cleanup actions.
To keep the patch smaller the cleanup of the now defunct workqueue
infrastructure is saved for a follow-on patch.
Tested-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/166993041773.1882361.16444301376147207609.stgit@dwillia2-xfh.jf.intel.com
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Now that a cxl_nvdimm object can only experience ->remove() via an
unregistration event (because the cxl_nvdimm bind attributes are
suppressed), additional cleanups are possible.
It is already the case that the removal of a cxl_memdev object triggers
->remove() on any associated region. With that mechanism in place there
is no need for the cxl_nvdimm removal to trigger the same. Just rely on
cxl_region_detach() to tear down the whole cxl_pmem_region.
Tested-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/166993041215.1882361.6321535567798911286.stgit@dwillia2-xfh.jf.intel.com
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Create callback function to support the nvdimm_security_ops() ->erase()
callback. Translate the operation to send "Passphrase Secure Erase"
security command for CXL memory device.
When the mem device is secure erased, cpu_cache_invalidate_memregion() is
called in order to invalidate all CPU caches before attempting to access
the mem device again.
See CXL 3.0 spec section 8.2.9.8.6.6 for reference.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166983615293.2734609.10358657600295932156.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Create callback function to support the nvdimm_security_ops() ->unlock()
callback. Translate the operation to send "Unlock" security command for CXL
mem device.
When the mem device is unlocked, cpu_cache_invalidate_memregion() is called
in order to invalidate all CPU caches before attempting to access the mem
device.
See CXL rev3.0 spec section 8.2.9.8.6.4 for reference.
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166983614167.2734609.15124543712487741176.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Create callback function to support the nvdimm_security_ops() ->freeze()
callback. Translate the operation to send "Freeze Security State" security
command for CXL memory device.
See CXL rev3.0 spec section 8.2.9.8.6.5 for reference.
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166983613019.2734609.10645754779802492122.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Create callback function to support the nvdimm_security_ops ->disable()
callback. Translate the operation to send "Disable Passphrase" security
command for CXL memory device. The operation supports disabling a
passphrase for the CXL persistent memory device. In the original
implementation of nvdimm_security_ops, this operation only supports
disabling of the user passphrase. This is due to the NFIT version of
disable passphrase only supported disabling of user passphrase. The CXL
spec allows disabling of the master passphrase as well which
nvidmm_security_ops does not support yet. In this commit, the callback
function will only support user passphrase.
See CXL rev3.0 spec section 8.2.9.8.6.3 for reference.
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166983611878.2734609.10602135274526390127.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Create callback function to support the nvdimm_security_ops ->change_key()
callback. Translate the operation to send "Set Passphrase" security command
for CXL memory device. The operation supports setting a passphrase for the
CXL persistent memory device. It also supports the changing of the
currently set passphrase. The operation allows manipulation of a user
passphrase or a master passphrase.
See CXL rev3.0 spec section 8.2.9.8.6.2 for reference.
However, the spec leaves a gap WRT master passphrase usages. The spec does
not define any ways to retrieve the status of if the support of master
passphrase is available for the device, nor does the commands that utilize
master passphrase will return a specific error that indicates master
passphrase is not supported. If using a device does not support master
passphrase and a command is issued with a master passphrase, the error
message returned by the device will be ambiguous.
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166983610751.2734609.4445075071552032091.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Add nvdimm_security_ops support for CXL memory device with the introduction
of the ->get_flags() callback function. This is part of the "Persistent
Memory Data-at-rest Security" command set for CXL memory device support.
The ->get_flags() function provides the security state of the persistent
memory device defined by the CXL 3.0 spec section 8.2.9.8.6.1.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166983609611.2734609.13231854299523325319.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
CXL dports are added in a couple of code paths using
devm_cxl_add_dport(). Debug messages are individually generated, but are
incomplete and inconsistent. Change this by moving its generation to
devm_cxl_add_dport(). This unifies the messages and reduces code
duplication. Also, generate messages on failure. Use a
__devm_cxl_add_dport() wrapper to keep the readability of the error
exits.
Signed-off-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/20221018132341.76259-5-rrichter@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
CXL ports are added in a couple of code paths using devm_cxl_add_port().
Debug messages are individually generated, but are incomplete and
inconsistent. Change this by moving its generation to
devm_cxl_add_port(). This unifies the messages and reduces code
duplication. Also, generate messages on failure. Use a
__devm_cxl_add_port() wrapper to keep the readability of the error
exits.
Signed-off-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/20221018132341.76259-4-rrichter@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
The physical base address of a CXL range can be invalid and is then
set to CXL_RESOURCE_NONE. In general software shall prevent such
situations, but it is hard to proof this may never happen. E.g. in
add_port_attach_ep() there this the following:
component_reg_phys = find_component_registers(uport_dev);
port = devm_cxl_add_port(&parent_port->dev, uport_dev,
component_reg_phys, parent_dport);
find_component_registers() and subsequent functions (e.g.
cxl_regmap_to_base()) may return CXL_RESOURCE_NONE. But it is written
to port without any further check in cxl_port_alloc():
port->component_reg_phys = component_reg_phys;
It is then later directly used in devm_cxl_setup_hdm() to map io
ranges with devm_cxl_iomap_block(). Just an example...
Check this condition. Also do not fail silently like an ioremap()
failure, use a WARN_ON_ONCE() for it.
Signed-off-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/20221018132341.76259-3-rrichter@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
The function devm_cxl_iomap_block() is only used in the core
code. There are two declarations in header files of it, in
drivers/cxl/core/core.h and drivers/cxl/cxl.h. Remove its unused
declaration in drivers/cxl/cxl.h.
Fixing build error in regs.c found by kernel test robot by including
"core.h" there.
Signed-off-by: Robert Richter <rrichter@amd.com>
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Link: https://lore.kernel.org/r/20221018132341.76259-2-rrichter@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
At region creation time the next region-id is atomically cached so that
there is predictability of region device names. If that region is
destroyed and then a new one is created the region id increments. That
ends up looking like a memory leak, or is otherwise surprising that
identifiers roll forward even after destroying all previously created
regions.
Try to reuse rather than free old region ids at region release time.
While this fixes a cosmetic issue, the needlessly advancing memory
region-id gives the appearance of a memory leak, hence the "Fixes" tag,
but no "Cc: stable" tag.
Cc: Ben Widawsky <bwidawsk@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Fixes: 779dd20cfb56 ("cxl/region: Add region creation support")
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lore.kernel.org/r/166752186062.947915.13200195701224993317.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
When programming port decode targets, the algorithm wants to ensure that
two devices are compatible to be programmed as peers beneath a given
port. A compatible peer is a target that shares the same dport, and
where that target's interleave position also routes it to the same
dport. Compatibility is determined by the device's interleave position
being >= to distance. For example, if a given dport can only map every
Nth position then positions less than N away from the last target
programmed are incompatible.
The @distance for the host-bridge's cxl_port in a simple dual-ported
host-bridge configuration with 2 direct-attached devices is 1, i.e. An
x2 region divided by 2 dports to reach 2 region targets.
An x4 region under an x2 host-bridge would need 2 intervening switches
where the @distance at the host bridge level is 2 (x4 region divided by
2 switches to reach 4 devices).
However, the distance between peers underneath a single ported
host-bridge is always zero because there is no limit to the number of
devices that can be mapped. In other words, there are no decoders to
program in a passthrough, all descendants are mapped and distance only
starts matters for the intervening descendant ports of the passthrough
port.
Add tracking for the number of dports mapped to a port, and use that to
detect the passthrough case for calculating @distance.
Cc: <stable@vger.kernel.org>
Reported-by: Bobo WL <lmw.bobo@gmail.com>
Reported-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: http://lore.kernel.org/r/20221010172057.00001559@huawei.com
Fixes: 27b3f8d13830 ("cxl/region: Program target lists")
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lore.kernel.org/r/166752185440.947915.6617495912508299445.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
When a cxl_nvdimm object goes through a ->remove() event (device
physically removed, nvdimm-bridge disabled, or nvdimm device disabled),
then any associated regions must also be disabled. As highlighted by the
cxl-create-region.sh test [1], a single device may host multiple
regions, but the driver was only tracking one region at a time. This
leads to a situation where only the last enabled region per nvdimm
device is cleaned up properly. Other regions are leaked, and this also
causes cxl_memdev reference leaks.
Fix the tracking by allowing cxl_nvdimm objects to track multiple region
associations.
Cc: <stable@vger.kernel.org>
Link: https://github.com/pmem/ndctl/blob/main/test/cxl-create-region.sh [1]
Reported-by: Vishal Verma <vishal.l.verma@intel.com>
Fixes: 04ad63f086d1 ("cxl/region: Introduce cxl_pmem_region objects")
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lore.kernel.org/r/166752183647.947915.2045230911503793901.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
When a region is deleted any targets that have been previously assigned
to that region hold references to it. Trigger those references to
drop by detaching all targets at unregister_region() time.
Otherwise that region object will leak as userspace has lost the ability
to detach targets once region sysfs is torn down.
Cc: <stable@vger.kernel.org>
Fixes: b9686e8c8e39 ("cxl/region: Enable the assignment of endpoint decoders to regions")
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lore.kernel.org/r/166752183055.947915.17681995648556534844.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Some regions may not have any address space allocated. Skip them when
validating HPA order otherwise a crash like the following may result:
devm_cxl_add_region: cxl_acpi cxl_acpi.0: decoder3.4: created region9
BUG: kernel NULL pointer dereference, address: 0000000000000000
[..]
RIP: 0010:store_targetN+0x655/0x1740 [cxl_core]
[..]
Call Trace:
<TASK>
kernfs_fop_write_iter+0x144/0x200
vfs_write+0x24a/0x4d0
ksys_write+0x69/0xf0
do_syscall_64+0x3a/0x90
store_targetN+0x655/0x1740:
alloc_region_ref at drivers/cxl/core/region.c:676
(inlined by) cxl_port_attach_region at drivers/cxl/core/region.c:850
(inlined by) cxl_region_attach at drivers/cxl/core/region.c:1290
(inlined by) attach_target at drivers/cxl/core/region.c:1410
(inlined by) store_targetN at drivers/cxl/core/region.c:1453
Cc: <stable@vger.kernel.org>
Fixes: 384e624bb211 ("cxl/region: Attach endpoint decoders")
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://lore.kernel.org/r/166752182461.947915.497032805239915067.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
When an intermediate port's decoders have been exhausted by existing
regions, and creating a new region with the port in question in it's
hierarchical path is attempted, cxl_port_attach_region() fails to find a
port decoder (as would be expected), and drops into the failure / cleanup
path.
However, during cleanup of the region reference, a sanity check attempts
to dereference the decoder, which in the above case didn't exist. This
causes a NULL pointer dereference BUG.
To fix this, refactor the decoder allocation and de-allocation into
helper routines, and in this 'free' routine, check that the decoder,
@cxld, is valid before attempting any operations on it.
Cc: <stable@vger.kernel.org>
Suggested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Fixes: 384e624bb211 ("cxl/region: Attach endpoint decoders")
Link: https://lore.kernel.org/r/20221101074100.1732003-1-vishal.l.verma@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Not all decoders have a commit callback.
The CXL specification allows a host bridge with a single root port to
have no explicit HDM decoders. Currently the region driver assumes there
are none. As such the CXL core creates a special pass through decoder
instance without a commit callback.
Prior to this patch, the ->commit() callback was called unconditionally.
Thus a configuration with 1 Host Bridge, 1 Root Port, 1 switch with
multiple downstream ports below which there are multiple CXL type 3
devices results in a situation where committing the region causes a null
pointer dereference.
Reported-by: Bobo WL <lmw.bobo@gmail.com>
Fixes: 176baefb2eb5 ("cxl/hdm: Commit decoder state to hardware")
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lore.kernel.org/r/20220818164210.2084-1-Jonathan.Cameron@huawei.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
A bug in the LSA code resulted in transfers slightly larger
than the mailbox size. Let us make it easier to catch similar
issues in future by adding a low level check.
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220815154044.24733-2-Jonathan.Cameron@huawei.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Vishal notes that when attempting to define a second pmem region on a
device the DPA allocation fails with a message of the form:
decoder11.1: failed to reserve skipped space
Recall that the skip setting is used when there is a pmem allocation in
the presence of free ram DPA space. The first pmem allocation skips over
the free ram and subsequent pmem allocations do not require a skip. The
bug is that a skip is still attempted and the DPA reservation code
flags the double skip allocation conflict.
Fixes: cf880423b6a0 ("cxl/hdm: Add support for allocating DPA to an endpoint decoder")
Reported-by: Vishal Verma <vishal.l.verma@intel.com>
Tested-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/165973754730.1558392.15466392461645857658.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
The endpoint decode granularity must be <= the window granularity
otherwise capacity in the endpoints is lost in the decode. Consider an
attempt to have a region granularity of 512 with 4 devices within a
window that maps 2 host bridges at a granularity of 256 bytes:
HPA DPA Offset HB Port EP
0x0 0x0 0 0 0
0x100 0x0 1 0 2
0x200 0x100 0 0 0
0x300 0x100 1 0 2
0x400 0x200 0 1 1
0x500 0x200 1 1 3
0x600 0x300 0 1 1
0x700 0x300 1 1 3
0x800 0x400 0 0 0
0x900 0x400 1 0 2
0xA00 0x500 0 0 0
0xB00 0x500 1 0 2
Notice how endpoint0 maps HPA 0x0 and 0x200 correctly, but then at HPA
0x800 it results in DPA 0x200-0x400 on being skipped.
Fix this by restricing the region granularity to be equal to the window
granularity resulting in the following for a x4 region under a x2 window
at a granularity of 256.
HPA DPA Offset HB Port EP
0x0 0x0 0 0 0
0x100 0x0 1 0 2
0x200 0x0 0 1 1
0x300 0x0 1 1 3
0x400 0x100 0 0 0
0x500 0x100 1 0 2
0x600 0x100 0 1 1
0x700 0x100 1 1 3
Not that it ever made practical sense to support region granularity >
window granularity. The window rotates host bridges causing endpoints to
never see a consecutive stream of requests at the desired granularity
without breaks to issue cycles to the other host bridge.
Fixes: 80d10a6cee05 ("cxl/region: Add interleave geometry attributes")
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/165973127171.1526540.9923273539049172976.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
In cases where the decode fans out as it traverses downstream, the
interleave granularity needs to increment to identify the port selector
bits out of the remaining address bits. For example, recall that with an
x2 parent port intereleave (IW == 1), the downstream decode for children
of those ports will either see address bit IG+8 always set, or address
bit IG+8 always clear. So if the child port needs to select a downstream
port it can only use address bits starting at IG+9 (where IG and IW are
the CXL encoded values for interleave granularity (ilog2(ig) - 8) and
ways (ilog2(iw))).
When the parent port interleave is x1 no such masking occurs and the
child port can maintain the granularity that was routed to the parent
port.
Reported-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/165973126583.1526540.657948655360009242.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
A recent bug fix added the setup of the endpoint decoder interleave
geometry settings to cxl_region_attach(). Move the HPA setup there as
well to keep all endpoint decoder parameter setting in a central
location.
For symmetry, move endpoint HPA teardown to cxl_region_detach(), and for
switches move HPA setup / teardown to cxl_port_{setup,reset}_targets().
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: https://lore.kernel.org/r/165973126020.1526540.14701949254436069807.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Jonathan notes:
"Curiously interleave ways = 1 for the EPs which is obviously wrong"
...while testing the latest CXL development branch on QEMU.
It turns out the region creation process failed to program the endpoint
decoders. This was missed because the default settings of x1 at 4K
intereleave still results in the region appearing to function. Jonathan
caught the bug by reverse mapping the translations that need to happen
for the QEMU support.
Link: https://lore.kernel.org/r/62e95fdf9f6e2_30440294e4@dwillia2-xfh.jf.intel.com.notmuch
Fixes: 384e624bb211 ("cxl/region: Attach endpoint decoders")
Reported-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165951146336.967013.11160153960900111443.stgit@dwillia2-xfh.jf.intel.com
Acked-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Sphinx reported indentation warnings:
Documentation/driver-api/cxl/memory-devices:457: ./drivers/cxl/core/region.c:732: WARNING: Unexpected indentation.
Documentation/driver-api/cxl/memory-devices:457: ./drivers/cxl/core/region.c:733: WARNING: Block quote ends without a blank line; unexpected unindent.
Documentation/driver-api/cxl/memory-devices:457: ./drivers/cxl/core/region.c:735: WARNING: Unexpected indentation.
These warnings above are due to missing blank line padding in the nested list
in kernel-doc comment for cxl_rr_ep_add().
Add the paddings to fix the warnings.
Fixes: 384e624bb211b4 ("cxl/region: Attach endpoint decoders")
Signed-off-by: Bagas Sanjaya <bagasdotme@gmail.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220804075448.98241-2-bagasdotme@gmail.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Dan reports:
The error handling in cxl_port_attach_region() looks like it might
have a similar bug. The cxl_rr->nr_targets++; might want a --.
That function is more complicated.
Indeed cxl_rr->nr_targets leaks when cxl_rr_ep_add() fails, but that
flow is not clear. Fix the bug and the clarity by separating the 'new'
region-reference case from the 'extend' region-reference case. This also
moves the host-physical-address (HPA) validation, that the HPA of a new
region being accounted to the port is greater than the HPA of all other
regions associated with the port, to alloc_region_ref().
Introduce @nr_targets_inc to track when the error exit path needs to
clean up cxl_rr->nr_targets.
Fixes: 384e624bb211 ("cxl/region: Attach endpoint decoders")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Link: http://lore.kernel.org/r/165939482134.252363.1915691883146696327.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
0day robot reports:
drivers/cxl/core/region.c:196 cxl_region_decode_commit() error: uninitialized symbol 'rc'.
The re-checking of loop termination conditions to determine "success"
makes it hard to see that @rc is initialized in all cases. Remove those
to make it explicit that @rc reflects a commit error and that the rest
of logic is concerned with unwinding committed decoders.
This change potentially results in cxl_region_decode_reset() being
called with @count == 0 where it was not called before, but
cxl_region_decode_reset() treats that as a nop.
Fixes: 176baefb2eb5 ("cxl/hdm: Commit decoder state to hardware")
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: http://lore.kernel.org/r/165951148105.967013.14191992449932268431.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
0day robot reports:
drivers/cxl/core/region.c:1068 cxl_port_setup_targets() error: uninitialized symbol 'eiw'.
drivers/cxl/core/region.c:1068 cxl_port_setup_targets() error: uninitialized symbol 'peig'.
drivers/cxl/core/region.c:1068 cxl_port_setup_targets() error: uninitialized symbol 'peiw'.
...which are all valid reports. Add debug statement to consume the,
albeit unexpected, errors.
Fixes: 27b3f8d13830 ("cxl/region: Program target lists")
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165951147487.967013.929590444907251028.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
In preparation for a patch that validates that the region ways setting
is compatible with the granularity setting, the initial granularity
setting needs to start at zero to indicate "unset".
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Link: https://lore.kernel.org/r/165853777484.2430596.3423921169034844397.stgit@dwillia2-xfh.jf.intel.com
[djbw: fix up unused variable]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
After adding support for emulating platform firmware established DPA
reservations, the cxl-topology.sh [1] unit test started crashing with
the following signature:
general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6bc3: 0000 [#1] PREEMPT SMP
[..]
RIP: 0010:to_cxl_port+0x8/0x60 [cxl_core]
[..]
Call Trace:
<TASK>
__cxl_dpa_release+0x1b/0xd0 [cxl_core]
cxl_dpa_release+0x1d/0x30 [cxl_core]
release_nodes+0x63/0x90
devres_release_all+0x88/0xc0
...i.e. a use after free of a 'struct cxl_endpoint_decoder' object. This
results from the ordering of init_hdm_decoder() before add_hdm_decoder()
where, at release time, the decoder is unregistered and released before
the DPA reservation.
Fix this by extending the life of the object until all DPA reservations
have been released which also preserves platform decoder settings being
settled by the time the decoder is published in sysfs (KOBJ_ADD time).
Note that the @len == 0 case in __cxl_dpa_reserve() is avoided in
practice as this function is only called for committed decoders and new
non-zero DPA allocations.
Link: https://github.com/pmem/ndctl/blob/pending/test/cxl-topology.sh [1]
Fixes: 9c57cde0dcbd ("cxl/hdm: Enumerate allocated DPA")
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Link: https://lore.kernel.org/r/165896020625.3546860.12390103413706292760.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
For switch and endpoint decoders the relationship of decoders to regions
is 1:1. However, for root decoders the relationship is 1:N. Also,
regions are already children of root decoders, so the 1:N relationship
is observed by walking the following glob:
/sys/bus/cxl/devices/$decoder/region*
Hide the vestigial 'region' attribute for root decoders.
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Alison Schofield <alison.schofield@intel.com>
Link: https://lore.kernel.org/r/165853776328.2430596.4647259305040072751.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
The ++ needs a match -- on the clean up path. If the p->nr_targets
value gets to be more than 16 it leads to uninitialized data in
cxl_port_setup_targets().
drivers/cxl/core/region.c:995 cxl_port_setup_targets() error: uninitialized symbol 'eiw'.
Fixes: 27b3f8d13830 ("cxl/region: Program target lists")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Link: https://lore.kernel.org/r/YuepCvUAoCtdpcoO@kili
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
The "ways" variable comes from the user. The ways_to_cxl() function
has an upper bound but it doesn't check for negatives. Make
the "ways" variable an unsigned int to fix this bug.
Fixes: 80d10a6cee05 ("cxl/region: Add interleave geometry attributes")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Link: https://lore.kernel.org/r/Yueo3NV2hFCXx1iV@kili
[djbw: fixup interleave_ways_store() to only accept unsigned input]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
This should check "p->res" instead of "res" (which is uninitialized).
Fixes: 23a22cd1c98b ("cxl/region: Allocate HPA capacity to regions")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Link: https://lore.kernel.org/r/Yueor88I/DkVSOtL@kili
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
The LIBNVDIMM subsystem is a platform agnostic representation of system
NVDIMM / persistent memory resources. To date, the CXL subsystem's
interaction with LIBNVDIMM has been to register an nvdimm-bridge device
and cxl_nvdimm objects to proxy CXL capabilities into existing LIBNVDIMM
subsystem mechanics.
With regions the approach is the same. Create a new cxl_pmem_region
object to proxy CXL region details into a LIBNVDIMM definition. With
this enabling LIBNVDIMM can partition CXL persistent memory regions with
legacy namespace labels. A follow-on patch will add CXL region label and
CXL namespace label support to persist region configurations across
driver reload / system-reset events.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784340111.1758207.3036498385188290968.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
The CXL region driver is responsible for routing fully formed CXL
regions to one of libnvdimm, for persistent memory regions, device-dax
for volatile memory regions, or just act as an enumeration placeholder
if the region was setup and configuration locked by platform firmware.
In the platform-firmware-setup case the expectation is that region is
already accounted in the system memory map, i.e. already enabled as
"System RAM".
For now, just attach to CXL regions in the CXL_CONFIG_COMMIT state, and
take no further action.
Given this driver is just a small / simple router, include it in the
core rather than its own module.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220624041950.559155-18-dan.j.williams@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
After all the soft validation of the region has completed, convey the
region configuration to hardware while being careful to commit decoders
in specification mandated order. In addition to programming the endpoint
decoder base-address, interleave ways and granularity, the switch
decoder target lists are also established.
While the kernel can enforce spec-mandated commit order, it can not
enforce spec-mandated reset order. For example, the kernel can't stop
someone from removing an endpoint device that is occupying decoderN in a
switch decoder where decoderN+1 is also committed. To reset decoderN,
decoderN+1 must be torn down first. That "tear down the world"
implementation is saved for a follow-on patch.
Callback operations are provided for the 'commit' and 'reset'
operations. While those callbacks may prove useful for CXL accelerators
(Type-2 devices with memory) the primary motivation is to enable a
simple way for cxl_test to intercept those operations.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784338418.1758207.14659830845389904356.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Once the region's interleave geometry (ways, granularity, size) is
established and all the endpoint decoder targets are assigned, the next
phase is to program all the intermediate decoders. Specifically, each
CXL switch in the path between the endpoint and its CXL host-bridge
(including the logical switch internal to the host-bridge) needs to have
its decoders programmed and the target list order assigned.
The difficulty in this implementation lies in determining which endpoint
decoder ordering combinations are valid. Consider the cxl_test case of 2
host bridges, each of those host-bridges attached to 2 switches, and
each of those switches attached to 2 endpoints for a potential 8-way
interleave. The x2 interleave at the host-bridge level requires that all
even numbered endpoint decoder positions be located on the "left" hand
side of the topology tree, and the odd numbered positions on the other.
The endpoints that are peers on the same switch need to have a position
that can be routed with a dedicated address bit per-endpoint. See
check_last_peer() for the details.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784337827.1758207.132121746122685208.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
CXL regions (interleave sets) are made up of a set of memory devices
where each device maps a portion of the interleave with one of its
decoders (see CXL 2.0 8.2.5.12 CXL HDM Decoder Capability Structure).
As endpoint decoders are identified by a provisioning tool they can be
added to a region provided the region interleave properties are set
(way, granularity, HPA) and DPA has been assigned to the decoder.
The attach event triggers several validation checks, for example:
- is the DPA sized appropriately for the region
- is the decoder reachable via the host-bridges identified by the
region's root decoder
- is the device already active in a different region position slot
- are there already regions with a higher HPA active on a given port
(per CXL 2.0 8.2.5.12.20 Committing Decoder Programming)
...and the attach event affords an opportunity to collect data and
resources relevant to later programming the target lists in switch
decoders, for example:
- allocate a decoder at each cxl_port in the decode chain
- for a given switch port, how many the region's endpoints are hosted
through the port
- how many unique targets (next hops) does a port need to map to reach
those endpoints
The act of reconciling this information and deploying it to the decoder
configuration is saved for a follow-on patch.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/165784337277.1758207.4108508181328528703.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
The ACPI CXL Fixed Memory Window Structure (CFMWS) defines multiple
methods to determine which host bridge provides access to a given
endpoint relative to that device's position in the interleave. The
"Interleave Arithmetic" defines either a "standard modulo" /
round-random algorithm, or "xormap" based algorithm which can be defined
as a non-linear transform. Given that there are already more options
beyond "standard modulo" and that "xormap" may turn out to be ACPI CXL
specific, provide a callback for the region provisioning code to map
endpoint positions back to expected host bridge id (cxl_dport target).
For now just support the simple modulo math case and save the xormap for
a follow-on change.
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20220624041950.559155-14-dan.j.williams@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
The region provisioning process involves allocating DPA to a set of
endpoint decoders, and HPA plus the region geometry to a region device.
Then the decoder is assigned to the region. At this point several
validation steps can be performed to validate that the decoder is
suitable to participate in the region.
Co-developed-by: Ben Widawsky <bwidawsk@kernel.org>
Signed-off-by: Ben Widawsky <bwidawsk@kernel.org>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/r/165784336184.1758207.16403282029203949622.stgit@dwillia2-xfh.jf.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|