Age | Commit message (Collapse) | Author | Files | Lines |
|
Before adding the directly controlled resets support it's reasonable to
move the existing resets control functionality into a dedicated object for
the sake of the CCU dividers clock driver simplification. After the new
functionality was added clk-ccu-div.c would have got to a mixture of the
weakly dependent clocks and resets methods. Splitting the methods up into
the two objects will make the code easier to read and maintain. It shall
also improve the code scalability (though hopefully we won't need this
part that much in the future).
The reset control functionality is now implemented in the framework of a
single unit since splitting it up doesn't make much sense due to
relatively simple reset operations. The ccu-rst.c has been designed to be
looking like ccu-div.c or ccu-pll.c with two globally available methods
for the sake of the code unification and better code readability.
This commit doesn't provide any change in the CCU reset implementation
semantics. As before the driver will support the trigger-like CCU resets
only, which are responsible for the AXI-bus, APB-bus and SATA-ref blocks
reset. The assert/de-assert-capable reset controls support will be added
in the next commit.
Note the CCU Clock dividers and resets functionality split up was possible
due to not having any side-effects (at least we didn't found ones) of the
regmap-based concurrent access of the common CCU dividers/reset CSRs.
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de>
Link: https://lore.kernel.org/r/20220929225402.9696-6-Sergey.Semin@baikalelectronics.ru
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
|
|
Nearly each Baikal-T1 IP-core is supposed to have a clock source
of particular frequency. But since there are greater than five
IP-blocks embedded into the SoC, the CCU PLLs can't fulfill all the
needs. Baikal-T1 CCU provides a set of fixed and configurable clock
dividers in order to generate a necessary signal for each chip
sub-block.
This driver creates the of-based hardware clocks for each divider
available in Baikal-T1 CCU. The same way as for PLLs we split the
functionality up into the clocks operations (gate, ungate, set rate,
etc) and hardware clocks declaration/registration procedures.
In accordance with the CCU documentation all its dividers are distributed
into two CCU sub-blocks: AXI-bus and system devices reference clocks.
The former sub-block is used to supply the clocks for AXI-bus interfaces
(AXI clock domains) and the later one provides the SoC IP-cores reference
clocks. Each sub-block is represented by a dedicated DT node, so they
have different compatible strings to distinguish one from another.
For some reason CCU provides the dividers of different types. Some
dividers can be gateable some can't, some are fixed while the others
are variable, some have special divider' limitations, some've got a
non-standard register layout and so on. In order to cover all of these
cases the hardware clocks driver is designed with an info-descriptor
pattern. So there are special static descriptors declared for the
dividers of each type with additional flags describing the block
peculiarity. These descriptors are then used to create hardware clocks
with proper operations.
Some CCU dividers provide a way to reset a domain they generate
a clock for. So the CCU AXI-bus and CCU system devices clock
drivers also perform the reset controller registration.
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Cc: Alexey Malahov <Alexey.Malahov@baikalelectronics.ru>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: linux-mips@vger.kernel.org
Cc: devicetree@vger.kernel.org
Link: https://lore.kernel.org/r/20200526222056.18072-5-Sergey.Semin@baikalelectronics.ru
[sboyd@kernel.org: Drop return from void function, silence sparse
warnings about initializing structs with NULL vs. integer]
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
|
|
Baikal-T1 is supposed to be supplied with a high-frequency external
oscillator. But in order to create signals suitable for each IP-block
embedded into the SoC the oscillator output is primarily connected to
a set of CCU PLLs. There are five of them to create clocks for the MIPS
P5600 cores, an embedded DDR controller, SATA, Ethernet and PCIe domains.
The last three domains though named by the biggest system interfaces in
fact include nearly all of the rest SoC peripherals. Each of the PLLs is
based on True Circuits TSMC CLN28HPM IP-core with an interface wrapper
(so called safe PLL' clocks switcher) to simplify the PLL configuration
procedure.
This driver creates the of-based hardware clocks to use them then in
the corresponding subsystems. In order to simplify the driver code we
split the functionality up into the PLLs clocks operations and hardware
clocks declaration/registration procedures.
Even though the PLLs are based on the same IP-core, they may have some
differences. In particular, some CCU PLLs support the output clock change
without gating them (like CPU or PCIe PLLs), while the others don't, some
CCU PLLs are critical and aren't supposed to be gated. In order to cover
all of these cases the hardware clocks driver is designed with an
info-descriptor pattern. So there are special static descriptors declared
for each PLL, which is then used to create a hardware clock with proper
operations. Additionally debugfs-files are provided for each PLL' field
to make sure the implemented rate-PLLs-dividers calculation algorithm is
correct.
Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru>
Cc: Alexey Malahov <Alexey.Malahov@baikalelectronics.ru>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: linux-mips@vger.kernel.org
Cc: devicetree@vger.kernel.org
Link: https://lore.kernel.org/r/20200526222056.18072-4-Sergey.Semin@baikalelectronics.ru
[sboyd@kernel.org: Silence sparse warning about initializing structs
with NULL vs. integer]
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
|