Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
- Fix random crashes on some 32-bit CPUs by adding isync() after
locking/unlocking KUEP
- Fix intermittent crashes when loading modules with strict module RWX
- Fix a section mismatch introduce by a previous fix.
Thanks to Christophe Leroy, Fabiano Rosas, Laurent Vivier, Murilo
Opsfelder Araújo, Nathan Chancellor, and Stan Johnson.
h# -----BEGIN PGP SIGNATURE-----
* tag 'powerpc-5.14-6' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/mm: Fix set_memory_*() against concurrent accesses
powerpc/32s: Fix random crashes by adding isync() after locking/unlocking KUEP
powerpc/xive: Do not mark xive_request_ipi() as __init
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V fixes from Palmer Dabbelt:
- fix the sifive-l2-cache device tree bindings for json-schema
compatibility. This does not change the intended behavior of the
binding.
- avoid improperly freeing necessary resources during early boot.
* tag 'riscv-for-linus-5.14-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux:
riscv: Fix a number of free'd resources in init_resources()
dt-bindings: sifive-l2-cache: Fix 'select' matching
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 fix from Vasily Gorbik:
- fix use after free of zpci_dev in pci code
* tag 's390-5.14-5' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux:
s390/pci: fix use after free of zpci_dev
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
- Fix cleaning of vDSO directories
- Ensure CNTHCTL_EL2 is fully initialised when booting at EL2
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: initialize all of CNTHCTL_EL2
arm64: clean vdso & vdso32 files
|
|
Function init_resources() allocates a boot memory block to hold an array of
resources which it adds to iomem_resource. The array is filled in from its
end and the function then attempts to free any unused memory at the
beginning. The problem is that size of the unused memory is incorrectly
calculated and this can result in releasing memory which is in use by
active resources. Their data then gets corrupted later when the memory is
reused by a different part of the system.
Fix the size of the released memory to correctly match the number of unused
resource entries.
Fixes: ffe0e5261268 ("RISC-V: Improve init_resources()")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Reviewed-by: Sunil V L <sunilvl@ventanamicro.com>
Acked-by: Nick Kossifidis <mick@ics.forth.gr>
Tested-by: Sunil V L <sunilvl@ventanamicro.com>
Cc: stable@vger.kernel.org
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
Pull ARM SoC fixes from Arnd Bergmann:
"Not much to see here. Half the fixes this time are for Qualcomm dts
files, fixing small mistakes on certain machines. The other fixes are:
- A 5.13 regression fix for freescale QE interrupt controller\
- A fix for TI OMAP gpt12 timer error handling
- A randconfig build regression fix for ixp4xx
- Another defconfig fix following the CONFIG_FB dependency rework"
* tag 'soc-fixes-5.14-3' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc:
soc: fsl: qe: fix static checker warning
ARM: ixp4xx: fix building both pci drivers
ARM: configs: Update the nhk8815_defconfig
bus: ti-sysc: Fix error handling for sysc_check_active_timer()
soc: fsl: qe: convert QE interrupt controller to platform_device
arm64: dts: qcom: sdm845-oneplus: fix reserved-mem
arm64: dts: qcom: msm8994-angler: Disable cont_splash_mem
arm64: dts: qcom: sc7280: Fixup cpufreq domain info for cpu7
arm64: dts: qcom: msm8992-bullhead: Fix cont_splash_mem mapping
arm64: dts: qcom: msm8992-bullhead: Remove PSCI
arm64: dts: qcom: c630: fix correct powerdown pin for WSA881x
|
|
In __init_el2_timers we initialize CNTHCTL_EL2.{EL1PCEN,EL1PCTEN} with a
RMW sequence, leaving all other bits UNKNOWN.
In general, we should initialize all bits in a register rather than
using an RMW sequence, since most bits are UNKNOWN out of reset, and as
new bits are added to the reigster their reset value might not result in
expected behaviour.
In the case of CNTHCTL_EL2, FEAT_ECV added a number of new control bits
in previously RES0 bits, which reset to UNKNOWN values, and may cause
issues for EL1 and EL0:
* CNTHCTL_EL2.ECV enables the CNTPOFF_EL2 offset (which itself resets to
an UNKNOWN value) at EL0 and EL1. Since the offset could reset to
distinct values across CPUs, when the control bit resets to 1 this
could break timekeeping generally.
* CNTHCTL_EL2.{EL1TVT,EL1TVCT} trap EL0 and EL1 accesses to the EL1
virtual timer/counter registers to EL2. When reset to 1, this could
cause unexpected traps to EL2.
Initializing these bits to zero avoids these problems, and all other
bits in CNTHCTL_EL2 other than EL1PCEN and EL1PCTEN can safely be reset
to zero.
This patch ensures we initialize CNTHCTL_EL2 accordingly, only setting
EL1PCEN and EL1PCTEN, and setting all other bits to zero.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Oliver Upton <oupton@google.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Oliver Upton <oupton@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210818161535.52786-1-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Laurent reported that STRICT_MODULE_RWX was causing intermittent crashes
on one of his systems:
kernel tried to execute exec-protected page (c008000004073278) - exploit attempt? (uid: 0)
BUG: Unable to handle kernel instruction fetch
Faulting instruction address: 0xc008000004073278
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA pSeries
Modules linked in: drm virtio_console fuse drm_panel_orientation_quirks ...
CPU: 3 PID: 44 Comm: kworker/3:1 Not tainted 5.14.0-rc4+ #12
Workqueue: events control_work_handler [virtio_console]
NIP: c008000004073278 LR: c008000004073278 CTR: c0000000001e9de0
REGS: c00000002e4ef7e0 TRAP: 0400 Not tainted (5.14.0-rc4+)
MSR: 800000004280b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 24002822 XER: 200400cf
...
NIP fill_queue+0xf0/0x210 [virtio_console]
LR fill_queue+0xf0/0x210 [virtio_console]
Call Trace:
fill_queue+0xb4/0x210 [virtio_console] (unreliable)
add_port+0x1a8/0x470 [virtio_console]
control_work_handler+0xbc/0x1e8 [virtio_console]
process_one_work+0x290/0x590
worker_thread+0x88/0x620
kthread+0x194/0x1a0
ret_from_kernel_thread+0x5c/0x64
Jordan, Fabiano & Murilo were able to reproduce and identify that the
problem is caused by the call to module_enable_ro() in do_init_module(),
which happens after the module's init function has already been called.
Our current implementation of change_page_attr() is not safe against
concurrent accesses, because it invalidates the PTE before flushing the
TLB and then installing the new PTE. That leaves a window in time where
there is no valid PTE for the page, if another CPU tries to access the
page at that time we see something like the fault above.
We can't simply switch to set_pte_at()/flush TLB, because our hash MMU
code doesn't handle a set_pte_at() of a valid PTE. See [1].
But we do have pte_update(), which replaces the old PTE with the new,
meaning there's no window where the PTE is invalid. And the hash MMU
version hash__pte_update() deals with synchronising the hash page table
correctly.
[1]: https://lore.kernel.org/linuxppc-dev/87y318wp9r.fsf@linux.ibm.com/
Fixes: 1f9ad21c3b38 ("powerpc/mm: Implement set_memory() routines")
Reported-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Murilo Opsfelder Araújo <muriloo@linux.ibm.com>
Tested-by: Laurent Vivier <lvivier@redhat.com>
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210818120518.3603172-1-mpe@ellerman.id.au
|
|
Commit b5efec00b671 ("powerpc/32s: Move KUEP locking/unlocking in C")
removed the 'isync' instruction after adding/removing NX bit in user
segments. The reasoning behind this change was that when setting the
NX bit we don't mind it taking effect with delay as the kernel never
executes text from userspace, and when clearing the NX bit this is
to return to userspace and then the 'rfi' should synchronise the
context.
However, it looks like on book3s/32 having a hash page table, at least
on the G3 processor, we get an unexpected fault from userspace, then
this is followed by something wrong in the verification of MSR_PR
at end of another interrupt.
This is fixed by adding back the removed isync() following update
of NX bit in user segment registers. Only do it for cores with an
hash table, as 603 cores don't exhibit that problem and the two isync
increase ./null_syscall selftest by 6 cycles on an MPC 832x.
First problem: unexpected WARN_ON() for mysterious PROTFAULT
WARNING: CPU: 0 PID: 1660 at arch/powerpc/mm/fault.c:354 do_page_fault+0x6c/0x5b0
Modules linked in:
CPU: 0 PID: 1660 Comm: Xorg Not tainted 5.13.0-pmac-00028-gb3c15b60339a #40
NIP: c001b5c8 LR: c001b6f8 CTR: 00000000
REGS: e2d09e40 TRAP: 0700 Not tainted (5.13.0-pmac-00028-gb3c15b60339a)
MSR: 00021032 <ME,IR,DR,RI> CR: 42d04f30 XER: 20000000
GPR00: c000424c e2d09f00 c301b680 e2d09f40 0000001e 42000000 00cba028 00000000
GPR08: 08000000 48000010 c301b680 e2d09f30 22d09f30 00c1fff0 00cba000 a7b7ba4c
GPR16: 00000031 00000000 00000000 00000000 00000000 00000000 a7b7b0d0 00c5c010
GPR24: a7b7b64c a7b7d2f0 00000004 00000000 c1efa6c0 00cba02c 00000300 e2d09f40
NIP [c001b5c8] do_page_fault+0x6c/0x5b0
LR [c001b6f8] do_page_fault+0x19c/0x5b0
Call Trace:
[e2d09f00] [e2d09f04] 0xe2d09f04 (unreliable)
[e2d09f30] [c000424c] DataAccess_virt+0xd4/0xe4
--- interrupt: 300 at 0xa7a261dc
NIP: a7a261dc LR: a7a253bc CTR: 00000000
REGS: e2d09f40 TRAP: 0300 Not tainted (5.13.0-pmac-00028-gb3c15b60339a)
MSR: 0000d032 <EE,PR,ME,IR,DR,RI> CR: 228428e2 XER: 20000000
DAR: 00cba02c DSISR: 42000000
GPR00: a7a27448 afa6b0e0 a74c35c0 a7b7b614 0000001e a7b7b614 00cba028 00000000
GPR08: 00020fd9 00000031 00cb9ff8 a7a273b0 220028e2 00c1fff0 00cba000 a7b7ba4c
GPR16: 00000031 00000000 00000000 00000000 00000000 00000000 a7b7b0d0 00c5c010
GPR24: a7b7b64c a7b7d2f0 00000004 00000002 0000001e a7b7b614 a7b7aff4 00000030
NIP [a7a261dc] 0xa7a261dc
LR [a7a253bc] 0xa7a253bc
--- interrupt: 300
Instruction dump:
7c4a1378 810300a0 75278410 83820298 83a300a4 553b018c 551e0036 4082038c
2e1b0000 40920228 75280800 41820220 <0fe00000> 3b600000 41920214 81420594
Second problem: MSR PR is seen unset allthough the interrupt frame shows it set
kernel BUG at arch/powerpc/kernel/interrupt.c:458!
Oops: Exception in kernel mode, sig: 5 [#1]
BE PAGE_SIZE=4K MMU=Hash SMP NR_CPUS=2 PowerMac
Modules linked in:
CPU: 0 PID: 1660 Comm: Xorg Tainted: G W 5.13.0-pmac-00028-gb3c15b60339a #40
NIP: c0011434 LR: c001629c CTR: 00000000
REGS: e2d09e70 TRAP: 0700 Tainted: G W (5.13.0-pmac-00028-gb3c15b60339a)
MSR: 00029032 <EE,ME,IR,DR,RI> CR: 42d09f30 XER: 00000000
GPR00: 00000000 e2d09f30 c301b680 e2d09f40 83440000 c44d0e68 e2d09e8c 00000000
GPR08: 00000002 00dc228a 00004000 e2d09f30 22d09f30 00c1fff0 afa6ceb4 00c26144
GPR16: 00c25fb8 00c26140 afa6ceb8 90000000 00c944d8 0000001c 00000000 00200000
GPR24: 00000000 000001fb afa6d1b4 00000001 00000000 a539a2a0 a530fd80 00000089
NIP [c0011434] interrupt_exit_kernel_prepare+0x10/0x70
LR [c001629c] interrupt_return+0x9c/0x144
Call Trace:
[e2d09f30] [c000424c] DataAccess_virt+0xd4/0xe4 (unreliable)
--- interrupt: 300 at 0xa09be008
NIP: a09be008 LR: a09bdfe8 CTR: a09bdfc0
REGS: e2d09f40 TRAP: 0300 Tainted: G W (5.13.0-pmac-00028-gb3c15b60339a)
MSR: 0000d032 <EE,PR,ME,IR,DR,RI> CR: 420028e2 XER: 20000000
DAR: a539a308 DSISR: 0a000000
GPR00: a7b90d50 afa6b2d0 a74c35c0 a0a8b690 a0a8b698 a5365d70 a4fa82a8 00000004
GPR08: 00000000 a09bdfc0 00000000 a5360000 a09bde7c 00c1fff0 afa6ceb4 00c26144
GPR16: 00c25fb8 00c26140 afa6ceb8 90000000 00c944d8 0000001c 00000000 00200000
GPR24: 00000000 000001fb afa6d1b4 00000001 00000000 a539a2a0 a530fd80 00000089
NIP [a09be008] 0xa09be008
LR [a09bdfe8] 0xa09bdfe8
--- interrupt: 300
Instruction dump:
80010024 83e1001c 7c0803a6 4bffff80 3bc00800 4bffffd0 486b42fd 4bffffcc
81430084 71480002 41820038 554a0462 <0f0a0000> 80620060 74630001 40820034
Fixes: b5efec00b671 ("powerpc/32s: Move KUEP locking/unlocking in C")
Cc: stable@vger.kernel.org # v5.13+
Reported-by: Stan Johnson <userm57@yahoo.com>
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/4856f5574906e2aec0522be17bf3848a22b2cd0b.1629269345.git.christophe.leroy@csgroup.eu
|
|
Compiling ppc64le_defconfig with clang-14 shows a modpost warning:
WARNING: modpost: vmlinux.o(.text+0xa74e0): Section mismatch in
reference from the function xive_setup_cpu_ipi() to the function
.init.text:xive_request_ipi()
The function xive_setup_cpu_ipi() references
the function __init xive_request_ipi().
This is often because xive_setup_cpu_ipi lacks a __init
annotation or the annotation of xive_request_ipi is wrong.
xive_request_ipi() is called from xive_setup_cpu_ipi(), which is not
__init, so xive_request_ipi() should not be marked __init. Remove the
attribute so there is no more warning.
Fixes: cbc06f051c52 ("powerpc/xive: Do not skip CPU-less nodes when creating the IPIs")
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210816185711.21563-1-nathan@kernel.org
|
|
The struct pci_dev uses reference counting but zPCI assumed erroneously
that the last reference would always be the local reference after
calling pci_stop_and_remove_bus_device(). This is usually the case but
not how reference counting works and thus inherently fragile.
In fact one case where this causes a NULL pointer dereference when on an
SRIOV device the function 0 was hot unplugged before another function of
the same multi-function device. In this case the second function's
pdev->sriov->dev reference keeps the struct pci_dev of function 0 alive
even after the unplug. This bug was previously hidden by the fact that
we were leaking the struct pci_dev which in turn means that it always
outlived the struct zpci_dev. This was fixed in commit 0b13525c20fe
("s390/pci: fix leak of PCI device structure") exposing the broken
behavior.
Fix this by accounting for the long living reference a struct pci_dev
has to its underlying struct zpci_dev via the zbus->function[] array and
only release that in pcibios_release_device() ensuring that the struct
pci_dev is not left with a dangling reference. This is a minimal fix in
the future it would probably better to use fine grained reference
counting for struct zpci_dev.
Fixes: 05bc1be6db4b2 ("s390/pci: create zPCI bus")
Cc: stable@vger.kernel.org
Reviewed-by: Matthew Rosato <mjrosato@linux.ibm.com>
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/qcom/linux into arm/fixes
Qualcomm ARM64 fixes for v5.14
This fixes three regressions across Angler and Bullhead, introduced by
advancements in the platform definition. It then corrects the powerdown
GPIOs for the speaker amps on C630 and lastly fixes a typo that assigned
CPU7 in SC7280 to the wrong CPUfreq domain.
* tag 'qcom-arm64-fixes-for-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/qcom/linux:
arm64: dts: qcom: sdm845-oneplus: fix reserved-mem
arm64: dts: qcom: msm8994-angler: Disable cont_splash_mem
arm64: dts: qcom: sc7280: Fixup cpufreq domain info for cpu7
arm64: dts: qcom: msm8992-bullhead: Fix cont_splash_mem mapping
arm64: dts: qcom: msm8992-bullhead: Remove PSCI
arm64: dts: qcom: c630: fix correct powerdown pin for WSA881x
Link: https://lore.kernel.org/r/20210816205030.576348-1-bjorn.andersson@linaro.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Pull KVM fixes from Paolo Bonzini:
"Two nested virtualization fixes for AMD processors"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: nSVM: always intercept VMLOAD/VMSAVE when nested (CVE-2021-3656)
KVM: nSVM: avoid picking up unsupported bits from L2 in int_ctl (CVE-2021-3653)
|
|
If L1 disables VMLOAD/VMSAVE intercepts, and doesn't enable
Virtual VMLOAD/VMSAVE (currently not supported for the nested hypervisor),
then VMLOAD/VMSAVE must operate on the L1 physical memory, which is only
possible by making L0 intercept these instructions.
Failure to do so allowed the nested guest to run VMLOAD/VMSAVE unintercepted,
and thus read/write portions of the host physical memory.
Fixes: 89c8a4984fc9 ("KVM: SVM: Enable Virtual VMLOAD VMSAVE feature")
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
* Invert the mask of bits that we pick from L2 in
nested_vmcb02_prepare_control
* Invert and explicitly use VIRQ related bits bitmask in svm_clear_vintr
This fixes a security issue that allowed a malicious L1 to run L2 with
AVIC enabled, which allowed the L2 to exploit the uninitialized and enabled
AVIC to read/write the host physical memory at some offsets.
Fixes: 3d6368ef580a ("KVM: SVM: Add VMRUN handler")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
- Fix crashes coming out of nap on 32-bit Book3s (eg. powerbooks).
- Fix critical and debug interrupts on BookE, seen as crashes when
using ptrace.
- Fix an oops when running an SMP kernel on a UP system.
- Update pseries LPAR security flavor after partition migration.
- Fix an oops when using kprobes on BookE.
- Fix oops on 32-bit pmac by not calling do_IRQ() from
timer_interrupt().
- Fix softlockups on CPU hotplug into a CPU-less node with xive (P9).
Thanks to Cédric Le Goater, Christophe Leroy, Finn Thain, Geetika
Moolchandani, Laurent Dufour, Laurent Vivier, Nicholas Piggin, Pu Lehui,
Radu Rendec, Srikar Dronamraju, and Stan Johnson.
* tag 'powerpc-5.14-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/xive: Do not skip CPU-less nodes when creating the IPIs
powerpc/interrupt: Do not call single_step_exception() from other exceptions
powerpc/interrupt: Fix OOPS by not calling do_IRQ() from timer_interrupt()
powerpc/kprobes: Fix kprobe Oops happens in booke
powerpc/pseries: Fix update of LPAR security flavor after LPM
powerpc/smp: Fix OOPS in topology_init()
powerpc/32: Fix critical and debug interrupts on BOOKE
powerpc/32s: Fix napping restore in data storage interrupt (DSI)
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq fixes from Thomas Gleixner:
"A set of fixes for PCI/MSI and x86 interrupt startup:
- Mask all MSI-X entries when enabling MSI-X otherwise stale unmasked
entries stay around e.g. when a crashkernel is booted.
- Enforce masking of a MSI-X table entry when updating it, which
mandatory according to speification
- Ensure that writes to MSI[-X} tables are flushed.
- Prevent invalid bits being set in the MSI mask register
- Properly serialize modifications to the mask cache and the mask
register for multi-MSI.
- Cure the violation of the affinity setting rules on X86 during
interrupt startup which can cause lost and stale interrupts. Move
the initial affinity setting ahead of actualy enabling the
interrupt.
- Ensure that MSI interrupts are completely torn down before freeing
them in the error handling case.
- Prevent an array out of bounds access in the irq timings code"
* tag 'irq-urgent-2021-08-15' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
driver core: Add missing kernel doc for device::msi_lock
genirq/msi: Ensure deactivation on teardown
genirq/timings: Prevent potential array overflow in __irq_timings_store()
x86/msi: Force affinity setup before startup
x86/ioapic: Force affinity setup before startup
genirq: Provide IRQCHIP_AFFINITY_PRE_STARTUP
PCI/MSI: Protect msi_desc::masked for multi-MSI
PCI/MSI: Use msi_mask_irq() in pci_msi_shutdown()
PCI/MSI: Correct misleading comments
PCI/MSI: Do not set invalid bits in MSI mask
PCI/MSI: Enforce MSI[X] entry updates to be visible
PCI/MSI: Enforce that MSI-X table entry is masked for update
PCI/MSI: Mask all unused MSI-X entries
PCI/MSI: Enable and mask MSI-X early
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
"Two fixes:
- An objdump checker fix to ignore parenthesized strings in the
objdump version
- Fix resctrl default monitoring groups reporting when new subgroups
get created"
* tag 'x86_urgent_for_v5.14_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Fix default monitoring groups reporting
x86/tools: Fix objdump version check again
|
|
Pull KVM fixes from Paolo Bonzini:
"ARM:
- Plug race between enabling MTE and creating vcpus
- Fix off-by-one bug when checking whether an address range is RAM
x86:
- Fixes for the new MMU, especially a memory leak on hosts with <39
physical address bits
- Remove bogus EFER.NX checks on 32-bit non-PAE hosts
- WAITPKG fix"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86/mmu: Protect marking SPs unsync when using TDP MMU with spinlock
KVM: x86/mmu: Don't step down in the TDP iterator when zapping all SPTEs
KVM: x86/mmu: Don't leak non-leaf SPTEs when zapping all SPTEs
KVM: nVMX: Use vmx_need_pf_intercept() when deciding if L0 wants a #PF
kvm: vmx: Sync all matching EPTPs when injecting nested EPT fault
KVM: x86: remove dead initialization
KVM: x86: Allow guest to set EFER.NX=1 on non-PAE 32-bit kernels
KVM: VMX: Use current VMCS to query WAITPKG support for MSR emulation
KVM: arm64: Fix race when enabling KVM_ARM_CAP_MTE
KVM: arm64: Fix off-by-one in range_is_memory
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V fixes from Palmer Dabbelt:
- avoid passing -mno-relax to compilers that don't support it
- a comment fix
* tag 'riscv-for-linus-5.14-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux:
riscv: Fix comment regarding kernel mapping overlapping with IS_ERR_VALUE
riscv: kexec: do not add '-mno-relax' flag if compiler doesn't support it
|
|
Merge topic branch with fixes for both 5.14-rc6 and 5.15.
|
|
Add yet another spinlock for the TDP MMU and take it when marking indirect
shadow pages unsync. When using the TDP MMU and L1 is running L2(s) with
nested TDP, KVM may encounter shadow pages for the TDP entries managed by
L1 (controlling L2) when handling a TDP MMU page fault. The unsync logic
is not thread safe, e.g. the kvm_mmu_page fields are not atomic, and
misbehaves when a shadow page is marked unsync via a TDP MMU page fault,
which runs with mmu_lock held for read, not write.
Lack of a critical section manifests most visibly as an underflow of
unsync_children in clear_unsync_child_bit() due to unsync_children being
corrupted when multiple CPUs write it without a critical section and
without atomic operations. But underflow is the best case scenario. The
worst case scenario is that unsync_children prematurely hits '0' and
leads to guest memory corruption due to KVM neglecting to properly sync
shadow pages.
Use an entirely new spinlock even though piggybacking tdp_mmu_pages_lock
would functionally be ok. Usurping the lock could degrade performance when
building upper level page tables on different vCPUs, especially since the
unsync flow could hold the lock for a comparatively long time depending on
the number of indirect shadow pages and the depth of the paging tree.
For simplicity, take the lock for all MMUs, even though KVM could fairly
easily know that mmu_lock is held for write. If mmu_lock is held for
write, there cannot be contention for the inner spinlock, and marking
shadow pages unsync across multiple vCPUs will be slow enough that
bouncing the kvm_arch cacheline should be in the noise.
Note, even though L2 could theoretically be given access to its own EPT
entries, a nested MMU must hold mmu_lock for write and thus cannot race
against a TDP MMU page fault. I.e. the additional spinlock only _needs_ to
be taken by the TDP MMU, as opposed to being taken by any MMU for a VM
that is running with the TDP MMU enabled. Holding mmu_lock for read also
prevents the indirect shadow page from being freed. But as above, keep
it simple and always take the lock.
Alternative #1, the TDP MMU could simply pass "false" for can_unsync and
effectively disable unsync behavior for nested TDP. Write protecting leaf
shadow pages is unlikely to noticeably impact traditional L1 VMMs, as such
VMMs typically don't modify TDP entries, but the same may not hold true for
non-standard use cases and/or VMMs that are migrating physical pages (from
L1's perspective).
Alternative #2, the unsync logic could be made thread safe. In theory,
simply converting all relevant kvm_mmu_page fields to atomics and using
atomic bitops for the bitmap would suffice. However, (a) an in-depth audit
would be required, (b) the code churn would be substantial, and (c) legacy
shadow paging would incur additional atomic operations in performance
sensitive paths for no benefit (to legacy shadow paging).
Fixes: a2855afc7ee8 ("KVM: x86/mmu: Allow parallel page faults for the TDP MMU")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210812181815.3378104-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Set the min_level for the TDP iterator at the root level when zapping all
SPTEs to optimize the iterator's try_step_down(). Zapping a non-leaf
SPTE will recursively zap all its children, thus there is no need for the
iterator to attempt to step down. This avoids rereading the top-level
SPTEs after they are zapped by causing try_step_down() to short-circuit.
In most cases, optimizing try_step_down() will be in the noise as the cost
of zapping SPTEs completely dominates the overall time. The optimization
is however helpful if the zap occurs with relatively few SPTEs, e.g. if KVM
is zapping in response to multiple memslot updates when userspace is adding
and removing read-only memslots for option ROMs. In that case, the task
doing the zapping likely isn't a vCPU thread, but it still holds mmu_lock
for read and thus can be a noisy neighbor of sorts.
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210812181414.3376143-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Pass "all ones" as the end GFN to signal "zap all" for the TDP MMU and
really zap all SPTEs in this case. As is, zap_gfn_range() skips non-leaf
SPTEs whose range exceeds the range to be zapped. If shadow_phys_bits is
not aligned to the range size of top-level SPTEs, e.g. 512gb with 4-level
paging, the "zap all" flows will skip top-level SPTEs whose range extends
beyond shadow_phys_bits and leak their SPs when the VM is destroyed.
Use the current upper bound (based on host.MAXPHYADDR) to detect that the
caller wants to zap all SPTEs, e.g. instead of using the max theoretical
gfn, 1 << (52 - 12). The more precise upper bound allows the TDP iterator
to terminate its walk earlier when running on hosts with MAXPHYADDR < 52.
Add a WARN on kmv->arch.tdp_mmu_pages when the TDP MMU is destroyed to
help future debuggers should KVM decide to leak SPTEs again.
The bug is most easily reproduced by running (and unloading!) KVM in a
VM whose host.MAXPHYADDR < 39, as the SPTE for gfn=0 will be skipped.
=============================================================================
BUG kvm_mmu_page_header (Not tainted): Objects remaining in kvm_mmu_page_header on __kmem_cache_shutdown()
-----------------------------------------------------------------------------
Slab 0x000000004d8f7af1 objects=22 used=2 fp=0x00000000624d29ac flags=0x4000000000000200(slab|zone=1)
CPU: 0 PID: 1582 Comm: rmmod Not tainted 5.14.0-rc2+ #420
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
dump_stack_lvl+0x45/0x59
slab_err+0x95/0xc9
__kmem_cache_shutdown.cold+0x3c/0x158
kmem_cache_destroy+0x3d/0xf0
kvm_mmu_module_exit+0xa/0x30 [kvm]
kvm_arch_exit+0x5d/0x90 [kvm]
kvm_exit+0x78/0x90 [kvm]
vmx_exit+0x1a/0x50 [kvm_intel]
__x64_sys_delete_module+0x13f/0x220
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fixes: faaf05b00aec ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210812181414.3376143-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 5.14, take #2
- Plug race between enabling MTE and creating vcpus
- Fix off-by-one bug when checking whether an address range is RAM
|
|
Use vmx_need_pf_intercept() when determining if L0 wants to handle a #PF
in L2 or if the VM-Exit should be forwarded to L1. The current logic fails
to account for the case where #PF is intercepted to handle
guest.MAXPHYADDR < host.MAXPHYADDR and ends up reflecting all #PFs into
L1. At best, L1 will complain and inject the #PF back into L2. At
worst, L1 will eat the unexpected fault and cause L2 to hang on infinite
page faults.
Note, while the bug was technically introduced by the commit that added
support for the MAXPHYADDR madness, the shame is all on commit
a0c134347baf ("KVM: VMX: introduce vmx_need_pf_intercept").
Fixes: 1dbf5d68af6f ("KVM: VMX: Add guest physical address check in EPT violation and misconfig")
Cc: stable@vger.kernel.org
Cc: Peter Shier <pshier@google.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210812045615.3167686-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When a nested EPT violation/misconfig is injected into the guest,
the shadow EPT PTEs associated with that address need to be synced.
This is done by kvm_inject_emulated_page_fault() before it calls
nested_ept_inject_page_fault(). However, that will only sync the
shadow EPT PTE associated with the current L1 EPTP. Since the ASID
is based on EP4TA rather than the full EPTP, so syncing the current
EPTP is not enough. The SPTEs associated with any other L1 EPTPs
in the prev_roots cache with the same EP4TA also need to be synced.
Signed-off-by: Junaid Shahid <junaids@google.com>
Message-Id: <20210806222229.1645356-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Merge common topic branch for 5.14-rc6 and 5.15 merge window.
|
|
hv_vcpu is initialized again a dozen lines below, and at this
point vcpu->arch.hyperv is not valid. Remove the initializer.
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Remove an ancient restriction that disallowed exposing EFER.NX to the
guest if EFER.NX=0 on the host, even if NX is fully supported by the CPU.
The motivation of the check, added by commit 2cc51560aed0 ("KVM: VMX:
Avoid saving and restoring msr_efer on lightweight vmexit"), was to rule
out the case of host.EFER.NX=0 and guest.EFER.NX=1 so that KVM could run
the guest with the host's EFER.NX and thus avoid context switching EFER
if the only divergence was the NX bit.
Fast forward to today, and KVM has long since stopped running the guest
with the host's EFER.NX. Not only does KVM context switch EFER if
host.EFER.NX=1 && guest.EFER.NX=0, KVM also forces host.EFER.NX=0 &&
guest.EFER.NX=1 when using shadow paging (to emulate SMEP). Furthermore,
the entire motivation for the restriction was made obsolete over a decade
ago when Intel added dedicated host and guest EFER fields in the VMCS
(Nehalem timeframe), which reduced the overhead of context switching EFER
from 400+ cycles (2 * WRMSR + 1 * RDMSR) to a mere ~2 cycles.
In practice, the removed restriction only affects non-PAE 32-bit kernels,
as EFER.NX is set during boot if NX is supported and the kernel will use
PAE paging (32-bit or 64-bit), regardless of whether or not the kernel
will actually use NX itself (mark PTEs non-executable).
Alternatively and/or complementarily, startup_32_smp() in head_32.S could
be modified to set EFER.NX=1 regardless of paging mode, thus eliminating
the scenario where NX is supported but not enabled. However, that runs
the risk of breaking non-KVM non-PAE kernels (though the risk is very,
very low as there are no known EFER.NX errata), and also eliminates an
easy-to-use mechanism for stressing KVM's handling of guest vs. host EFER
across nested virtualization transitions.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210805183804.1221554-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When both the old and the new PCI drivers are enabled
in the same kernel, there are a couple of namespace
conflicts that cause a build failure:
drivers/pci/controller/pci-ixp4xx.c:38: error: "IXP4XX_PCI_CSR" redefined [-Werror]
38 | #define IXP4XX_PCI_CSR 0x1c
|
In file included from arch/arm/mach-ixp4xx/include/mach/hardware.h:23,
from arch/arm/mach-ixp4xx/include/mach/io.h:15,
from arch/arm/include/asm/io.h:198,
from include/linux/io.h:13,
from drivers/pci/controller/pci-ixp4xx.c:20:
arch/arm/mach-ixp4xx/include/mach/ixp4xx-regs.h:221: note: this is the location of the previous definition
221 | #define IXP4XX_PCI_CSR(x) ((volatile u32 *)(IXP4XX_PCI_CFG_BASE_VIRT+(x)))
|
drivers/pci/controller/pci-ixp4xx.c:148:12: error: 'ixp4xx_pci_read' redeclared as different kind of symbol
148 | static int ixp4xx_pci_read(struct ixp4xx_pci *p, u32 addr, u32 cmd, u32 *data)
| ^~~~~~~~~~~~~~~
Rename both the ixp4xx_pci_read/ixp4xx_pci_write functions and the
IXP4XX_PCI_CSR macro. In each case, I went with the version that
has fewer callers to keep the change small.
Fixes: f7821b493458 ("PCI: ixp4xx: Add a new driver for IXP4xx")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: soc@kernel.org
Link: https://lore.kernel.org/r/20210721151546.2325937-1-arnd@kernel.org'
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
The platform lost the framebuffer due to a commit solving a
circular dependency in v5.14-rc1, so add it back in by explicitly
selecting the framebuffer.
Also fix up some Kconfig options that got dropped or moved around
while we're at it.
Fixes: f611b1e7624c ("drm: Avoid circular dependencies for CONFIG_FB")
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Cc: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210807225518.3607126-1-linus.walleij@linaro.org'
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Creating a new sub monitoring group in the root /sys/fs/resctrl leads to
getting the "Unavailable" value for mbm_total_bytes and mbm_local_bytes
on the entire filesystem.
Steps to reproduce:
1. mount -t resctrl resctrl /sys/fs/resctrl/
2. cd /sys/fs/resctrl/
3. cat mon_data/mon_L3_00/mbm_total_bytes
23189832
4. Create sub monitor group:
mkdir mon_groups/test1
5. cat mon_data/mon_L3_00/mbm_total_bytes
Unavailable
When a new monitoring group is created, a new RMID is assigned to the
new group. But the RMID is not active yet. When the events are read on
the new RMID, it is expected to report the status as "Unavailable".
When the user reads the events on the default monitoring group with
multiple subgroups, the events on all subgroups are consolidated
together. Currently, if any of the RMID reads report as "Unavailable",
then everything will be reported as "Unavailable".
Fix the issue by discarding the "Unavailable" reads and reporting all
the successful RMID reads. This is not a problem on Intel systems as
Intel reports 0 on Inactive RMIDs.
Fixes: d89b7379015f ("x86/intel_rdt/cqm: Add mon_data")
Reported-by: Paweł Szulik <pawel.szulik@intel.com>
Signed-off-by: Babu Moger <Babu.Moger@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: stable@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=213311
Link: https://lkml.kernel.org/r/162793309296.9224.15871659871696482080.stgit@bmoger-ubuntu
|
|
Skip (omit) any version string info that is parenthesized.
Warning: objdump version 15) is older than 2.19
Warning: Skipping posttest.
where 'objdump -v' says:
GNU objdump (GNU Binutils; SUSE Linux Enterprise 15) 2.35.1.20201123-7.18
Fixes: 8bee738bb1979 ("x86: Fix objdump version check in chkobjdump.awk for different formats.")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/20210731000146.2720-1-rdunlap@infradead.org
|
|
The current comment states that we check if the 64-bit kernel mapping
overlaps with the last 4K of the address space that is reserved to
error values in create_kernel_page_table, which is not the case since it
is done in setup_vm. But anyway, remove the reference to any function
and simply note that in 64-bit kernel, the check should be done as soon
as the kernel mapping base address is known.
Fixes: db6b84a368b4 ("riscv: Make sure the kernel mapping does not overlap with IS_ERR_VALUE")
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
Cc: stable@vger.kernel.org
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
|
|
The RISC-V special option '-mno-relax' which to disable linker relaxations
is supported by GCC8+. For GCC7 and lower versions do not support this
option.
Fixes: fba8a8674f68 ("RISC-V: Add kexec support")
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
|
|
On PowerVM, CPU-less nodes can be populated with hot-plugged CPUs at
runtime. Today, the IPI is not created for such nodes, and hot-plugged
CPUs use a bogus IPI, which leads to soft lockups.
We can not directly allocate and request the IPI on demand because
bringup_up() is called under the IRQ sparse lock. The alternative is
to allocate the IPIs for all possible nodes at startup and to request
the mapping on demand when the first CPU of a node is brought up.
Fixes: 7dcc37b3eff9 ("powerpc/xive: Map one IPI interrupt per node")
Cc: stable@vger.kernel.org # v5.13
Reported-by: Geetika Moolchandani <Geetika.Moolchandani1@ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Laurent Vivier <lvivier@redhat.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210807072057.184698-1-clg@kaod.org
|
|
single_step_exception() is called by emulate_single_step() which
is called from (at least) alignment exception() handler and
program_check_exception() handler.
Redefine it as a regular __single_step_exception() which is called
by both single_step_exception() handler and emulate_single_step()
function.
Fixes: 3a96570ffceb ("powerpc: convert interrupt handlers to use wrappers")
Cc: stable@vger.kernel.org # v5.12+
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/aed174f5cbc06f2cf95233c071d8aac948e46043.1628611921.git.christophe.leroy@csgroup.eu
|
|
An interrupt handler shall not be called from another interrupt
handler otherwise this leads to problems like the following:
Kernel attempted to write user page (afd4fa84) - exploit attempt? (uid: 1000)
------------[ cut here ]------------
Bug: Write fault blocked by KUAP!
WARNING: CPU: 0 PID: 1617 at arch/powerpc/mm/fault.c:230 do_page_fault+0x484/0x720
Modules linked in:
CPU: 0 PID: 1617 Comm: sshd Tainted: G W 5.13.0-pmac-00010-g8393422eb77 #7
NIP: c001b77c LR: c001b77c CTR: 00000000
REGS: cb9e5bc0 TRAP: 0700 Tainted: G W (5.13.0-pmac-00010-g8393422eb77)
MSR: 00021032 <ME,IR,DR,RI> CR: 24942424 XER: 00000000
GPR00: c001b77c cb9e5c80 c1582c00 00000021 3ffffbff 085b0000 00000027 c8eb644c
GPR08: 00000023 00000000 00000000 00000000 24942424 0063f8c8 00000000 000186a0
GPR16: afd52dd4 afd52dd0 afd52dcc afd52dc8 0065a990 c07640c4 cb9e5e98 cb9e5e90
GPR24: 00000040 afd4fa96 00000040 02000000 c1fda6c0 afd4fa84 00000300 cb9e5cc0
NIP [c001b77c] do_page_fault+0x484/0x720
LR [c001b77c] do_page_fault+0x484/0x720
Call Trace:
[cb9e5c80] [c001b77c] do_page_fault+0x484/0x720 (unreliable)
[cb9e5cb0] [c000424c] DataAccess_virt+0xd4/0xe4
--- interrupt: 300 at __copy_tofrom_user+0x110/0x20c
NIP: c001f9b4 LR: c03250a0 CTR: 00000004
REGS: cb9e5cc0 TRAP: 0300 Tainted: G W (5.13.0-pmac-00010-g8393422eb77)
MSR: 00009032 <EE,ME,IR,DR,RI> CR: 48028468 XER: 20000000
DAR: afd4fa84 DSISR: 0a000000
GPR00: 20726f6f cb9e5d80 c1582c00 00000004 cb9e5e3a 00000016 afd4fa80 00000000
GPR08: 3835202d 72777872 2d78722d 00000004 28028464 0063f8c8 00000000 000186a0
GPR16: afd52dd4 afd52dd0 afd52dcc afd52dc8 0065a990 c07640c4 cb9e5e98 cb9e5e90
GPR24: 00000040 afd4fa96 00000040 cb9e5e0c 00000daa a0000000 cb9e5e98 afd4fa56
NIP [c001f9b4] __copy_tofrom_user+0x110/0x20c
LR [c03250a0] _copy_to_iter+0x144/0x990
--- interrupt: 300
[cb9e5d80] [c03e89c0] n_tty_read+0xa4/0x598 (unreliable)
[cb9e5df0] [c03e2a0c] tty_read+0xdc/0x2b4
[cb9e5e80] [c0156bf8] vfs_read+0x274/0x340
[cb9e5f00] [c01571ac] ksys_read+0x70/0x118
[cb9e5f30] [c0016048] ret_from_syscall+0x0/0x28
--- interrupt: c00 at 0xa7855c88
NIP: a7855c88 LR: a7855c5c CTR: 00000000
REGS: cb9e5f40 TRAP: 0c00 Tainted: G W (5.13.0-pmac-00010-g8393422eb77)
MSR: 0000d032 <EE,PR,ME,IR,DR,RI> CR: 2402446c XER: 00000000
GPR00: 00000003 afd4ec70 a72137d0 0000000b afd4ecac 00004000 0065a990 00000800
GPR08: 00000000 a7947930 00000000 00000004 c15831b0 0063f8c8 00000000 000186a0
GPR16: afd52dd4 afd52dd0 afd52dcc afd52dc8 0065a990 0065a9e0 00000001 0065fac0
GPR24: 00000000 00000089 00664050 00000000 00668e30 a720c8dc a7943ff4 0065f9b0
NIP [a7855c88] 0xa7855c88
LR [a7855c5c] 0xa7855c5c
--- interrupt: c00
Instruction dump:
3884aa88 38630178 48076861 807f0080 48042e45 2f830000 419e0148 3c80c079
3c60c076 38841be4 386301c0 4801f705 <0fe00000> 3860000b 4bfffe30 3c80c06b
---[ end trace fd69b91a8046c2e5 ]---
Here the problem is that by re-enterring an exception handler,
kuap_save_and_lock() is called a second time with this time KUAP
access locked, leading to regs->kuap being overwritten hence
KUAP not being unlocked at exception exit as expected.
Do not call do_IRQ() from timer_interrupt() directly. Instead,
redefine do_IRQ() as a standard function named __do_IRQ(), and
call it from both do_IRQ() and time_interrupt() handlers.
Fixes: 3a96570ffceb ("powerpc: convert interrupt handlers to use wrappers")
Cc: stable@vger.kernel.org # v5.12+
Reported-by: Stan Johnson <userm57@yahoo.com>
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/c17d234f4927d39a1d7100864a8e1145323d33a0.1628611927.git.christophe.leroy@csgroup.eu
|
|
commit a5b8ca97fbf8 ("arm64: do not descend to vdso directories twice")
changes the cleaning behavior of arm64's vdso files, in that vdso.lds,
vdso.so, and vdso.so.dbg are not removed upon a 'make clean/mrproper':
$ make defconfig ARCH=arm64
$ make ARCH=arm64
$ make mrproper ARCH=arm64
$ git clean -nxdf
Would remove arch/arm64/kernel/vdso/vdso.lds
Would remove arch/arm64/kernel/vdso/vdso.so
Would remove arch/arm64/kernel/vdso/vdso.so.dbg
To remedy this, manually descend into arch/arm64/kernel/vdso upon
cleaning.
After this commit:
$ make defconfig ARCH=arm64
$ make ARCH=arm64
$ make mrproper ARCH=arm64
$ git clean -nxdf
<empty>
Similar results are obtained for the vdso32 equivalent.
Signed-off-by: Andrew Delgadillo <adelg@google.com>
Cc: stable@vger.kernel.org
Fixes: a5b8ca97fbf8 ("arm64: do not descend to vdso directories twice")
Link: https://lore.kernel.org/r/20210810231755.1743524-1-adelg@google.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
Pull ARC fixes from Vineet Gupta:
- Fix FPU_STATUS update
- Update my email address
- Other spellos and fixes
* tag 'arc-5.14-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc:
MAINTAINERS: update Vineet's email address
ARC: fp: set FPU_STATUS.FWE to enable FPU_STATUS update on context switch
ARC: Fix CONFIG_STACKDEPOT
arc: Fix spelling mistake and grammar in Kconfig
arc: Prefer unsigned int to bare use of unsigned
|
|
Use the secondary_exec_controls_get() accessor in vmx_has_waitpkg() to
effectively get the controls for the current VMCS, as opposed to using
vmx->secondary_exec_controls, which is the cached value of KVM's desired
controls for vmcs01 and truly not reflective of any particular VMCS.
While the waitpkg control is not dynamic, i.e. vmcs01 will always hold
the same waitpkg configuration as vmx->secondary_exec_controls, the same
does not hold true for vmcs02 if the L1 VMM hides the feature from L2.
If L1 hides the feature _and_ does not intercept MSR_IA32_UMWAIT_CONTROL,
L2 could incorrectly read/write L1's virtual MSR instead of taking a #GP.
Fixes: 6e3ba4abcea5 ("KVM: vmx: Emulate MSR IA32_UMWAIT_CONTROL")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210810171952.2758100-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The X86 MSI mechanism cannot handle interrupt affinity changes safely after
startup other than from an interrupt handler, unless interrupt remapping is
enabled. The startup sequence in the generic interrupt code violates that
assumption.
Mark the irq chips with the new IRQCHIP_AFFINITY_PRE_STARTUP flag so that
the default interrupt setting happens before the interrupt is started up
for the first time.
While the interrupt remapping MSI chip does not require this, there is no
point in treating it differently as this might spare an interrupt to a CPU
which is not in the default affinity mask.
For the non-remapping case go to the direct write path when the interrupt
is not yet started similar to the not yet activated case.
Fixes: 18404756765c ("genirq: Expose default irq affinity mask (take 3)")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210729222542.886722080@linutronix.de
|
|
The IO/APIC cannot handle interrupt affinity changes safely after startup
other than from an interrupt handler. The startup sequence in the generic
interrupt code violates that assumption.
Mark the irq chip with the new IRQCHIP_AFFINITY_PRE_STARTUP flag so that
the default interrupt setting happens before the interrupt is started up
for the first time.
Fixes: 18404756765c ("genirq: Expose default irq affinity mask (take 3)")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210729222542.832143400@linutronix.de
|
|
When using kprobe on powerpc booke series processor, Oops happens
as show bellow:
/ # echo "p:myprobe do_nanosleep" > /sys/kernel/debug/tracing/kprobe_events
/ # echo 1 > /sys/kernel/debug/tracing/events/kprobes/myprobe/enable
/ # sleep 1
[ 50.076730] Oops: Exception in kernel mode, sig: 5 [#1]
[ 50.077017] BE PAGE_SIZE=4K SMP NR_CPUS=24 QEMU e500
[ 50.077221] Modules linked in:
[ 50.077462] CPU: 0 PID: 77 Comm: sleep Not tainted 5.14.0-rc4-00022-g251a1524293d #21
[ 50.077887] NIP: c0b9c4e0 LR: c00ebecc CTR: 00000000
[ 50.078067] REGS: c3883de0 TRAP: 0700 Not tainted (5.14.0-rc4-00022-g251a1524293d)
[ 50.078349] MSR: 00029000 <CE,EE,ME> CR: 24000228 XER: 20000000
[ 50.078675]
[ 50.078675] GPR00: c00ebdf0 c3883e90 c313e300 c3883ea0 00000001 00000000 c3883ecc 00000001
[ 50.078675] GPR08: c100598c c00ea250 00000004 00000000 24000222 102490c2 bff4180c 101e60d4
[ 50.078675] GPR16: 00000000 102454ac 00000040 10240000 10241100 102410f8 10240000 00500000
[ 50.078675] GPR24: 00000002 00000000 c3883ea0 00000001 00000000 0000c350 3b9b8d50 00000000
[ 50.080151] NIP [c0b9c4e0] do_nanosleep+0x0/0x190
[ 50.080352] LR [c00ebecc] hrtimer_nanosleep+0x14c/0x1e0
[ 50.080638] Call Trace:
[ 50.080801] [c3883e90] [c00ebdf0] hrtimer_nanosleep+0x70/0x1e0 (unreliable)
[ 50.081110] [c3883f00] [c00ec004] sys_nanosleep_time32+0xa4/0x110
[ 50.081336] [c3883f40] [c001509c] ret_from_syscall+0x0/0x28
[ 50.081541] --- interrupt: c00 at 0x100a4d08
[ 50.081749] NIP: 100a4d08 LR: 101b5234 CTR: 00000003
[ 50.081931] REGS: c3883f50 TRAP: 0c00 Not tainted (5.14.0-rc4-00022-g251a1524293d)
[ 50.082183] MSR: 0002f902 <CE,EE,PR,FP,ME> CR: 24000222 XER: 00000000
[ 50.082457]
[ 50.082457] GPR00: 000000a2 bf980040 1024b4d0 bf980084 bf980084 64000000 00555345 fefefeff
[ 50.082457] GPR08: 7f7f7f7f 101e0000 00000069 00000003 28000422 102490c2 bff4180c 101e60d4
[ 50.082457] GPR16: 00000000 102454ac 00000040 10240000 10241100 102410f8 10240000 00500000
[ 50.082457] GPR24: 00000002 bf9803f4 10240000 00000000 00000000 100039e0 00000000 102444e8
[ 50.083789] NIP [100a4d08] 0x100a4d08
[ 50.083917] LR [101b5234] 0x101b5234
[ 50.084042] --- interrupt: c00
[ 50.084238] Instruction dump:
[ 50.084483] 4bfffc40 60000000 60000000 60000000 9421fff0 39400402 914200c0 38210010
[ 50.084841] 4bfffc20 00000000 00000000 00000000 <7fe00008> 7c0802a6 7c892378 93c10048
[ 50.085487] ---[ end trace f6fffe98e2fa8f3e ]---
[ 50.085678]
Trace/breakpoint trap
There is no real mode for booke arch and the MMU translation is
always on. The corresponding MSR_IS/MSR_DS bit in booke is used
to switch the address space, but not for real mode judgment.
Fixes: 21f8b2fa3ca5 ("powerpc/kprobes: Ignore traps that happened in real mode")
Signed-off-by: Pu Lehui <pulehui@huawei.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210809023658.218915-1-pulehui@huawei.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Thomas Gleixner:
"A set of perf fixes:
- Correct the permission checks for perf event which send SIGTRAP to
a different process and clean up that code to be more readable.
- Prevent an out of bound MSR access in the x86 perf code which
happened due to an incomplete limiting to the actually available
hardware counters.
- Prevent access to the AMD64_EVENTSEL_HOSTONLY bit when running
inside a guest.
- Handle small core counter re-enabling correctly by issuing an ACK
right before reenabling it to prevent a stale PEBS record being
kept around"
* tag 'perf-urgent-2021-08-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel: Apply mid ACK for small core
perf/x86/amd: Don't touch the AMD64_EVENTSEL_HOSTONLY bit inside the guest
perf/x86: Fix out of bound MSR access
perf: Refactor permissions check into perf_check_permission()
perf: Fix required permissions if sigtrap is requested
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
Pull tty/serial fixes from Greg KH:
"Here are some small tty/serial driver fixes for 5.14-rc5 to resolve a
number of reported problems.
They include:
- mips serial driver fixes
- 8250 driver fixes for reported problems
- fsl_lpuart driver fixes
- other tiny driver fixes
All have been in linux-next for a while with no reported problems"
* tag 'tty-5.14-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty:
serial: 8250_pci: Avoid irq sharing for MSI(-X) interrupts.
serial: 8250_mtk: fix uart corruption issue when rx power off
tty: serial: fsl_lpuart: fix the wrong return value in lpuart32_get_mctrl
serial: 8250_pci: Enumerate Elkhart Lake UARTs via dedicated driver
serial: 8250: fix handle_irq locking
serial: tegra: Only print FIFO error message when an error occurs
MIPS: Malta: Do not byte-swap accesses to the CBUS UART
serial: 8250: Mask out floating 16/32-bit bus bits
serial: max310x: Unprepare and disable clock in error path
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V fixes from Palmer Dabbelt:
- avoid dereferencing a null task pointer while walking the stack
- fix the memory size in the HiFive Unleashed device tree
- disable stack protectors when randstruct is enabled, which results in
non-deterministic offsets during module builds
- a pair of fixes to avoid relying on a constant physical memory base
for the non-XIP builds
* tag 'riscv-for-linus-5.14-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux:
Revert "riscv: Remove CONFIG_PHYS_RAM_BASE_FIXED"
riscv: Get rid of CONFIG_PHYS_RAM_BASE in kernel physical address conversion
riscv: Disable STACKPROTECTOR_PER_TASK if GCC_PLUGIN_RANDSTRUCT is enabled
riscv: dts: fix memory size for the SiFive HiFive Unmatched
riscv: stacktrace: Fix NULL pointer dereference
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kbuild fixes from Masahiro Yamada:
- Correct the Extended Regular Expressions in tools
- Adjust scripts/checkversion.pl for the current Kbuild
- Unset sub_make_done for 'make install' to make DKMS work again
* tag 'kbuild-fixes-v5.14-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild:
kbuild: cancel sub_make_done for the install target to fix DKMS
scripts: checkversion: modernize linux/version.h search strings
mips: Fix non-POSIX regexp
x86/tools/relocs: Fix non-POSIX regexp
|
|
This reverts commit 9b79878ced8f7ab85c57623f8b1f6882e484a316.
The removal of this config exposes CONFIG_PHYS_RAM_BASE for all kernel
types: this value being implementation-specific, this breaks the
genericity of the RISC-V kernel so revert it.
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
Tested-by: Emil Renner Berthing <kernel@esmil.dk>
Reviewed-by: Jisheng Zhang <jszhang@kernel.org>
Cc: stable@vger.kernel.org
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
|