summaryrefslogtreecommitdiff
path: root/crypto/sm4_generic.c
AgeCommit message (Collapse)AuthorFilesLines
2020-01-09crypto: remove CRYPTO_TFM_RES_BAD_KEY_LENEric Biggers1-11/+5
The CRYPTO_TFM_RES_BAD_KEY_LEN flag was apparently meant as a way to make the ->setkey() functions provide more information about errors. However, no one actually checks for this flag, which makes it pointless. Also, many algorithms fail to set this flag when given a bad length key. Reviewing just the generic implementations, this is the case for aes-fixed-time, cbcmac, echainiv, nhpoly1305, pcrypt, rfc3686, rfc4309, rfc7539, rfc7539esp, salsa20, seqiv, and xcbc. But there are probably many more in arch/*/crypto/ and drivers/crypto/. Some algorithms can even set this flag when the key is the correct length. For example, authenc and authencesn set it when the key payload is malformed in any way (not just a bad length), the atmel-sha and ccree drivers can set it if a memory allocation fails, and the chelsio driver sets it for bad auth tag lengths, not just bad key lengths. So even if someone actually wanted to start checking this flag (which seems unlikely, since it's been unused for a long time), there would be a lot of work needed to get it working correctly. But it would probably be much better to go back to the drawing board and just define different return values, like -EINVAL if the key is invalid for the algorithm vs. -EKEYREJECTED if the key was rejected by a policy like "no weak keys". That would be much simpler, less error-prone, and easier to test. So just remove this flag. Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Horia Geantă <horia.geanta@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-04-18crypto: run initcalls for generic implementations earlierEric Biggers1-1/+1
Use subsys_initcall for registration of all templates and generic algorithm implementations, rather than module_init. Then change cryptomgr to use arch_initcall, to place it before the subsys_initcalls. This is needed so that when both a generic and optimized implementation of an algorithm are built into the kernel (not loadable modules), the generic implementation is registered before the optimized one. Otherwise, the self-tests for the optimized implementation are unable to allocate the generic implementation for the new comparison fuzz tests. Note that on arm, a side effect of this change is that self-tests for generic implementations may run before the unaligned access handler has been installed. So, unaligned accesses will crash the kernel. This is arguably a good thing as it makes it easier to detect that type of bug. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-05-05crypto: sm4 - export encrypt/decrypt routines to other driversArd Biesheuvel1-4/+6
In preparation of adding support for the SIMD based arm64 implementation of arm64, which requires a fallback to non-SIMD code when invoked in certain contexts, expose the generic SM4 encrypt and decrypt routines to other drivers. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Gilad Ben-Yossef <gilad@benyossef.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-03-16crypto: sm4 - introduce SM4 symmetric cipher algorithmGilad Ben-Yossef1-0/+244
Introduce the SM4 cipher algorithms (OSCCA GB/T 32907-2016). SM4 (GBT.32907-2016) is a cryptographic standard issued by the Organization of State Commercial Administration of China (OSCCA) as an authorized cryptographic algorithms for the use within China. SMS4 was originally created for use in protecting wireless networks, and is mandated in the Chinese National Standard for Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure) (GB.15629.11-2003). Signed-off-by: Gilad Ben-Yossef <gilad@benyossef.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>