Age | Commit message (Collapse) | Author | Files | Lines |
|
After allocation, output and decomp_output both point to memory chunks of
size COMP_BUF_SIZE. Then, only the first bytes are zeroed out using
sizeof(COMP_BUF_SIZE) as parameter to memset(), because
sizeof(COMP_BUF_SIZE) provides the size of the constant and not the size of
allocated memory.
Instead, the whole allocated memory is meant to be zeroed out. Use
COMP_BUF_SIZE as parameter to memset() directly in order to accomplish
this.
Fixes: 336073840a872 ("crypto: testmgr - Allow different compression results")
Signed-off-by: Michael Schupikov <michael@schupikov.de>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add additional test vectors from "The SM4 Blockcipher Algorithm And Its
Modes Of Operations" draft-ribose-cfrg-sm4-10 and register cipher speed
tests for sm4.
Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
These are unused, undesired, and have never actually been used by
anybody. The original authors of this code have changed their mind about
its inclusion. While originally proposed for disk encryption on low-end
devices, the idea was discarded [1] in favor of something else before
that could really get going. Therefore, this patch removes Speck.
[1] https://marc.info/?l=linux-crypto-vger&m=153359499015659
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Acked-by: Eric Biggers <ebiggers@google.com>
Cc: stable@vger.kernel.org
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The testmgr hash tests were testing init, digest, update and final
methods but not the finup method. Add a test for this one too.
While doing this, make sure we only run the partial tests once with
the digest tests and skip them with the final and finup tests since
they are the same.
Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Remove the original version of the VMAC template that had the nonce
hardcoded to 0 and produced a digest with the wrong endianness. I'm
unsure whether this had users or not (there are no explicit in-kernel
references to it), but given that the hardcoded nonce made it wildly
insecure unless a unique key was used for each message, let's try
removing it and see if anyone complains.
Leave the new "vmac64" template that requires the nonce to be explicitly
specified as the first 16 bytes of data and uses the correct endianness
for the digest.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Currently the VMAC template uses a "nonce" hardcoded to 0, which makes
it insecure unless a unique key is set for every message. Also, the
endianness of the final digest is wrong: the implementation uses little
endian, but the VMAC specification has it as big endian, as do other
VMAC implementations such as the one in Crypto++.
Add a new VMAC template where the nonce is passed as the first 16 bytes
of data (similar to what is done for Poly1305's nonce), and the digest
is big endian. Call it "vmac64", since the old name of simply "vmac"
didn't clarify whether the implementation is of VMAC-64 or of VMAC-128
(which produce 64-bit and 128-bit digests respectively); so we fix the
naming ambiguity too.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:
kmalloc(a * b, gfp)
with:
kmalloc_array(a * b, gfp)
as well as handling cases of:
kmalloc(a * b * c, gfp)
with:
kmalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
kmalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
kmalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
kmalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kmalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
kmalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kmalloc
+ kmalloc_array
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
kmalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
kmalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
kmalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
kmalloc(sizeof(THING) * C2, ...)
|
kmalloc(sizeof(TYPE) * C2, ...)
|
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * E2
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- E1 * E2
+ E1, E2
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
Currently testmgr has separate encryption and decryption test vectors
for symmetric ciphers. That's massively redundant, since with few
exceptions (mostly mistakes, apparently), all decryption tests are
identical to the encryption tests, just with the input/result flipped.
Therefore, eliminate the redundancy by removing the decryption test
vectors and updating testmgr to test both encryption and decryption
using what used to be the encryption test vectors. Naming is adjusted
accordingly: each cipher_testvec now has a 'ptext' (plaintext), 'ctext'
(ciphertext), and 'len' instead of an 'input', 'result', 'ilen', and
'rlen'. Note that it was always the case that 'ilen == rlen'.
AES keywrap ("kw(aes)") is special because its IV is generated by the
encryption. Previously this was handled by specifying 'iv_out' for
encryption and 'iv' for decryption. To make it work cleanly with only
one set of test vectors, put the IV in 'iv', remove 'iv_out', and add a
boolean that indicates that the IV is generated by the encryption.
In total, this removes over 10000 lines from testmgr.h, with no
reduction in test coverage since prior patches already copied the few
unique decryption test vectors into the encryption test vectors.
This covers all algorithms that used 'struct cipher_testvec', e.g. any
block cipher in the ECB, CBC, CTR, XTS, LRW, CTS-CBC, PCBC, OFB, or
keywrap modes, and Salsa20 and ChaCha20. No change is made to AEAD
tests, though we probably can eliminate a similar redundancy there too.
The testmgr.h portion of this patch was automatically generated using
the following awk script, with some slight manual fixups on top (updated
'struct cipher_testvec' definition, updated a few comments, and fixed up
the AES keywrap test vectors):
BEGIN { OTHER = 0; ENCVEC = 1; DECVEC = 2; DECVEC_TAIL = 3; mode = OTHER }
/^static const struct cipher_testvec.*_enc_/ { sub("_enc", ""); mode = ENCVEC }
/^static const struct cipher_testvec.*_dec_/ { mode = DECVEC }
mode == ENCVEC && !/\.ilen[[:space:]]*=/ {
sub(/\.input[[:space:]]*=$/, ".ptext =")
sub(/\.input[[:space:]]*=/, ".ptext\t=")
sub(/\.result[[:space:]]*=$/, ".ctext =")
sub(/\.result[[:space:]]*=/, ".ctext\t=")
sub(/\.rlen[[:space:]]*=/, ".len\t=")
print
}
mode == DECVEC_TAIL && /[^[:space:]]/ { mode = OTHER }
mode == OTHER { print }
mode == ENCVEC && /^};/ { mode = OTHER }
mode == DECVEC && /^};/ { mode = DECVEC_TAIL }
Note that git's default diff algorithm gets confused by the testmgr.h
portion of this patch, and reports too many lines added and removed.
It's better viewed with 'git diff --minimal' (or 'git show --minimal'),
which reports "2 files changed, 919 insertions(+), 11723 deletions(-)".
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Since testmgr uses a single tfm for all tests of each hash algorithm,
once a key is set the tfm won't be unkeyed anymore. But with crc32 and
crc32c, the key is really the "default initial state" and is optional;
those algorithms should have both keyed and unkeyed test vectors, to
verify that implementations use the correct default key.
Simply listing the unkeyed test vectors first isn't guaranteed to work
yet because testmgr makes multiple passes through the test vectors.
crc32c does have an unkeyed test vector listed first currently, but it
only works by chance because the last crc32c test vector happens to use
a key that is the same as the default key.
Therefore, teach testmgr to split hash test vectors into unkeyed and
keyed sections, and do all the unkeyed ones before the keyed ones.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The Blackfin CRC driver was removed by commit 9678a8dc53c1 ("crypto:
bfin_crc - remove blackfin CRC driver"), but it was forgotten to remove
the corresponding "hmac(crc32)" test vectors. I see no point in keeping
them since nothing else appears to implement or use "hmac(crc32)", which
isn't an algorithm that makes sense anyway because HMAC is meant to be
used with a cryptographically secure hash function, which CRC's are not.
Thus, remove the unneeded test vectors.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch adds test vectors for MORUS-640 and MORUS-1280. The test
vectors were generated using the reference implementation from
SUPERCOP (see code comments for more details).
Signed-off-by: Ondrej Mosnacek <omosnacek@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch adds test vectors for the AEGIS family of AEAD algorithms
(AEGIS-128, AEGIS-128L, and AEGIS-256). The test vectors were
generated using the reference implementation from SUPERCOP (see code
comments for more details).
Signed-off-by: Ondrej Mosnacek <omosnacek@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Due to a snafu "paes" testmgr tests were not ordered
lexicographically, which led to boot time warnings.
Reorder the tests as needed.
Fixes: a794d8d ("crypto: ccree - enable support for hardware keys")
Reported-by: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
Tested-by: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Tested-by: Corentin Labbe <clabbe.montjoie@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Enable CryptoCell support for hardware keys.
Hardware keys are regular AES keys loaded into CryptoCell internal memory
via firmware, often from secure boot ROM or hardware fuses at boot time.
As such, they can be used for enc/dec purposes like any other key but
cannot (read: extremely hard to) be extracted since since they are not
available anywhere in RAM during runtime.
The mechanism has some similarities to s390 secure keys although the keys
are not wrapped or sealed, but simply loaded offline. The interface was
therefore modeled based on the s390 secure keys support.
Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The following error is triggered by the ThunderX ZIP driver
if the testmanager is enabled:
[ 199.069437] ThunderX-ZIP 0000:03:00.0: Found ZIP device 0 177d:a01a on Node 0
[ 199.073573] alg: comp: Compression test 1 failed for deflate-generic: output len = 37
The reason for this error is the verification of the compression
results. Verifying the compression result only works if all
algorithm parameters are identical, in this case to the software
implementation.
Different compression engines like the ThunderX ZIP coprocessor
might yield different compression results by tuning the
algorithm parameters. In our case the compressed result is
shorter than the test vector.
We should not forbid different compression results but only
check that compression -> decompression yields the same
result. This is done already in the acomp test. Do something
similar for test_comp().
Signed-off-by: Mahipal Challa <mchalla@cavium.com>
Signed-off-by: Balakrishna Bhamidipati <bbhamidipati@cavium.com>
[jglauber@cavium.com: removed unrelated printk changes, rewrote commit msg,
fixed whitespace and unneeded initialization]
Signed-off-by: Jan Glauber <jglauber@cavium.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Adds zstd support to crypto and scompress. Only supports the default
level.
Previously we held off on this patch, since there weren't any users.
Now zram is ready for zstd support, but depends on CONFIG_CRYPTO_ZSTD,
which isn't defined until this patch is in. I also see a patch adding
zstd to pstore [0], which depends on crypto zstd.
[0] lkml.kernel.org/r/9c9416b2dff19f05fb4c35879aaa83d11ff72c92.1521626182.git.geliangtang@gmail.com
Signed-off-by: Nick Terrell <terrelln@fb.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add testmgr tests for the newly introduced SM4 ECB symmetric cipher.
Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add test vectors for Speck64-XTS, generated in userspace using C code.
The inputs were borrowed from the AES-XTS test vectors, with key lengths
adjusted.
xts-speck64-neon passes these tests. However, they aren't currently
applicable for the generic XTS template, as that only supports a 128-bit
block size.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add test vectors for Speck128-XTS, generated in userspace using C code.
The inputs were borrowed from the AES-XTS test vectors.
Both xts(speck128-generic) and xts-speck128-neon pass these tests.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add a generic implementation of Speck, including the Speck128 and
Speck64 variants. Speck is a lightweight block cipher that can be much
faster than AES on processors that don't have AES instructions.
We are planning to offer Speck-XTS (probably Speck128/256-XTS) as an
option for dm-crypt and fscrypt on Android, for low-end mobile devices
with older CPUs such as ARMv7 which don't have the Cryptography
Extensions. Currently, such devices are unencrypted because AES is not
fast enough, even when the NEON bit-sliced implementation of AES is
used. Other AES alternatives such as Twofish, Threefish, Camellia,
CAST6, and Serpent aren't fast enough either; it seems that only a
modern ARX cipher can provide sufficient performance on these devices.
This is a replacement for our original proposal
(https://patchwork.kernel.org/patch/10101451/) which was to offer
ChaCha20 for these devices. However, the use of a stream cipher for
disk/file encryption with no space to store nonces would have been much
more insecure than we thought initially, given that it would be used on
top of flash storage as well as potentially on top of F2FS, neither of
which is guaranteed to overwrite data in-place.
Speck has been somewhat controversial due to its origin. Nevertheless,
it has a straightforward design (it's an ARX cipher), and it appears to
be the leading software-optimized lightweight block cipher currently,
with the most cryptanalysis. It's also easy to implement without side
channels, unlike AES. Moreover, we only intend Speck to be used when
the status quo is no encryption, due to AES not being fast enough.
We've also considered a novel length-preserving encryption mode based on
ChaCha20 and Poly1305. While theoretically attractive, such a mode
would be a brand new crypto construction and would be more complicated
and difficult to implement efficiently in comparison to Speck-XTS.
There is confusion about the byte and word orders of Speck, since the
original paper doesn't specify them. But we have implemented it using
the orders the authors recommended in a correspondence with them. The
test vectors are taken from the original paper but were mapped to byte
arrays using the recommended byte and word orders.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Async hash operations can use result pointer in final/finup/digest,
but not in init/update/export/import, so test it for misuse.
Signed-off-by: Kamil Konieczny <k.konieczny@partner.samsung.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
When char is signed, storing the values 0xba (186) and 0xad (173) in the
`guard` array produces signed overflow. Change the type of `guard` to
static unsigned char to correct undefined behavior and reduce function
stack usage.
Signed-off-by: Joey Pabalinas <joeypabalinas@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
testmgr is starting async. crypto ops and waiting for them to complete.
Move it over to generic code doing the same.
This also provides a test of the generic crypto async. wait code.
Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add testmgr and tcrypt tests and vectors for SM3 secure hash.
Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The combination of sha1 and aes was disabled in FIPS Mode
accidentally. This patch reenables it.
Fixes: 284a0f6e87b0 ("crypto: testmgr - Disable fips-allowed for...")
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Stephan Müller <smueller@chronox.de>
|
|
The PKCS#1 RSA implementation is provided with a self test with RSA 2048
and SHA-256. This self test implicitly covers other RSA keys and other
hashes. Also, this self test implies that the pkcs1pad(rsa) is FIPS
140-2 compliant.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Fix inconsistent format and spelling in hash tests error messages.
Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The test considers a party that already has a private-public
key pair and a party that provides a NULL key. The kernel will
generate the private-public key pair for the latter, computes
the shared secret on both ends and verifies if it's the same.
The explicit private-public key pair was copied from
the previous test vector.
Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add scomp backend for zlib-deflate compression algorithm.
This backend outputs data using the format defined in rfc1950
(raw deflate surrounded by zlib header and footer).
Signed-off-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The cipher_null is not a real cipher, FIPS mode should not restrict its use.
It is used for several tests (for example in cryptsetup testsuite) and also
temporarily for reencryption of not yet encrypted device in cryptsetup-reencrypt tool.
Problem is easily reproducible with
cryptsetup benchmark -c null
Signed-off-by: Milan Broz <gmazyland@gmail.com>
Acked-by: Stephan Müller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Compression implementations might return valid outputs that
do not match what specified in the test vectors.
For this reason, the testmgr might report that a compression
implementation failed the test even if the data produced
by the compressor is correct.
This implements a decompress-and-verify test for acomp
compression tests rather than a known answer test.
Signed-off-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
3DES is missing the fips_allowed flag for CTR mode.
Signed-off-by: Marcelo Henrique Cerri <marcelo.cerri@canonical.com>
Acked-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Cryptographic test vectors should never be modified, so constify them to
enforce this at both compile-time and run-time. This moves a significant
amount of data from .data to .rodata when the crypto tests are enabled.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
In preparation of splitting off the CBC-MAC transform in the CCM
driver into a separate algorithm, define some test cases for the
AES incarnation of cbcmac.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
When working on AES in CCM mode for ARM, my code passed the internal
tcrypt test before I had even bothered to implement the AES-192 and
AES-256 code paths, which is strange because the tcrypt does contain
AES-192 and AES-256 test vectors for CCM.
As it turned out, the define AES_CCM_ENC_TEST_VECTORS was out of sync
with the actual number of test vectors, causing only the AES-128 ones
to be executed.
So get rid of the defines, and wrap the test vector references in a
macro that calculates the number of vectors automatically.
The following test vector counts were out of sync with the respective
defines:
BF_CTR_ENC_TEST_VECTORS 2 -> 3
BF_CTR_DEC_TEST_VECTORS 2 -> 3
TF_CTR_ENC_TEST_VECTORS 2 -> 3
TF_CTR_DEC_TEST_VECTORS 2 -> 3
SERPENT_CTR_ENC_TEST_VECTORS 2 -> 3
SERPENT_CTR_DEC_TEST_VECTORS 2 -> 3
AES_CCM_ENC_TEST_VECTORS 8 -> 14
AES_CCM_DEC_TEST_VECTORS 7 -> 17
AES_CCM_4309_ENC_TEST_VECTORS 7 -> 23
AES_CCM_4309_DEC_TEST_VECTORS 10 -> 23
CAMELLIA_CTR_ENC_TEST_VECTORS 2 -> 3
CAMELLIA_CTR_DEC_TEST_VECTORS 2 -> 3
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
There are some hashes (e.g. sha224) that have some internal trickery
to make sure that only the correct number of output bytes are
generated. If something goes wrong, they could potentially overrun
the output buffer.
Make the test more robust by allocating only enough space for the
correct output size so that memory debugging will catch the error if
the output is overrun.
Tested by intentionally breaking sha224 to output all 256
internally-generated bits while running on KASAN.
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
It's recommended to use kmemdup instead of kmalloc followed by memcpy.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Christopher Covington reported a crash on aarch64 on recent Fedora
kernels:
kernel BUG at ./include/linux/scatterlist.h:140!
Internal error: Oops - BUG: 0 [#1] PREEMPT SMP
Modules linked in:
CPU: 2 PID: 752 Comm: cryptomgr_test Not tainted 4.9.0-11815-ge93b1cc #162
Hardware name: linux,dummy-virt (DT)
task: ffff80007c650080 task.stack: ffff800008910000
PC is at sg_init_one+0xa0/0xb8
LR is at sg_init_one+0x24/0xb8
...
[<ffff000008398db8>] sg_init_one+0xa0/0xb8
[<ffff000008350a44>] test_acomp+0x10c/0x438
[<ffff000008350e20>] alg_test_comp+0xb0/0x118
[<ffff00000834f28c>] alg_test+0x17c/0x2f0
[<ffff00000834c6a4>] cryptomgr_test+0x44/0x50
[<ffff0000080dac70>] kthread+0xf8/0x128
[<ffff000008082ec0>] ret_from_fork+0x10/0x50
The test vectors used for input are part of the kernel image. These
inputs are passed as a buffer to sg_init_one which eventually blows up
with BUG_ON(!virt_addr_valid(buf)). On arm64, virt_addr_valid returns
false for the kernel image since virt_to_page will not return the
correct page. Fix this by copying the input vectors to heap buffer
before setting up the scatterlist.
Reported-by: Christopher Covington <cov@codeaurora.org>
Fixes: d7db7a882deb ("crypto: acomp - update testmgr with support for acomp")
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Commit 7e4c7f17cde2 ("crypto: testmgr - avoid overlap in chunked tests")
attempted to address a problem in the crypto testmgr code where chunked
test cases are copied to memory in a way that results in overlap.
However, the fix recreated the exact same issue for other chunked tests,
by putting IDX3 within 492 bytes of IDX1, which causes overlap if the
first chunk exceeds 492 bytes, which is the case for at least one of
the xts(aes) test cases.
So increase IDX3 by another 1000 bytes.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
The IDXn offsets are chosen such that tap values (which may go up to
255) end up overlapping in the xbuf allocation. In particular, IDX1
and IDX3 are too close together, so update IDX3 to avoid this issue.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
With virtually-mapped stacks (CONFIG_VMAP_STACK=y), using the
scatterlist crypto API with stack buffers is not allowed, and with
appropriate debugging options will cause the
'BUG_ON(!virt_addr_valid(buf));' in sg_set_buf() to be triggered.
Use a heap buffer instead.
Fixes: d7db7a882deb ("crypto: acomp - update testmgr with support for acomp")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Currently we manually filter out internal algorithms using a list
in testmgr. This is dangerous as internal algorithms cannot be
safely used even by testmgr. This patch ensures that they're never
processed by testmgr at all.
This patch also removes an obsolete bypass for nivciphers which
no longer exist.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add tests to the test manager for algorithms exposed through acomp.
Signed-off-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Add a guard to 'state' buffer and warn if its consistency after
call to crypto_ahash_export() changes, so that any write that
goes beyond advertised statesize (and thus causing potential
memory corruption [1]) is more visible.
[1] https://marc.info/?l=linux-crypto-vger&m=147467656516085
Signed-off-by: Jan Stancek <jstancek@redhat.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Marcelo Cerri <marcelo.cerri@canonical.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
In FIPS mode, additional restrictions may apply. If these restrictions
are violated, the kernel will panic(). This patch allows test vectors
for symmetric ciphers to be marked as to be skipped in FIPS mode.
Together with the patch, the XTS test vectors where the AES key is
identical to the tweak key is disabled in FIPS mode. This test vector
violates the FIPS requirement that both keys must be different.
Reported-by: Tapas Sarangi <TSarangi@trustwave.com>
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
"if (!ret == template[i].fail)" is confusing to compilers (gcc5):
crypto/testmgr.c: In function '__test_aead':
crypto/testmgr.c:531:12: warning: logical not is only applied to the
left hand side of comparison [-Wlogical-not-parentheses]
if (!ret == template[i].fail) {
^
Let there be 'if (template[i].fail == !ret) '.
Signed-off-by: Yanjiang Jin <yanjiang.jin@windriver.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
When an akcipher test fails, we don't know which algorithm failed
because the name is not printed. This patch fixes this.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Report correct error in case of failure
Signed-off-by: Salvatore Benedetto <salvatore.benedetto@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch adds HMAC-SHA3 test modes in tcrypt module
and related test vectors.
Signed-off-by: Raveendra Padasalagi <raveendra.padasalagi@broadcom.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
This patch allows RSA implementations to produce output with
leading zeroes. testmgr will skip leading zeroes when comparing
the output.
This patch also tries to make the RSA test function generic enough
to potentially handle other akcipher algorithms.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|