Age | Commit message (Collapse) | Author | Files | Lines |
|
For when we want to exactly match ENDBR, and not everything that we
can scribble it with.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Kees Cook <kees@kernel.org>
Link: https://lore.kernel.org/r/20250224124200.059556588@infradead.org
|
|
Rebuilding with CONFIG_CFI_PERMISSIVE=y enabled is such a pain, esp. since
clang is so slow.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Kees Cook <kees@kernel.org>
Link: https://lore.kernel.org/r/20250224124159.924496481@infradead.org
|
|
Process pending events on nested VM-Exit if the vCPU has an injectable IRQ
or NMI, as the event may have become pending while L2 was active, i.e. may
not be tracked in the context of vmcs01. E.g. if L1 has passed its APIC
through to L2 and an IRQ arrives while L2 is active, then KVM needs to
request an IRQ window prior to running L1, otherwise delivery of the IRQ
will be delayed until KVM happens to process events for some other reason.
The missed failure is detected by vmx_apic_passthrough_tpr_threshold_test
in KVM-Unit-Tests, but has effectively been masked due to a flaw in KVM's
PIC emulation that causes KVM to make spurious KVM_REQ_EVENT requests (and
apparently no one ever ran the test with split IRQ chips).
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20250224235542.2562848-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Free vCPUs before freeing any VM state, as both SVM and VMX may access
VM state when "freeing" a vCPU that is currently "in" L2, i.e. that needs
to be kicked out of nested guest mode.
Commit 6fcee03df6a1 ("KVM: x86: avoid loading a vCPU after .vm_destroy was
called") partially fixed the issue, but for unknown reasons only moved the
MMU unloading before VM destruction. Complete the change, and free all
vCPU state prior to destroying VM state, as nVMX accesses even more state
than nSVM.
In addition to the AVIC, KVM can hit a use-after-free on MSR filters:
kvm_msr_allowed+0x4c/0xd0
__kvm_set_msr+0x12d/0x1e0
kvm_set_msr+0x19/0x40
load_vmcs12_host_state+0x2d8/0x6e0 [kvm_intel]
nested_vmx_vmexit+0x715/0xbd0 [kvm_intel]
nested_vmx_free_vcpu+0x33/0x50 [kvm_intel]
vmx_free_vcpu+0x54/0xc0 [kvm_intel]
kvm_arch_vcpu_destroy+0x28/0xf0
kvm_vcpu_destroy+0x12/0x50
kvm_arch_destroy_vm+0x12c/0x1c0
kvm_put_kvm+0x263/0x3c0
kvm_vm_release+0x21/0x30
and an upcoming fix to process injectable interrupts on nested VM-Exit
will access the PIC:
BUG: kernel NULL pointer dereference, address: 0000000000000090
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
CPU: 23 UID: 1000 PID: 2658 Comm: kvm-nx-lpage-re
RIP: 0010:kvm_cpu_has_extint+0x2f/0x60 [kvm]
Call Trace:
<TASK>
kvm_cpu_has_injectable_intr+0xe/0x60 [kvm]
nested_vmx_vmexit+0x2d7/0xdf0 [kvm_intel]
nested_vmx_free_vcpu+0x40/0x50 [kvm_intel]
vmx_vcpu_free+0x2d/0x80 [kvm_intel]
kvm_arch_vcpu_destroy+0x2d/0x130 [kvm]
kvm_destroy_vcpus+0x8a/0x100 [kvm]
kvm_arch_destroy_vm+0xa7/0x1d0 [kvm]
kvm_destroy_vm+0x172/0x300 [kvm]
kvm_vcpu_release+0x31/0x50 [kvm]
Inarguably, both nSVM and nVMX need to be fixed, but punt on those
cleanups for the moment. Conceptually, vCPUs should be freed before VM
state. Assets like the I/O APIC and PIC _must_ be allocated before vCPUs
are created, so it stands to reason that they must be freed _after_ vCPUs
are destroyed.
Reported-by: Aaron Lewis <aaronlewis@google.com>
Closes: https://lore.kernel.org/all/20240703175618.2304869-2-aaronlewis@google.com
Cc: Jim Mattson <jmattson@google.com>
Cc: Yan Zhao <yan.y.zhao@intel.com>
Cc: Rick P Edgecombe <rick.p.edgecombe@intel.com>
Cc: Kai Huang <kai.huang@intel.com>
Cc: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20250224235542.2562848-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add support for "Idle HLT" interception on AMD CPUs, and enable Idle HLT
interception instead of "normal" HLT interception for all VMs for which
HLT-exiting is enabled. Idle HLT provides a mild performance boost for
all VM types, by avoiding a VM-Exit in the scenario where KVM would
immediately "wake" and resume the vCPU.
Idle HLT makes HLT-exiting conditional on the vCPU not having a valid,
unmasked interrupt. Specifically, a VM-Exit occurs on execution of HLT
if and only if there are no pending V_IRQ or V_NMI events. Note, Idle
is a replacement for full HLT interception, i.e. enabling HLT interception
would result in all HLT instructions causing unconditional VM-Exits. Per
the APM:
When both HLT and Idle HLT intercepts are active at the same time, the
HLT intercept takes priority. This intercept occurs only if a virtual
interrupt is not pending (V_INTR or V_NMI).
For KVM's use of V_IRQ (also called V_INTR in the APM) to detect interrupt
windows, the net effect of enabling Idle HLT is that, if a virtual
interupt is pending and unmasked at the time of HLT, the vCPU will take
a V_IRQ intercept instead of a HLT intercept.
When AVIC is enabled, Idle HLT works as intended: the vCPU continues
unimpeded and services the pending virtual interrupt.
Note, the APM's description of V_IRQ interaction with AVIC is quite
confusing, and requires piecing together implied behavior. Per the APM,
when AVIC is enabled, V_IRQ *from the VMCB* is ignored:
When AVIC mode is enabled for a virtual processor, the V_IRQ, V_INTR_PRIO,
V_INTR_VECTOR, and V_IGN_TPR fields in the VMCB are ignored.
Which seems to contradict the behavior of Idle HLT:
This intercept occurs only if a virtual interrupt is not pending (V_INTR
or V_NMI).
What's not explicitly stated is that hardware's internal copy of V_IRQ
(and related fields) *are* still active, i.e. are presumably used to cache
information from the virtual APIC.
Handle Idle HLT exits as if they were normal HLT exits, e.g. don't try to
optimize the handling under the assumption that there isn't a pending IRQ.
Irrespective of AVIC, Idle HLT is inherently racy with respect to the vIRR,
as KVM can set vIRR bits asychronously.
No changes are required to support KVM's use Idle HLT while running
L2. In fact, supporting Idle HLT is actually a bug fix to some extent.
If L1 wants to intercept HLT, recalc_intercepts() will enable HLT
interception in vmcb02 and forward the intercept to L1 as normal.
But if L1 does not want to intercept HLT, then KVM will run L2 with Idle
HLT enabled and HLT interception disabled. If a V_IRQ or V_NMI for L2
becomes pending and L2 executes HLT, then use of Idle HLT will do the
right thing, i.e. not #VMEXIT and instead deliver the virtual event. KVM
currently doesn't handle this scenario correctly, e.g. doesn't check V_IRQ
or V_NMI in vmcs02 as part of kvm_vcpu_has_events().
Do not expose Idle HLT to L1 at this time, as supporting nested Idle HLT is
more complex than just enumerating the feature, e.g. requires KVM to handle
the aforementioned scenarios of V_IRQ and V_NMI at the time of exit.
Signed-off-by: Manali Shukla <Manali.Shukla@amd.com>
Reviewed-by: Nikunj A Dadhania <nikunj@amd.com>
Link: https://bugzilla.kernel.org/attachment.cgi?id=306250
Link: https://lore.kernel.org/r/20250128124812.7324-3-manali.shukla@amd.com
[sean: rewrite changelog, drop nested "support"]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
The Idle HLT Intercept feature allows for the HLT instruction
execution by a vCPU to be intercepted by the hypervisor only if there
are no pending events (V_INTR and V_NMI) for the vCPU. When the vCPU
is expected to service the pending events (V_INTR and V_NMI), the Idle
HLT intercept won’t trigger. The feature allows the hypervisor to
determine if the vCPU is idle and reduces wasteful VMEXITs.
In addition to the aforementioned use case, the Idle HLT intercept
feature is also used for enlightened guests who aim to securely manage
events without the hypervisor’s awareness. If a HLT occurs while
a virtual event is pending and the hypervisor is unaware of this
pending event (as could be the case with enlightened guests), the
absence of the Idle HLT intercept feature could result in a vCPU being
suspended indefinitely.
Presence of Idle HLT intercept feature for guests is indicated via CPUID
function 0x8000000A_EDX[30].
Signed-off-by: Manali Shukla <Manali.Shukla@amd.com>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20250128124812.7324-2-manali.shukla@amd.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Provide helpers to set the error code when converting VMGEXIT SW_EXITINFO1 and
SW_EXITINFO2 codes from plain numbers to proper defines. Add comments for
better code readability.
No functionality changed.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Melody Wang <huibo.wang@amd.com>
Link: https://lore.kernel.org/r/20250225213937.2471419-3-huibo.wang@amd.com
[sean: tweak comments, fix formatting goofs]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Convert VMGEXIT SW_EXITINFO1 codes from plain numbers to proper defines.
Opportunistically update the comment for the malformed input "sub-error"
codes to state that they are defined by the GHCB, and to capure the
relationship to the malformed input response.
No functional change intended.
Signed-off-by: Melody Wang <huibo.wang@amd.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Pavan Kumar Paluri <papaluri@amd.com>
Link: https://lore.kernel.org/r/20250225213937.2471419-2-huibo.wang@amd.com
[sean: update comments]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
The do_int80_emulation() function is missing a kernel-doc formatted
description of its argument. This is causing a warning when building
with W=1. Add a brief description of the argument to satisfy
kernel-doc.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20241219155227.685692-1-daniel.sneddon@linux.intel.com
Closes: https://lore.kernel.org/oe-kbuild-all/202412131236.a5HhOqXo-lkp@intel.com/
|
|
Add Arrow Lake U model for RAPL:
$ ls -1 /sys/devices/power/events/
energy-cores
energy-cores.scale
energy-cores.unit
energy-gpu
energy-gpu.scale
energy-gpu.unit
energy-pkg
energy-pkg.scale
energy-pkg.unit
energy-psys
energy-psys.scale
energy-psys.unit
The same output as ArrowLake:
$ perf stat -a -I 1000 --per-socket -e power/energy-pkg/
Signed-off-by: Aaron Ma <aaron.ma@canonical.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20241224145516.349028-1-aaron.ma@canonical.com
|
|
When both of X86_LOCAL_APIC and X86_THERMAL_VECTOR are disabled,
the irq tracing produces a W=1 build warning for the tracing
definitions:
In file included from include/trace/trace_events.h:27,
from include/trace/define_trace.h:113,
from arch/x86/include/asm/trace/irq_vectors.h:383,
from arch/x86/kernel/irq.c:29:
include/trace/stages/init.h:2:23: error: 'str__irq_vectors__trace_system_name' defined but not used [-Werror=unused-const-variable=]
Make the tracepoints conditional on the same symbosl that guard
their usage.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250225213236.3141752-1-arnd@kernel.org
|
|
I still have some Soekris net4826 in a Community Wireless Network I
volunteer with. These devices use an AMD SC1100 SoC. I am running
OpenWrt on them, which uses a patched kernel, that naturally has
evolved over time. I haven't updated the ones in the field in a
number of years (circa 2017), but have one in a test bed, where I have
intermittently tried out test builds.
A few years ago, I noticed some trouble, particularly when "warm
booting", that is, doing a reboot without removing power, and noticed
the device was hanging after the kernel message:
[ 0.081615] Working around Cyrix MediaGX virtual DMA bugs.
If I removed power and then restarted, it would boot fine, continuing
through the message above, thusly:
[ 0.081615] Working around Cyrix MediaGX virtual DMA bugs.
[ 0.090076] Enable Memory-Write-back mode on Cyrix/NSC processor.
[ 0.100000] Enable Memory access reorder on Cyrix/NSC processor.
[ 0.100070] Last level iTLB entries: 4KB 0, 2MB 0, 4MB 0
[ 0.110058] Last level dTLB entries: 4KB 0, 2MB 0, 4MB 0, 1GB 0
[ 0.120037] CPU: NSC Geode(TM) Integrated Processor by National Semi (family: 0x5, model: 0x9, stepping: 0x1)
[...]
In order to continue using modern tools, like ssh, to interact with
the software on these old devices, I need modern builds of the OpenWrt
firmware on the devices. I confirmed that the warm boot hang was still
an issue in modern OpenWrt builds (currently using a patched linux
v6.6.65).
Last night, I decided it was time to get to the bottom of the warm
boot hang, and began bisecting. From preserved builds, I narrowed down
the bisection window from late February to late May 2019. During this
period, the OpenWrt builds were using 4.14.x. I was able to build
using period-correct Ubuntu 18.04.6. After a number of bisection
iterations, I identified a kernel bump from 4.14.112 to 4.14.113 as
the commit that introduced the warm boot hang.
https://github.com/openwrt/openwrt/commit/07aaa7e3d62ad32767d7067107db64b6ade81537
Looking at the upstream changes in the stable kernel between 4.14.112
and 4.14.113 (tig v4.14.112..v4.14.113), I spotted a likely suspect:
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=20afb90f730982882e65b01fb8bdfe83914339c5
So, I tried reverting just that kernel change on top of the breaking
OpenWrt commit, and my warm boot hang went away.
Presumably, the warm boot hang is due to some register not getting
cleared in the same way that a loss of power does. That is
approximately as much as I understand about the problem.
More poking/prodding and coaching from Jonas Gorski, it looks
like this test patch fixes the problem on my board: Tested against
v6.6.67 and v4.14.113.
Fixes: 18fb053f9b82 ("x86/cpu/cyrix: Use correct macros for Cyrix calls on Geode processors")
Debugged-by: Jonas Gorski <jonas.gorski@gmail.com>
Signed-off-by: Russell Senior <russell@personaltelco.net>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/CAHP3WfOgs3Ms4Z+L9i0-iBOE21sdMk5erAiJurPjnrL9LSsgRA@mail.gmail.com
Cc: Matthew Whitehead <tedheadster@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
|
|
There are cases when it is useful to use both ACPI and DTB provided by
the bootloader, however in such cases we should make sure to prevent
conflicts between the two. Namely, don't try to use DTB for SMP setup
if ACPI is enabled.
Precisely, this prevents at least:
- incorrectly calling register_lapic_address(APIC_DEFAULT_PHYS_BASE)
after the LAPIC was already successfully enumerated via ACPI, causing
noisy kernel warnings and probably potential real issues as well
- failed IOAPIC setup in the case when IOAPIC is enumerated via mptable
instead of ACPI (e.g. with acpi=noirq), due to
mpparse_parse_smp_config() overridden by x86_dtb_parse_smp_config()
Signed-off-by: Dmytro Maluka <dmaluka@chromium.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250105172741.3476758-2-dmaluka@chromium.org
|
|
Problem: Currently when running the "make isoimage" command there is an
error related to wrong parameters passed to the cp command:
"cp: missing destination file operand after 'arch/x86/boot/isoimage/'"
This is caused because FDINITRDS is an empty array.
Solution: Check if FDINITRDS is empty before executing the "cp" command,
similar to how it is done in the case of hdimage.
Signed-off-by: Nir Lichtman <nir@lichtman.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michal Marek <michal.lkml@markovi.net>
Link: https://lore.kernel.org/r/20250110120500.GA923218@lichtman.org
|
|
Construct __percpu_seg_override macro from __percpu_seg by
concatenating the later with __seg_ prefix to reduce ifdeffery.
No functional change intended.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250225200235.48007-1-ubizjak@gmail.com
|
|
The local variable length already holds the string length after calling
strncpy_from_user(). Using another local variable linlen and calling
strlen() is therefore unnecessary and can be removed. Remove linlen
and strlen() and use length instead.
No change in functionality intended.
Signed-off-by: Thorsten Blum <thorsten.blum@linux.dev>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250225131621.329699-2-thorsten.blum@linux.dev
|
|
Freqency mode is the current default mode of Linux perf. A period of 1 is
used as a starting period. The period is auto-adjusted on each tick or an
overflow, to meet the frequency target.
The start period of 1 is too low and may trigger some issues:
- Many HWs do not support period 1 well.
https://lore.kernel.org/lkml/875xs2oh69.ffs@tglx/
- For an event that occurs frequently, period 1 is too far away from the
real period. Lots of samples are generated at the beginning.
The distribution of samples may not be even.
- A low starting period for frequently occurring events also challenges
virtualization, which has a longer path to handle a PMI.
The limit_period value only checks the minimum acceptable value for HW.
It cannot be used to set the start period, because some events may
need a very low period. The limit_period cannot be set too high. It
doesn't help with the events that occur frequently.
It's hard to find a universal starting period for all events. The idea
implemented by this patch is to only give an estimate for the popular
HW and HW cache events. For the rest of the events, start from the lowest
possible recommended value.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250117151913.3043942-3-kan.liang@linux.intel.com
|
|
Pass XFD_ERR via KVM's exception payload mechanism when injecting an #NM
after interception so that XFD_ERR can be propagated to FRED's event_data
field without needing a dedicated field (which would need to be migrated).
For non-FRED vCPUs, this is a glorified NOP as
kvm_deliver_exception_payload() will simply do nothing (which is desirable
and correct).
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20241001050110.3643764-15-xin@zytor.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Don't update the guest's XFD_ERR MSR if CR0.TS is set; per the SDM,
XFD_ERR is not modified if CR0.TS=1. Although it's not explicitly stated
in the SDM, conceptually it makes sense the CR0.TS check would be done
prior to the XFD_ERR check, e.g. CR0.TS=1 blocks all SIMD state, whereas
XFD blocks only XTILE state.
Device-not-available exceptions that are not due to XFD - those
resulting from setting CR0.TS to 1 - do not modify the IA32_XFD_ERR MSR.
Opportunistically update the comment to call out that XFD_ERR is updated
before the VM-Exit check occurs. Nothing in the SDM explicitly calls out
this behavior, but logically it must be the behavior, otherwise reading
XFD_ERR in handle_nm_fault_irqoff() would return stale data, i.e. the
to-be-delivered XFD_ERR value would need to be saved in EXIT_QUALIFICATION,
a la DR6 for #DB and CR2 for #PF, so that software could capture the guest
value.
Fixes: ec5be88ab29f ("kvm: x86: Intercept #NM for saving IA32_XFD_ERR")
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20241001050110.3643764-3-xin@zytor.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Open code the filling of vcpu->arch.exception in kvm_requeue_exception()
instead of bouncing through kvm_multiple_exception(), as re-injection
doesn't actually share that much code with "normal" injection, e.g. the
VM-Exit interception check, payload delivery, and nested exception code
is all bypassed as those flows only apply during initial injection.
When FRED comes along, the special casing will only get worse, as FRED
explicitly tracks nested exceptions and essentially delivers the payload
on the stack frame, i.e. re-injection will need more inputs, and normal
injection will have yet more code that needs to be bypassed when KVM is
re-injecting an exception.
No functional change intended.
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20241001050110.3643764-2-xin@zytor.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Rename send_user_only to avoid "user", because KVM's ABI is to not inject
page faults into CPL0, whereas "user" in x86 is specifically CPL3. Invert
the polarity to keep the naming simple and unambiguous. E.g. while KVM
often refers to CPL0 as "kernel", that terminology isn't ubiquitous, and
"send_kernel" could be misconstrued as "send only to kernel".
Link: https://lore.kernel.org/r/20250215010609.1199982-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
protected
Don't inject PV async #PFs into guests with protected register state, i.e.
SEV-ES and SEV-SNP guests, unless the guest has opted-in to receiving #PFs
at CPL0. For protected guests, the actual CPL of the guest is unknown.
Note, no sane CoCo guest should enable PV async #PF, but the current state
of Linux-as-a-CoCo-guest isn't entirely sane.
Fixes: add5e2f04541 ("KVM: SVM: Add support for the SEV-ES VMSA")
Link: https://lore.kernel.org/r/20250215010609.1199982-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
The Xen emulation in KVM modifies certain CPUID leaves to expose
TSC information to the guest.
Previously, these CPUID leaves were updated whenever guest time changed,
but this conflicts with KVM_SET_CPUID/KVM_SET_CPUID2 ioctls which reject
changes to CPUID entries on running vCPUs.
Fix this by updating the TSC information directly in the CPUID emulation
handler instead of modifying the vCPU's CPUID entries.
Signed-off-by: Fred Griffoul <fgriffo@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20250124150539.69975-1-fgriffo@amazon.co.uk
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Perf doesn't work at low frequencies:
$ perf record -e cpu_core/instructions/ppp -F 120
Error:
The sys_perf_event_open() syscall returned with 22 (Invalid argument)
for event (cpu_core/instructions/ppp).
"dmesg | grep -i perf" may provide additional information.
The limit_period() check avoids a low sampling period on a counter. It
doesn't intend to limit the frequency.
The check in the x86_pmu_hw_config() should be limited to non-freq mode.
The attr.sample_period and attr.sample_freq are union. The
attr.sample_period should not be used to indicate the frequency mode.
Fixes: c46e665f0377 ("perf/x86: Add INST_RETIRED.ALL workarounds")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20250117151913.3043942-1-kan.liang@linux.intel.com
Closes: https://lore.kernel.org/lkml/20250115154949.3147-1-ravi.bangoria@amd.com/
|
|
Depending on the type of panics, it was found that the
__register_nmi_handler() function can be called in NMI context from
nmi_shootdown_cpus() leading to a lockdep splat:
WARNING: inconsistent lock state
inconsistent {INITIAL USE} -> {IN-NMI} usage.
lock(&nmi_desc[0].lock);
<Interrupt>
lock(&nmi_desc[0].lock);
Call Trace:
_raw_spin_lock_irqsave
__register_nmi_handler
nmi_shootdown_cpus
kdump_nmi_shootdown_cpus
native_machine_crash_shutdown
__crash_kexec
In this particular case, the following panic message was printed before:
Kernel panic - not syncing: Fatal hardware error!
This message seemed to be given out from __ghes_panic() running in
NMI context.
The __register_nmi_handler() function which takes the nmi_desc lock
with irq disabled shouldn't be called from NMI context as this can
lead to deadlock.
The nmi_shootdown_cpus() function can only be invoked once. After the
first invocation, all other CPUs should be stuck in the newly added
crash_nmi_callback() and cannot respond to a second NMI.
Fix it by adding a new emergency NMI handler to the nmi_desc
structure and provide a new set_emergency_nmi_handler() helper to set
crash_nmi_callback() in any context. The new emergency handler will
preempt other handlers in the linked list. That will eliminate the need
to take any lock and serve the panic in NMI use case.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20250206191844.131700-1-longman@redhat.com
|
|
Unify __pcpu_op1_N() and __pcpu_op2_N() macros to __pcpu_op_N()
by applying the macro only to asm mnemonic, not to the mnemonic
plus its arguments.
No functional change intended.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250224071648.15913-1-ubizjak@gmail.com
|
|
When emulating an instruction on behalf of L2 that L1 wants to intercept,
generate a nested VM-Exit instead of injecting a #UD into L2. Now that
(most of) the necessary information is available, synthesizing a VM-Exit
isn't terribly difficult.
Punt on decoding the ModR/M for descriptor table exits for now. There is
no evidence that any hypervisor intercepts descriptor table accesses *and*
uses the EXIT_QUALIFICATION to expedite emulation, i.e. it's not worth
delaying basic support for.
To avoid doing more harm than good, e.g. by putting L2 into an infinite
or effectively corrupting its code stream, inject #UD if the instruction
length is nonsensical.
Link: https://lore.kernel.org/r/20250201015518.689704-11-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Rework the nested VM-Exit helper to take the instruction length as a
parameter, and convert nested_vmx_vmexit() into a "default" wrapper that
grabs the length from vmcs02 as appropriate. This will allow KVM to set
the correct instruction length when synthesizing a nested VM-Exit when
emulating an instruction that L1 wants to intercept.
No functional change intended, as the path to prepare_vmcs12()'s reading
of vmcs02.VM_EXIT_INSTRUCTION_LEN is gated on the same set of conditions
as the VMREAD in the new nested_vmx_vmexit().
Link: https://lore.kernel.org/r/20250201015518.689704-10-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add a #define to capture x86's architecturally defined max instruction
length instead of open coding the literal in a variety of places.
No functional change intended.
Link: https://lore.kernel.org/r/20250201015518.689704-9-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When checking for intercept when emulating an instruction on behalf of L2,
pass the emulator's view of the RIP of the instruction being emulated to
vendor code. Unlike SVM, which communicates the next RIP on VM-Exit,
VMX communicates the length of the instruction that generated the VM-Exit,
i.e. requires the current and next RIPs.
Note, unless userspace modifies RIP during a userspace exit that requires
completion, kvm_rip_read() will contain the same information. Pass the
emulator's view largely out of a paranoia, and because there is no
meaningful cost in doing so.
Link: https://lore.kernel.org/r/20250201015518.689704-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When checking for intercept when emulating an instruction on behalf of L2,
forward the source and destination operand types to vendor code so that
VMX can synthesize the correct EXIT_QUALIFICATION for port I/O VM-Exits.
Link: https://lore.kernel.org/r/20250201015518.689704-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Refactor the handling of port I/O interception checks when emulating on
behalf of L2 in anticipation of synthesizing a nested VM-Exit to L1
instead of injecting a #UD into L2.
No functional change intended.
Link: https://lore.kernel.org/r/20250201015518.689704-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Extend VMX's nested intercept logic for emulated instructions to handle
HLT interception, primarily for testing purposes. Failure to allow
emulation of HLT isn't all that interesting, as emulating HLT while L2 is
active either requires forced emulation (and no #UD intercept in L1), TLB
games in the guest to coerce KVM into emulating the wrong instruction, or
a bug elsewhere in KVM.
E.g. without commit 47ef3ef843c0 ("KVM: VMX: Handle event vectoring
error in check_emulate_instruction()"), KVM can end up trying to emulate
HLT if RIP happens to point at a HLT when a vectored event arrives with
L2's IDT pointing at emulated MMIO.
Note, vmx_check_intercept() is still broken when L1 wants to intercept an
instruction, as KVM injects a #UD instead of synthesizing a nested VM-Exit.
That issue extends far beyond HLT, punt on it for now.
Link: https://lore.kernel.org/r/20250201015518.689704-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Return X86EMUL_CONTINUE instead X86EMUL_UNHANDLEABLE when emulating RDPID
on behalf of L2 and L1 _does_ expose RDPID/RDTSCP to L2. When RDPID
emulation was added by commit fb6d4d340e05 ("KVM: x86: emulate RDPID"),
KVM incorrectly allowed emulation by default. Commit 07721feee46b ("KVM:
nVMX: Don't emulate instructions in guest mode") fixed that flaw, but
missed that RDPID emulation was relying on the common return path to allow
emulation on behalf of L2.
Fixes: 07721feee46b ("KVM: nVMX: Don't emulate instructions in guest mode")
Link: https://lore.kernel.org/r/20250201015518.689704-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Set "next_rip" in the emulation interception info passed to vendor code
using the emulator context's "_eip", not "eip". "eip" holds RIP from the
start of emulation, i.e. the RIP of the instruction that's being emulated,
whereas _eip tracks the context's current position in decoding the code
stream, which at the time of the intercept checks is effectively the RIP
of the next instruction.
Passing the current RIP as next_rip causes SVM to stuff the wrong value
value into vmcb12->control.next_rip if a nested VM-Exit is generated, i.e.
if L1 wants to intercept the instruction, and could result in L1 putting
L2 into an infinite loop due to restarting L2 with the same RIP over and
over.
Fixes: 8a76d7f25f8f ("KVM: x86: Add x86 callback for intercept check")
Link: https://lore.kernel.org/r/20250201015518.689704-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When emulating PAUSE on behalf of L2, check for interception in vmcs12 by
looking at primary execution controls, not secondary execution controls.
Checking for PAUSE_EXITING in secondary execution controls effectively
results in KVM looking for BUS_LOCK_DETECTION, which KVM doesn't expose to
L1, i.e. is always off in vmcs12, and ultimately results in KVM failing to
"intercept" PAUSE.
Because KVM doesn't handle interception during emulation correctly on VMX,
i.e. the "fixed" code is still quite broken, and not intercepting PAUSE is
relatively benign, for all intents and purposes the bug means that L2 gets
to live when it would otherwise get an unexpected #UD.
Fixes: 4984563823f0 ("KVM: nVMX: Emulate NOPs in L2, and PAUSE if it's not intercepted")
Link: https://lore.kernel.org/r/20250201015518.689704-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Now that all KVM usage of the Xen HVM config information is buried behind
CONFIG_KVM_XEN=y, move the per-VM kvm_xen_hvm_config field out of kvm_arch
and into kvm_xen.
No functional change intended.
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
Link: https://lore.kernel.org/r/20250215011437.1203084-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Now that all references to kvm_vcpu_arch.xen_hvm_config are wrapped with
CONFIG_KVM_XEN #ifdefs, bury the field itself behind CONFIG_KVM_XEN=y.
No functional change intended.
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
Link: https://lore.kernel.org/r/20250215011437.1203084-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Query kvm_xen_enabled when detecting writes to the Xen hypercall page MSR
so that the check is optimized away in the likely scenario that Xen isn't
enabled for the VM.
Deliberately open code the check instead of using kvm_xen_msr_enabled() in
order to avoid a double load of xen_hvm_config.msr (which is admittedly
rather pointless given the widespread lack of READ_ONCE() usage on the
plethora of vCPU-scoped accesses to kvm->arch.xen state).
No functional change intended.
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
Link: https://lore.kernel.org/r/20250215011437.1203084-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add a helper to detect writes to the Xen hypercall page MSR, and provide a
stub for CONFIG_KVM_XEN=n to optimize out the check for kernels built
without Xen support.
Reviewed-by: Paul Durrant <paul@xen.org>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20250215011437.1203084-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Reject userspace attempts to set the Xen hypercall page MSR to an index
outside of the "standard" virtualization range [0x40000000, 0x4fffffff],
as KVM is not equipped to handle collisions with real MSRs, e.g. KVM
doesn't update MSR interception, conflicts with VMCS/VMCB fields, special
case writes in KVM, etc.
While the MSR index isn't strictly ABI, i.e. can theoretically float to
any value, in practice no known VMM sets the MSR index to anything other
than 0x40000000 or 0x40000200.
Cc: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
Link: https://lore.kernel.org/r/20250215011437.1203084-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Use atomic64_inc_return(&ref) instead of atomic64_add_return(1, &ref)
to use optimized implementation on targets that define
atomic_inc_return() and to remove now unneeded initialization of the
%eax/%edx register pair before the call to atomic64_inc_return().
On x86_32 the code improves from:
1b0: b9 00 00 00 00 mov $0x0,%ecx
1b1: R_386_32 .bss
1b5: 89 43 0c mov %eax,0xc(%ebx)
1b8: 31 d2 xor %edx,%edx
1ba: b8 01 00 00 00 mov $0x1,%eax
1bf: e8 fc ff ff ff call 1c0 <ksys_ioperm+0xa8>
1c0: R_386_PC32 atomic64_add_return_cx8
1c4: 89 03 mov %eax,(%ebx)
1c6: 89 53 04 mov %edx,0x4(%ebx)
to:
1b0: be 00 00 00 00 mov $0x0,%esi
1b1: R_386_32 .bss
1b5: 89 43 0c mov %eax,0xc(%ebx)
1b8: e8 fc ff ff ff call 1b9 <ksys_ioperm+0xa1>
1b9: R_386_PC32 atomic64_inc_return_cx8
1bd: 89 03 mov %eax,(%ebx)
1bf: 89 53 04 mov %edx,0x4(%ebx)
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250223161355.3607-1-ubizjak@gmail.com
|
|
description
Use @addr instead of @vaddr in the kernel-doc comment for
clean_cache_range() to eliminate warnings:
arch/x86/lib/usercopy_64.c:29: warning: Function parameter or struct member 'addr' not described in 'clean_cache_range'
arch/x86/lib/usercopy_64.c:29: warning: Excess function parameter 'vaddr' description in 'clean_cache_range'
Fixes: 0aed55af8834 ("x86, uaccess: introduce copy_from_iter_flushcache for pmem / cache-bypass operations")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20250111063333.911084-1-rdunlap@infradead.org
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
- Fix AVX-VNNI CPU feature dependency bug triggered via the 'noxsave'
boot option
- Fix typos in the SVA documentation
- Add Tony Luck as RDT co-maintainer and remove Fenghua Yu
* tag 'x86-urgent-2025-02-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
docs: arch/x86/sva: Fix two grammar errors under Background and FAQ
x86/cpufeatures: Make AVX-VNNI depend on AVX
MAINTAINERS: Change maintainer for RDT
|
|
Avoid unnecessary per-CPU memory allocation on unsupported CPUs,
this can save 12K memory for each CPU
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Adrian Hunter <adrian.hunter@intel.com>
Acked-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lore.kernel.org/r/20250122074103.3091-1-lirongqing@baidu.com
|
|
Because who can ever remember all these names.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250127162252.GK16742@noisy.programming.kicks-ass.net
|
|
Previously the e820_table_kexec[] was exported to sysfs since kexec-tools uses
the memmap entries to prepare the e820 table for the new kernel.
The following commit, ~8 years ago, introduced e820_table_firmware[] and changed
the behavior to export the firmware table instead:
12df216c61c8 ("x86/boot/e820: Introduce the bootloader provided e820_table_firmware[] table")
Originally the kexec_file_load and kexec_load syscalls both used e820_table_kexec[].
Since the sysfs exported entries are from e820_table_firmware[] people
now need to tune both tables for kexec.
Restore the old behavior so the kexec_load and kexec_file_load syscalls work with
only one table update. The e820_table_firmware[] is used by hibernation kernel
code and it works without the sysfs exporting. Also remove the SEV
e820_table_firmware[] updating code.
Also update the code comments here and drop the comments about setup_data
reservation since it is not needed any more after this change was made
a year ago:
fc7f27cda843 ("x86/kexec: Do not update E820 kexec table for setup_data")
[ mingo: Tidy up the changelog and comments. ]
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Baoquan He <bhe@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Link: https://lore.kernel.org/r/Z5jcb1GKhLvH8kDc@darkstar.users.ipa.redhat.com
|
|
The return values of some functions are of boolean type. Change the
type of these function to bool and adjust their return values.
No functional change intended.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250129154920.6773-1-ubizjak@gmail.com
|
|
When CONFIG_PCI_P2PDMA=y (which is basically enabled on all
large x86 distros), it maps the PFN's via a ZONE_DEVICE
mapping using devm_memremap_pages(). The mapped virtual
address range corresponds to the pci_resource_start()
of the BAR address and size corresponding to the BAR length.
When KASLR is enabled, the direct map range of the kernel is
reduced to the size of physical memory plus additional padding.
If the BAR address is beyond this limit, PCI peer to peer DMA
mappings fail.
Fix this by not shrinking the size of the direct map when
CONFIG_PCI_P2PDMA=y.
This reduces the total available entropy, but it's better than
the current work around of having to disable KASLR completely.
[ mingo: Clarified the changelog to point out the broad impact ... ]
Signed-off-by: Balbir Singh <balbirs@nvidia.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Kees Cook <kees@kernel.org>
Acked-by: Bjorn Helgaas <bhelgaas@google.com> # drivers/pci/Kconfig
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/lkml/20250206023201.1481957-1-balbirs@nvidia.com/
Link: https://lore.kernel.org/r/20250206234234.1912585-1-balbirs@nvidia.com
--
arch/x86/mm/kaslr.c | 10 ++++++++--
drivers/pci/Kconfig | 6 ++++++
2 files changed, 14 insertions(+), 2 deletions(-)
|
|
Load patches for which the driver carries a SHA256 checksum of the patch
blob.
This can be disabled by adding "microcode.amd_sha_check=off" on the
kernel cmdline. But it is highly NOT recommended.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|