Age | Commit message (Collapse) | Author | Files | Lines |
|
[ Upstream commit b626070ffc14acca5b87a2aa5f581db98617584c ]
The compare function used to sort memblks into starting address
order fails when the result of its u64 address subtraction gets
truncated to an int upon return.
The impact of the bad sort is that memblks will be filled out
incorrectly. Depending on the set of memblks, a user may see no
errors at all but still have a bad fill, or see messages reporting
a node overlap that leads to numa init failure:
[] node 0 [mem: ] overlaps with node 1 [mem: ]
[] No NUMA configuration found
Replace with a comparison that can only result in: 1, 0, -1.
Fixes: 8f012db27c95 ("x86/numa: Introduce numa_fill_memblks()")
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Link: https://lore.kernel.org/r/99dcb3ae87e04995e9f293f6158dc8fa0749a487.1705085543.git.alison.schofield@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 9b99c17f7510bed2adbe17751fb8abddba5620bc ]
numa_fill_memblks() fills in the gaps in numa_meminfo memblks over a
physical address range. To do so, it first creates a list of existing
memblks that overlap that address range. The issue is that it is off
by one when comparing to the end of the address range, so memblks
that do not overlap are selected.
The impact of selecting a memblk that does not actually overlap is
that an existing memblk may be filled when the expected action is to
do nothing and return NUMA_NO_MEMBLK to the caller. The caller can
then add a new NUMA node and memblk.
Replace the broken open-coded search for address overlap with the
memblock helper memblock_addrs_overlap(). Update the kernel doc
and in code comments.
Suggested by: "Huang, Ying" <ying.huang@intel.com>
Fixes: 8f012db27c95 ("x86/numa: Introduce numa_fill_memblks()")
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Link: https://lore.kernel.org/r/10a3e6109c34c21a8dd4c513cf63df63481a2b07.1705085543.git.alison.schofield@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit baf8361e54550a48a7087b603313ad013cc13386 upstream.
MDS mitigation requires clearing the CPU buffers before returning to
user. This needs to be done late in the exit-to-user path. Current
location of VERW leaves a possibility of kernel data ending up in CPU
buffers for memory accesses done after VERW such as:
1. Kernel data accessed by an NMI between VERW and return-to-user can
remain in CPU buffers since NMI returning to kernel does not
execute VERW to clear CPU buffers.
2. Alyssa reported that after VERW is executed,
CONFIG_GCC_PLUGIN_STACKLEAK=y scrubs the stack used by a system
call. Memory accesses during stack scrubbing can move kernel stack
contents into CPU buffers.
3. When caller saved registers are restored after a return from
function executing VERW, the kernel stack accesses can remain in
CPU buffers(since they occur after VERW).
To fix this VERW needs to be moved very late in exit-to-user path.
In preparation for moving VERW to entry/exit asm code, create macros
that can be used in asm. Also make VERW patching depend on a new feature
flag X86_FEATURE_CLEAR_CPU_BUF.
Reported-by: Alyssa Milburn <alyssa.milburn@intel.com>
Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20240213-delay-verw-v8-1-a6216d83edb7%40linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 04c3024560d3a14acd18d0a51a1d0a89d29b7eb5 upstream.
AMD does not have the requirement for a synchronization barrier when
acccessing a certain group of MSRs. Do not incur that unnecessary
penalty there.
There will be a CPUID bit which explicitly states that a MFENCE is not
needed. Once that bit is added to the APM, this will be extended with
it.
While at it, move to processor.h to avoid include hell. Untangling that
file properly is a matter for another day.
Some notes on the performance aspect of why this is relevant, courtesy
of Kishon VijayAbraham <Kishon.VijayAbraham@amd.com>:
On a AMD Zen4 system with 96 cores, a modified ipi-bench[1] on a VM
shows x2AVIC IPI rate is 3% to 4% lower than AVIC IPI rate. The
ipi-bench is modified so that the IPIs are sent between two vCPUs in the
same CCX. This also requires to pin the vCPU to a physical core to
prevent any latencies. This simulates the use case of pinning vCPUs to
the thread of a single CCX to avoid interrupt IPI latency.
In order to avoid run-to-run variance (for both x2AVIC and AVIC), the
below configurations are done:
1) Disable Power States in BIOS (to prevent the system from going to
lower power state)
2) Run the system at fixed frequency 2500MHz (to prevent the system
from increasing the frequency when the load is more)
With the above configuration:
*) Performance measured using ipi-bench for AVIC:
Average Latency: 1124.98ns [Time to send IPI from one vCPU to another vCPU]
Cumulative throughput: 42.6759M/s [Total number of IPIs sent in a second from
48 vCPUs simultaneously]
*) Performance measured using ipi-bench for x2AVIC:
Average Latency: 1172.42ns [Time to send IPI from one vCPU to another vCPU]
Cumulative throughput: 40.9432M/s [Total number of IPIs sent in a second from
48 vCPUs simultaneously]
From above, x2AVIC latency is ~4% more than AVIC. However, the expectation is
x2AVIC performance to be better or equivalent to AVIC. Upon analyzing
the perf captures, it is observed significant time is spent in
weak_wrmsr_fence() invoked by x2apic_send_IPI().
With the fix to skip weak_wrmsr_fence()
*) Performance measured using ipi-bench for x2AVIC:
Average Latency: 1117.44ns [Time to send IPI from one vCPU to another vCPU]
Cumulative throughput: 42.9608M/s [Total number of IPIs sent in a second from
48 vCPUs simultaneously]
Comparing the performance of x2AVIC with and without the fix, it can be seen
the performance improves by ~4%.
Performance captured using an unmodified ipi-bench using the 'mesh-ipi' option
with and without weak_wrmsr_fence() on a Zen4 system also showed significant
performance improvement without weak_wrmsr_fence(). The 'mesh-ipi' option ignores
CCX or CCD and just picks random vCPU.
Average throughput (10 iterations) with weak_wrmsr_fence(),
Cumulative throughput: 4933374 IPI/s
Average throughput (10 iterations) without weak_wrmsr_fence(),
Cumulative throughput: 6355156 IPI/s
[1] https://github.com/bytedance/kvm-utils/tree/master/microbenchmark/ipi-bench
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230622095212.20940-1-bp@alien8.de
Signed-off-by: Kishon Vijay Abraham I <kvijayab@amd.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1ad55cecf22f05f1c884adf63cc09d3c3e609ebf upstream.
The .compat section is a dummy PE section that contains the address of
the 32-bit entrypoint of the 64-bit kernel image if it is bootable from
32-bit firmware (i.e., CONFIG_EFI_MIXED=y)
This section is only 8 bytes in size and is only referenced from the
loader, and so it is placed at the end of the memory view of the image,
to avoid the need for padding it to 4k, which is required for sections
appearing in the middle of the image.
Unfortunately, this violates the PE/COFF spec, and even if most EFI
loaders will work correctly (including the Tianocore reference
implementation), PE loaders do exist that reject such images, on the
basis that both the file and memory views of the file contents should be
described by the section headers in a monotonically increasing manner
without leaving any gaps.
So reorganize the sections to avoid this issue. This results in a slight
padding overhead (< 4k) which can be avoided if desired by disabling
CONFIG_EFI_MIXED (which is only needed in rare cases these days)
Fixes: 3e3eabe26dc8 ("x86/boot: Increase section and file alignment to 4k/512")
Reported-by: Mike Beaton <mjsbeaton@gmail.com>
Link: https://lkml.kernel.org/r/CAHzAAWQ6srV6LVNdmfbJhOwhBw5ZzxxZZ07aHt9oKkfYAdvuQQ%40mail.gmail.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3e3eabe26dc88692d34cf76ca0e0dd331481cc15 upstream.
Align x86 with other EFI architectures, and increase the section
alignment to the EFI page size (4k), so that firmware is able to honour
the section permission attributes and map code read-only and data
non-executable.
There are a number of requirements that have to be taken into account:
- the sign tools get cranky when there are gaps between sections in the
file view of the image
- the virtual offset of each section must be aligned to the image's
section alignment
- the file offset *and size* of each section must be aligned to the
image's file alignment
- the image size must be aligned to the section alignment
- each section's virtual offset must be greater than or equal to the
size of the headers.
In order to meet all these requirements, while avoiding the need for
lots of padding to accommodate the .compat section, the latter is placed
at an arbitrary offset towards the end of the image, but aligned to the
minimum file alignment (512 bytes). The space before the .text section
is therefore distributed between the PE header, the .setup section and
the .compat section, leaving no gaps in the file coverage, making the
signing tools happy.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230915171623.655440-18-ardb@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 34951f3c28bdf6481d949a20413b2ce7693687b2 upstream.
Describe the code and data of the decompressor binary using separate
.text and .data PE/COFF sections, so that we will be able to map them
using restricted permissions once we increase the section and file
alignment sufficiently. This avoids the need for memory mappings that
are writable and executable at the same time, which is something that
is best avoided for security reasons.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230915171623.655440-17-ardb@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fa5750521e0a4efbc1af05223da9c4bbd6c21c83 upstream.
Ancient buggy EFI loaders may have required a .reloc section to be
present at some point in time, but this has not been true for a long
time so the .reloc section can just be dropped.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230915171623.655440-16-ardb@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit efa089e63b56bdc5eca754b995cb039dd7a5457e upstream.
Now that the size of the setup block is visible to the assembler, it is
possible to populate the PE/COFF header fields from the asm code
directly, instead of poking the values into the binary using the build
tool. This will make it easier to reorganize the section layout without
having to tweak the build tool in lockstep.
This change has no impact on the resulting bzImage binary.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230915171623.655440-15-ardb@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit aeb92067f6ae994b541d7f9752fe54ed3d108bcc upstream.
Tweak the linker script so that the value of _edata represents the
decompressor binary's file size rounded up to the appropriate alignment.
This removes the need to calculate it in the build tool, and will make
it easier to refer to the file size from the header directly in
subsequent changes to the PE header layout.
While adding _edata to the sed regex that parses the compressed
vmlinux's symbol list, tweak the regex a bit for conciseness.
This change has no impact on the resulting bzImage binary when
configured with CONFIG_EFI_STUB=y.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230915171623.655440-14-ardb@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 093ab258e3fb1d1d3afdfd4a69403d44ce90e360 upstream.
The setup block contains the real mode startup code that is used when
booting from a legacy BIOS, along with the boot_params/setup_data that
is used by legacy x86 bootloaders to pass the command line and initial
ramdisk parameters, among other things.
The setup block also contains the PE/COFF header of the entire combined
image, which includes the compressed kernel image, the decompressor and
the EFI stub.
This PE header describes the layout of the executable image in memory,
and currently, the fact that the setup block precedes it makes it rather
fiddly to get the right values into the right place in the final image.
Let's make things a bit easier by defining the setup_size in the linker
script so it can be referenced from the asm code directly, rather than
having to rely on the build tool to calculate it. For the time being,
add 64 bytes of fixed padding for the .reloc and .compat sections - this
will be removed in a subsequent patch after the PE/COFF header has been
reorganized.
This change has no impact on the resulting bzImage binary when
configured with CONFIG_EFI_MIXED=y.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230915171623.655440-13-ardb@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit eac956345f99dda3d68f4ae6cf7b494105e54780 upstream.
The offsets of the EFI handover entrypoints are available to the
assembler when constructing the header, so there is no need to set them
from the build tool afterwards.
This change has no impact on the resulting bzImage binary.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230915171623.655440-12-ardb@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2e765c02dcbfc2a8a4527c621a84b9502f6b9bd2 upstream.
Instead of parsing zoffset.h and poking the kernel_info offset value
into the header from the build tool, just grab the value directly in the
asm file that describes this header.
This change has no impact on the resulting bzImage binary.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230915171623.655440-11-ardb@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b618d31f112bea3d2daea19190d63e567f32a4db upstream.
The x86 boot image generation tool assign a default value to startup_64
and subsequently parses the actual value from zoffset.h but it never
actually uses the value anywhere. So remove this code.
This change has no impact on the resulting bzImage binary.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230912090051.4014114-25-ardb@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7448e8e5d15a3c4df649bf6d6d460f78396f7e1e upstream.
The root device defaults to 0,0 and is no longer configurable at build
time [0], so there is no need for the build tool to ever write to this
field.
[0] 079f85e624189292 ("x86, build: Do not set the root_dev field in bzImage")
This change has no impact on the resulting bzImage binary.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230912090051.4014114-23-ardb@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8eace5b3555606e684739bef5bcdfcfe68235257 upstream.
Now that the EFI stub decompresses the kernel and hands over to the
decompressed image directly, there is no longer a need to provide a
decompression buffer as part of the .BSS allocation of the PE/COFF
image. It also means the PE/COFF image can be loaded anywhere in memory,
and setting the preferred image base is unnecessary. So drop the
handling of this from the header and from the build tool.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230912090051.4014114-22-ardb@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 768171d7ebbce005210e1cf8456f043304805c15 upstream.
Ancient (pre-2003) x86 kernels could boot from a floppy disk straight from
the BIOS, using a small real mode boot stub at the start of the image
where the BIOS would expect the boot record (or boot block) to appear.
Due to its limitations (kernel size < 1 MiB, no support for IDE, USB or
El Torito floppy emulation), this support was dropped, and a Linux aware
bootloader is now always required to boot the kernel from a legacy BIOS.
To smoothen this transition, the boot stub was not removed entirely, but
replaced with one that just prints an error message telling the user to
install a bootloader.
As it is unlikely that anyone doing direct floppy boot with such an
ancient kernel is going to upgrade to v6.5+ and expect that this boot
method still works, printing this message is kind of pointless, and so
it should be possible to remove the logic that emits it.
Let's free up this space so it can be used to expand the PE header in a
subsequent patch.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Link: https://lore.kernel.org/r/20230912090051.4014114-21-ardb@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bfab35f552ab3dd6d017165bf9de1d1d20f198cc upstream.
The section header flags for alignment are documented in the PE/COFF
spec as being applicable to PE object files only, not to PE executables
such as the Linux bzImage, so let's drop them from the PE header.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230912090051.4014114-20-ardb@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5f51c5d0e905608ba7be126737f7c84a793ae1aa upstream.
Now that the EFI stub always zero inits its BSS section upon entry,
there is no longer a need to place the BSS symbols carried by the stub
into the .data section.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230912090051.4014114-18-ardb@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d794734c9bbfe22f86686dc2909c25f5ffe1a572 upstream.
When ident_pud_init() uses only gbpages to create identity maps, large
ranges of addresses not actually requested can be included in the
resulting table; a 4K request will map a full GB. On UV systems, this
ends up including regions that will cause hardware to halt the system
if accessed (these are marked "reserved" by BIOS). Even processor
speculation into these regions is enough to trigger the system halt.
Only use gbpages when map creation requests include the full GB page
of space. Fall back to using smaller 2M pages when only portions of a
GB page are included in the request.
No attempt is made to coalesce mapping requests. If a request requires
a map entry at the 2M (pmd) level, subsequent mapping requests within
the same 1G region will also be at the pmd level, even if adjacent or
overlapping such requests could have been combined to map a full
gbpage. Existing usage starts with larger regions and then adds
smaller regions, so this should not have any great consequence.
[ dhansen: fix up comment formatting, simplifty changelog ]
Signed-off-by: Steve Wahl <steve.wahl@hpe.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20240126164841.170866-1-steve.wahl%40hpe.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 05519c86d6997cfb9bb6c82ce1595d1015b718dc upstream.
Use a u64 instead of a u8 when taking a snapshot of pmu->fixed_ctr_ctrl
when reprogramming fixed counters, as truncating the value results in KVM
thinking fixed counter 2 is already disabled (the bug also affects fixed
counters 3+, but KVM doesn't yet support those). As a result, if the
guest disables fixed counter 2, KVM will get a false negative and fail to
reprogram/disable emulation of the counter, which can leads to incorrect
counts and spurious PMIs in the guest.
Fixes: 76d287b2342e ("KVM: x86/pmu: Drop "u8 ctrl, int idx" for reprogram_fixed_counter()")
Cc: stable@vger.kernel.org
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Link: https://lore.kernel.org/r/20240123221220.3911317-1-mizhang@google.com
[sean: rewrite changelog to call out the effects of the bug]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6231c9e1a9f35b535c66709aa8a6eda40dbc4132 upstream.
kvm_vcpu_ioctl_x86_set_vcpu_events() routine makes 'KVM_REQ_NMI'
request for a vcpu even when its 'events->nmi.pending' is zero.
Ex:
qemu_thread_start
kvm_vcpu_thread_fn
qemu_wait_io_event
qemu_wait_io_event_common
process_queued_cpu_work
do_kvm_cpu_synchronize_post_init/_reset
kvm_arch_put_registers
kvm_put_vcpu_events (cpu, level=[2|3])
This leads vCPU threads in QEMU to constantly acquire & release the
global mutex lock, delaying the guest boot due to lock contention.
Add check to make KVM_REQ_NMI request only if vcpu has NMI pending.
Fixes: bdedff263132 ("KVM: x86: Route pending NMIs from userspace through process_nmi()")
Cc: stable@vger.kernel.org
Signed-off-by: Prasad Pandit <pjp@fedoraproject.org>
Link: https://lore.kernel.org/r/20240103075343.549293-1-ppandit@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d877550eaf2dc9090d782864c96939397a3c6835 upstream.
Before this change, the expected size of the user space buffer was
taken from fx_sw->xstate_size. fx_sw->xstate_size can be changed
from user-space, so it is possible construct a sigreturn frame where:
* fx_sw->xstate_size is smaller than the size required by valid bits in
fx_sw->xfeatures.
* user-space unmaps parts of the sigrame fpu buffer so that not all of
the buffer required by xrstor is accessible.
In this case, xrstor tries to restore and accesses the unmapped area
which results in a fault. But fault_in_readable succeeds because buf +
fx_sw->xstate_size is within the still mapped area, so it goes back and
tries xrstor again. It will spin in this loop forever.
Instead, fault in the maximum size which can be touched by XRSTOR (taken
from fpstate->user_size).
[ dhansen: tweak subject / changelog ]
Fixes: fcb3635f5018 ("x86/fpu/signal: Handle #PF in the direct restore path")
Reported-by: Konstantin Bogomolov <bogomolov@google.com>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrei Vagin <avagin@google.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc:stable@vger.kernel.org
Link: https://lore.kernel.org/all/20240130063603.3392627-1-avagin%40google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f6a1892585cd19e63c4ef2334e26cd536d5b678d upstream.
The kernel built with MCRUSOE is unbootable on Transmeta Crusoe. It shows
the following error message:
This kernel requires an i686 CPU, but only detected an i586 CPU.
Unable to boot - please use a kernel appropriate for your CPU.
Remove MCRUSOE from the condition introduced in commit in Fixes, effectively
changing X86_MINIMUM_CPU_FAMILY back to 5 on that machine, which matches the
CPU family given by CPUID.
[ bp: Massage commit message. ]
Fixes: 25d76ac88821 ("x86/Kconfig: Explicitly enumerate i686-class CPUs in Kconfig")
Signed-off-by: Aleksander Mazur <deweloper@wp.pl>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20240123134309.1117782-1-deweloper@wp.pl
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4356e9f841f7fbb945521cef3577ba394c65f3fc upstream.
We've had issues with gcc and 'asm goto' before, and we created a
'asm_volatile_goto()' macro for that in the past: see commits
3f0116c3238a ("compiler/gcc4: Add quirk for 'asm goto' miscompilation
bug") and a9f180345f53 ("compiler/gcc4: Make quirk for
asm_volatile_goto() unconditional").
Then, much later, we ended up removing the workaround in commit
43c249ea0b1e ("compiler-gcc.h: remove ancient workaround for gcc PR
58670") because we no longer supported building the kernel with the
affected gcc versions, but we left the macro uses around.
Now, Sean Christopherson reports a new version of a very similar
problem, which is fixed by re-applying that ancient workaround. But the
problem in question is limited to only the 'asm goto with outputs'
cases, so instead of re-introducing the old workaround as-is, let's
rename and limit the workaround to just that much less common case.
It looks like there are at least two separate issues that all hit in
this area:
(a) some versions of gcc don't mark the asm goto as 'volatile' when it
has outputs:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98619
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=110420
which is easy to work around by just adding the 'volatile' by hand.
(b) Internal compiler errors:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=110422
which are worked around by adding the extra empty 'asm' as a
barrier, as in the original workaround.
but the problem Sean sees may be a third thing since it involves bad
code generation (not an ICE) even with the manually added 'volatile'.
but the same old workaround works for this case, even if this feels a
bit like voodoo programming and may only be hiding the issue.
Reported-and-tested-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/all/20240208220604.140859-1-seanjc@google.com/
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Uros Bizjak <ubizjak@gmail.com>
Cc: Jakub Jelinek <jakub@redhat.com>
Cc: Andrew Pinski <quic_apinski@quicinc.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8eed4e00a370b37b4e5985ed983dccedd555ea9d upstream.
During memory error injection test on kernels >= v6.4, the kernel panics
like below. However, this issue couldn't be reproduced on kernels <= v6.3.
mce: [Hardware Error]: CPU 296: Machine Check Exception: f Bank 1: bd80000000100134
mce: [Hardware Error]: RIP 10:<ffffffff821b9776> {__get_user_nocheck_4+0x6/0x20}
mce: [Hardware Error]: TSC 411a93533ed ADDR 346a8730040 MISC 86
mce: [Hardware Error]: PROCESSOR 0:a06d0 TIME 1706000767 SOCKET 1 APIC 211 microcode 80001490
mce: [Hardware Error]: Run the above through 'mcelog --ascii'
mce: [Hardware Error]: Machine check: Data load in unrecoverable area of kernel
Kernel panic - not syncing: Fatal local machine check
The MCA code can recover from an in-kernel #MC if the fixup type is
EX_TYPE_UACCESS, explicitly indicating that the kernel is attempting to
access userspace memory. However, if the fixup type is EX_TYPE_DEFAULT
the only thing that is raised for an in-kernel #MC is a panic.
ex_handler_uaccess() would warn if users gave a non-canonical addresses
(with bit 63 clear) to {get, put}_user(), which was unexpected.
Therefore, commit
b19b74bc99b1 ("x86/mm: Rework address range check in get_user() and put_user()")
replaced _ASM_EXTABLE_UA() with _ASM_EXTABLE() for {get, put}_user()
fixups. However, the new fixup type EX_TYPE_DEFAULT results in a panic.
Commit
6014bc27561f ("x86-64: make access_ok() independent of LAM")
added the check gp_fault_address_ok() right before the WARN_ONCE() in
ex_handler_uaccess() to not warn about non-canonical user addresses due
to LAM.
With that in place, revert back to _ASM_EXTABLE_UA() for {get,put}_user()
exception fixups in order to be able to handle in-kernel MCEs correctly
again.
[ bp: Massage commit message. ]
Fixes: b19b74bc99b1 ("x86/mm: Rework address range check in get_user() and put_user()")
Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20240129063842.61584-1-qiuxu.zhuo@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f6564fce256a3944aa1bc76cb3c40e792d97c1eb upstream.
Alexander Potapenko writes in [1]: "For every memory access in the code
instrumented by KMSAN we call kmsan_get_metadata() to obtain the metadata
for the memory being accessed. For virtual memory the metadata pointers
are stored in the corresponding `struct page`, therefore we need to call
virt_to_page() to get them.
According to the comment in arch/x86/include/asm/page.h,
virt_to_page(kaddr) returns a valid pointer iff virt_addr_valid(kaddr) is
true, so KMSAN needs to call virt_addr_valid() as well.
To avoid recursion, kmsan_get_metadata() must not call instrumented code,
therefore ./arch/x86/include/asm/kmsan.h forks parts of
arch/x86/mm/physaddr.c to check whether a virtual address is valid or not.
But the introduction of rcu_read_lock() to pfn_valid() added instrumented
RCU API calls to virt_to_page_or_null(), which is called by
kmsan_get_metadata(), so there is an infinite recursion now. I do not
think it is correct to stop that recursion by doing
kmsan_enter_runtime()/kmsan_exit_runtime() in kmsan_get_metadata(): that
would prevent instrumented functions called from within the runtime from
tracking the shadow values, which might introduce false positives."
Fix the issue by switching pfn_valid() to the _sched() variant of
rcu_read_lock/unlock(), which does not require calling into RCU. Given
the critical section in pfn_valid() is very small, this is a reasonable
trade-off (with preemptible RCU).
KMSAN further needs to be careful to suppress calls into the scheduler,
which would be another source of recursion. This can be done by wrapping
the call to pfn_valid() into preempt_disable/enable_no_resched(). The
downside is that this sacrifices breaking scheduling guarantees; however,
a kernel compiled with KMSAN has already given up any performance
guarantees due to being heavily instrumented.
Note, KMSAN code already disables tracing via Makefile, and since mmzone.h
is included, it is not necessary to use the notrace variant, which is
generally preferred in all other cases.
Link: https://lkml.kernel.org/r/20240115184430.2710652-1-glider@google.com [1]
Link: https://lkml.kernel.org/r/20240118110022.2538350-1-elver@google.com
Fixes: 5ec8e8ea8b77 ("mm/sparsemem: fix race in accessing memory_section->usage")
Signed-off-by: Marco Elver <elver@google.com>
Reported-by: Alexander Potapenko <glider@google.com>
Reported-by: syzbot+93a9e8a3dea8d6085e12@syzkaller.appspotmail.com
Reviewed-by: Alexander Potapenko <glider@google.com>
Tested-by: Alexander Potapenko <glider@google.com>
Cc: Charan Teja Kalla <quic_charante@quicinc.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 64bac5ea17d527872121adddfee869c7a0618f8f ]
The prototype was hidden in an #ifdef on x86, which causes a warning:
kernel/irq_work.c:72:13: error: no previous prototype for 'arch_irq_work_raise' [-Werror=missing-prototypes]
Some architectures have a working prototype, while others don't.
Fix this by providing it in only one place that is always visible.
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
Acked-by: Guo Ren <guoren@kernel.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 9f3b130048bfa2e44a8cfb1b616f826d9d5d8188 ]
Memory errors don't happen very often, especially fatal ones. However,
in large-scale scenarios such as data centers, that probability
increases with the amount of machines present.
When a fatal machine check happens, mce_panic() is called based on the
severity grading of that error. The page containing the error is not
marked as poison.
However, when kexec is enabled, tools like makedumpfile understand when
pages are marked as poison and do not touch them so as not to cause
a fatal machine check exception again while dumping the previous
kernel's memory.
Therefore, mark the page containing the error as poisoned so that the
kexec'ed kernel can avoid accessing the page.
[ bp: Rewrite commit message and comment. ]
Co-developed-by: Youquan Song <youquan.song@intel.com>
Signed-off-by: Youquan Song <youquan.song@intel.com>
Signed-off-by: Zhiquan Li <zhiquan1.li@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Link: https://lore.kernel.org/r/20231014051754.3759099-1-zhiquan1.li@intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 78a509fba9c9b1fcb77f95b7c6be30da3d24823a ]
When there are two racing NMIs on x86, the first NMI invokes NMI handler and
the 2nd NMI is latched until IRET is executed.
If panic on NMI and panic kexec are enabled, the first NMI triggers
panic and starts booting the next kernel via kexec. Note that the 2nd
NMI is still latched. During the early boot of the next kernel, once
an IRET is executed as a result of a page fault, then the 2nd NMI is
unlatched and invokes the NMI handler.
However, NMI handler is not set up at the early stage of boot, which
results in a boot failure.
Avoid such problems by setting up a NOP handler for early NMIs.
[ mingo: Refined the changelog. ]
Signed-off-by: Jun'ichi Nomura <junichi.nomura@nec.com>
Signed-off-by: Derek Barbosa <debarbos@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 56062d60f117dccfb5281869e0ab61e090baf864 upstream.
Presently ia32 registers stored in ptregs are unconditionally cast to
unsigned int by the ia32 stub. They are then cast to long when passed to
__se_sys*, but will not be sign extended.
This takes the sign of the syscall argument into account in the ia32
stub. It still casts to unsigned int to avoid implementation specific
behavior. However then casts to int or unsigned int as necessary. So that
the following cast to long sign extends the value.
This fixes the io_pgetevents02 LTP test when compiled with -m32. Presently
the systemcall io_pgetevents_time64() unexpectedly accepts -1 for the
maximum number of events.
It doesn't appear other systemcalls with signed arguments are effected
because they all have compat variants defined and wired up.
Fixes: ebeb8c82ffaf ("syscalls/x86: Use 'struct pt_regs' based syscall calling for IA32_EMULATION and x32")
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Richard Palethorpe <rpalethorpe@suse.com>
Signed-off-by: Nikolay Borisov <nik.borisov@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240110130122.3836513-1-nik.borisov@suse.com
Link: https://lore.kernel.org/ltp/20210921130127.24131-1-rpalethorpe@suse.com/
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cef9ecc8e938dd48a560f7dd9be1246359248d20 upstream.
Specs don't say anything about UIP being cleared within 10ms. They
only say that UIP won't occur for another 244uS. If a long NMI occurs
while UIP is still updating it might not be possible to get valid
data in 10ms.
This has been observed in the wild that around s2idle some calls can
take up to 480ms before UIP is clear.
Adjust callers from outside an interrupt context to wait for up to a
1s instead of 10ms.
Cc: <stable@vger.kernel.org> # 6.1.y
Fixes: ec5895c0f2d8 ("rtc: mc146818-lib: extract mc146818_avoid_UIP")
Reported-by: Carsten Hatger <xmb8dsv4@gmail.com>
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=217626
Tested-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Reviewed-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Acked-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Link: https://lore.kernel.org/r/20231128053653.101798-5-mario.limonciello@amd.com
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 120931db07b49252aba2073096b595482d71857c upstream.
The UIP timeout is hardcoded to 10ms for all RTC reads, but in some
contexts this might not be enough time. Add a timeout parameter to
mc146818_get_time() and mc146818_get_time_callback().
If UIP timeout is configured by caller to be >=100 ms and a call
takes this long, log a warning.
Make all callers use 10ms to ensure no functional changes.
Cc: <stable@vger.kernel.org> # 6.1.y
Fixes: ec5895c0f2d8 ("rtc: mc146818-lib: extract mc146818_avoid_UIP")
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Tested-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Reviewed-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Acked-by: Mateusz Jończyk <mat.jonczyk@o2.pl>
Link: https://lore.kernel.org/r/20231128053653.101798-4-mario.limonciello@amd.com
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1647b52757d59131fe30cf73fa36fac834d4367f upstream.
Stop all counters and release all perf events before refreshing the vPMU,
i.e. before reconfiguring the vPMU to respond to changes in the vCPU
model.
Clear need_cleanup in kvm_pmu_reset() as well so that KVM doesn't
prematurely stop counters, e.g. if KVM enters the guest and enables
counters before the vCPU is scheduled out.
Cc: stable@vger.kernel.org
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20231103230541.352265-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cbb359d81a2695bb5e63ec9de06fcbef28518891 upstream.
Move the common (or at least "ignored") aspects of resetting the vPMU to
common x86 code, along with the stop/release helpers that are no used only
by the common pmu.c.
There is no need to manually handle fixed counters as all_valid_pmc_idx
tracks both fixed and general purpose counters, and resetting the vPMU is
far from a hot path, i.e. the extra bit of overhead to the PMC from the
index is a non-issue.
Zero fixed_ctr_ctrl in common code even though it's Intel specific.
Ensuring it's zero doesn't harm AMD/SVM in any way, and stopping the fixed
counters via all_valid_pmc_idx, but not clearing the associated control
bits, would be odd/confusing.
Make the .reset() hook optional as SVM no longer needs vendor specific
handling.
Cc: stable@vger.kernel.org
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20231103230541.352265-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1c6d984f523f67ecfad1083bb04c55d91977bb15 upstream.
kvm_guest_cpu_offline() tries to disable kvmclock regardless if it is
present in the VM. It leads to write to a MSR that doesn't exist on some
configurations, namely in TDX guest:
unchecked MSR access error: WRMSR to 0x12 (tried to write 0x0000000000000000)
at rIP: 0xffffffff8110687c (kvmclock_disable+0x1c/0x30)
kvmclock enabling is gated by CLOCKSOURCE and CLOCKSOURCE2 KVM paravirt
features.
Do not disable kvmclock if it was not enabled.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Fixes: c02027b5742b ("x86/kvm: Disable kvmclock on all CPUs on shutdown")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: stable@vger.kernel.org
Message-Id: <20231205004510.27164-6-kirill.shutemov@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 070909e56a7d65fd0b4aad6e808966b7c634befe upstream.
Tomasz, Sebastian, and some Proxmox users reported problems initializing
ixgbe NICs.
I think the problem is that ECAM space described in the ACPI MCFG table is
not reserved via a PNP0C02 _CRS method as required by the PCI Firmware spec
(r3.3, sec 4.1.2), but it *is* included in the PNP0A03 host bridge _CRS as
part of the MMIO aperture.
If we allocate space for a PCI BAR, we're likely to allocate it from that
ECAM space, which obviously cannot work.
This could happen for any device, but in the ixgbe case it happens because
it's an SR-IOV device and the BIOS didn't allocate space for the VF BARs,
so Linux reallocated the bridge window leading to ixgbe and put it on top
of the ECAM space. From Tomasz' system:
PCI: MMCONFIG for domain 0000 [bus 00-ff] at [mem 0x80000000-0x8fffffff] (base 0x80000000)
PCI: MMCONFIG at [mem 0x80000000-0x8fffffff] not reserved in ACPI motherboard resources
pci_bus 0000:00: root bus resource [mem 0x80000000-0xfbffffff window]
pci 0000:00:01.1: PCI bridge to [bus 02-03]
pci 0000:00:01.1: bridge window [mem 0xfb900000-0xfbbfffff]
pci 0000:02:00.0: [8086:10fb] type 00 class 0x020000 # ixgbe
pci 0000:02:00.0: reg 0x10: [mem 0xfba80000-0xfbafffff 64bit]
pci 0000:02:00.0: VF(n) BAR0 space: [mem 0x00000000-0x000fffff 64bit] (contains BAR0 for 64 VFs)
pci 0000:02:00.0: BAR 7: no space for [mem size 0x00100000 64bit] # VF BAR 0
pci_bus 0000:00: No. 2 try to assign unassigned res
pci 0000:00:01.1: resource 14 [mem 0xfb900000-0xfbbfffff] released
pci 0000:00:01.1: BAR 14: assigned [mem 0x80000000-0x806fffff]
pci 0000:02:00.0: BAR 0: assigned [mem 0x80000000-0x8007ffff 64bit]
pci 0000:02:00.0: BAR 7: assigned [mem 0x80204000-0x80303fff 64bit] # VF BAR 0
Fixes: 07eab0901ede ("efi/x86: Remove EfiMemoryMappedIO from E820 map")
Fixes: fd3a8cff4d4a ("x86/pci: Treat EfiMemoryMappedIO as reservation of ECAM space")
Reported-by: Tomasz Pala <gotar@polanet.pl>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=218050
Reported-by: Sebastian Manciulea <manciuleas@protonmail.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=218107
Link: https://forum.proxmox.com/threads/proxmox-8-kernel-6-2-16-4-pve-ixgbe-driver-fails-to-load-due-to-pci-device-probing-failure.131203/
Link: https://lore.kernel.org/r/20231121183643.249006-2-helgaas@kernel.org
Tested-by: Tomasz Pala <gotar@polanet.pl>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: stable@vger.kernel.org # v6.2+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a484755ab2526ebdbe042397cdd6e427eb4b1a68 upstream.
Revert KVM's made-up consistency check on SVM's TLB control. The APM says
that unsupported encodings are reserved, but the APM doesn't state that
VMRUN checks for a supported encoding. Unless something is called out
in "Canonicalization and Consistency Checks" or listed as MBZ (Must Be
Zero), AMD behavior is typically to let software shoot itself in the foot.
This reverts commit 174a921b6975ef959dd82ee9e8844067a62e3ec1.
Fixes: 174a921b6975 ("nSVM: Check for reserved encodings of TLB_CONTROL in nested VMCB")
Reported-by: Stefan Sterz <s.sterz@proxmox.com>
Closes: https://lkml.kernel.org/r/b9915c9c-4cf6-051a-2d91-44cc6380f455%40proxmox.com
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20231018194104.1896415-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 1692cf434ba13ee212495b5af795b6a07e986ce4 ]
Get logical socket id instead of physical id in discover_upi_topology()
to avoid out-of-bound access on 'upi = &type->topology[nid][idx];' line
that leads to NULL pointer dereference in upi_fill_topology()
Fixes: f680b6e6062e ("perf/x86/intel/uncore: Enable UPI topology discovery for Icelake Server")
Reported-by: Kyle Meyer <kyle.meyer@hpe.com>
Signed-off-by: Alexander Antonov <alexander.antonov@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Tested-by: Kyle Meyer <kyle.meyer@hpe.com>
Link: https://lore.kernel.org/r/20231127185246.2371939-2-alexander.antonov@linux.intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit edc8fc01f608108b0b7580cb2c29dfb5135e5f0e ]
intel_idle_irq() re-enables IRQs very early. As a result, an interrupt
may fire before mwait() is eventually called. If such an interrupt queues
a timer, it may go unnoticed until mwait returns and the idle loop
handles the tick re-evaluation. And monitoring TIF_NEED_RESCHED doesn't
help because a local timer enqueue doesn't set that flag.
The issue is mitigated by the fact that this idle handler is only invoked
for shallow C-states when, presumably, the next tick is supposed to be
close enough. There may still be rare cases though when the next tick
is far away and the selected C-state is shallow, resulting in a timer
getting ignored for a while.
Fix this with using sti_mwait() whose IRQ-reenablement only triggers
upon calling mwait(), dealing with the race while keeping the interrupt
latency within acceptable bounds.
Fixes: c227233ad64c (intel_idle: enable interrupts before C1 on Xeons)
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Link: https://lkml.kernel.org/r/20231115151325.6262-3-frederic@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 6175b407756b22e7fdc771181b7d832ebdedef5c ]
AMD systems generally allow MCA "simulation" where MCA registers can be
written with valid data and the full MCA handling flow can be tested by
software.
However, the platform on Scalable MCA systems, can prevent software from
writing data to the MCA registers. There is no architectural way to
determine this configuration. Therefore, the MCE injection module will
check for this behavior by writing and reading back a test status value.
This is done during module init, and the check can run on any CPU with
any valid MCA bank.
If MCA_STATUS writes are ignored by the platform, then there are no side
effects on the hardware state.
If the writes are not ignored, then the test status value will remain in
the hardware MCA_STATUS register. It is likely that the value will not
be overwritten by hardware or software, since the tested CPU and bank
are arbitrary. Therefore, the user may see a spurious, synthetic MCA
error reported whenever MCA is polled for this CPU.
Clear the test value immediately after writing it. It is very unlikely
that a valid MCA error is logged by hardware during the test. Errors
that cause an #MC won't be affected.
Fixes: 891e465a1bd8 ("x86/mce: Check whether writes to MCA_STATUS are getting ignored")
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231118193248.1296798-2-yazen.ghannam@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit a24d61c609813963aacc9f6ec8343f4fcaac7243 ]
tl;dr: The num_digits() function has a theoretical overflow issue.
But it doesn't affect any actual in-tree users. Fix it by using
a larger type for one of the local variables.
Long version:
There is an overflow in variable m in function num_digits when val
is >= 1410065408 which leads to the digit calculation loop to
iterate more times than required. This results in either more
digits being counted or in some cases (for example where val is
1932683193) the value of m eventually overflows to zero and the
while loop spins forever).
Currently the function num_digits is currently only being used for
small values of val in the SMP boot stage for digit counting on the
number of cpus and NUMA nodes, so the overflow is never encountered.
However it is useful to fix the overflow issue in case the function
is used for other purposes in the future. (The issue was discovered
while investigating the digit counting performance in various
kernel helper functions rather than any real-world use-case).
The simplest fix is to make m a long long, the overhead in
multiplication speed for a long long is very minor for small values
of val less than 10000 on modern processors. The alternative
fix is to replace the multiplication with a constant division
by 10 loop (this compiles down to an multiplication and shift)
without needing to make m a long long, but this is slightly slower
than the fix in this commit when measured on a range of x86
processors).
[ dhansen: subject and changelog tweaks ]
Fixes: 646e29a1789a ("x86: Improve the printout of the SMP bootup CPU table")
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20231102174901.2590325-1-colin.i.king%40gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
No relevant upstream kernel due to refactoring in 6.7
Builtin/initrd microcode will not be used the ucode loader is disabled.
But currently, save_microcode_in_initrd is always performed and it
accesses MSR_IA32_UCODE_REV even if dis_ucode_ldr is true, and in
particular even if X86_FEATURE_HYPERVISOR is set; the TDX module does not
implement the MSR and the result is a call trace at boot for TDX guests.
Mainline Linux fixed this as part of a more complex rework of microcode
caching that went into 6.7 (see in particular commits dd5e3e3ca6,
"x86/microcode/intel: Simplify early loading"; and a7939f0167203,
"x86/microcode/amd: Cache builtin/initrd microcode early"). Do the bare
minimum in stable kernels, setting initrd_gone just like mainline Linux
does in mark_initrd_gone().
Note that save_microcode_in_initrd() is not in the microcode application
path, which runs with paging disabled on 32-bit systems, so it can (and
has to) use dis_ucode_ldr instead of check_loader_disabled_ap().
Cc: stable@vger.kernel.org # v6.6+
Cc: x86@kernel.org # v6.6+
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit a476aae3f1dc78a162a0d2e7945feea7d2b29401 ]
Commit 688eb8191b47 ("x86/csum: Improve performance of `csum_partial`")
ended up improving the code generation for the IP csum calculations, and
in particular special-casing the 40-byte case that is a hot case for
IPv6 headers.
It then had _another_ special case for the 64-byte unrolled loop, which
did two chains of 32-byte blocks, which allows modern CPU's to improve
performance by doing the chains in parallel thanks to renaming the carry
flag.
This just unifies the special cases and combines them into just one
single helper the 40-byte csum case, and replaces the 64-byte case by a
80-byte case that just does that single helper twice. It avoids having
all these different versions of inline assembly, and actually improved
performance further in my tests.
There was never anything magical about the 64-byte unrolled case, even
though it happens to be a common size (and typically is the cacheline
size).
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 5d4acb62853abac1da2deebcb1c1c5b79219bf3b ]
The special case for odd aligned buffers is unnecessary and mostly
just adds overhead. Aligned buffers is the expectations, and even for
unaligned buffer, the only case that was helped is if the buffer was
1-byte from word aligned which is ~1/7 of the cases. Overall it seems
highly unlikely to be worth to extra branch.
It was left in the previous perf improvement patch because I was
erroneously comparing the exact output of `csum_partial(...)`, but
really we only need `csum_fold(csum_partial(...))` to match so its
safe to remove.
All csum kunit tests pass.
Signed-off-by: Noah Goldstein <goldstein.w.n@gmail.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: David Laight <david.laight@aculab.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit a4aebe936554dac6a91e5d091179c934f8325708 ]
Only the posix timer system calls use this (when the posix timer support
is disabled, which does not actually happen in any normal case), because
they had debug code to print out a warning about missing system calls.
Get rid of that special case, and just use the standard COND_SYSCALL
interface that creates weak system call stubs that return -ENOSYS for
when the system call does not exist.
This fixes a kCFI issue with the SYS_NI() hackery:
CFI failure at int80_emulation+0x67/0xb0 (target: sys_ni_posix_timers+0x0/0x70; expected type: 0xb02b34d9)
WARNING: CPU: 0 PID: 48 at int80_emulation+0x67/0xb0
Reported-by: kernel test robot <oliver.sang@intel.com>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Tested-by: Sami Tolvanen <samitolvanen@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
kprobe_emulate_call_indirect
commit f5d03da48d062966c94f0199d20be0b3a37a7982 upstream.
kprobe_emulate_call_indirect currently uses int3_emulate_call to emulate
indirect calls. However, int3_emulate_call always assumes the size of
the call to be 5 bytes when calculating the return address. This is
incorrect for register-based indirect calls in x86, which can be either
2 or 3 bytes depending on whether REX prefix is used. At kprobe runtime,
the incorrect return address causes control flow to land onto the wrong
place after return -- possibly not a valid instruction boundary. This
can lead to a panic like the following:
[ 7.308204][ C1] BUG: unable to handle page fault for address: 000000000002b4d8
[ 7.308883][ C1] #PF: supervisor read access in kernel mode
[ 7.309168][ C1] #PF: error_code(0x0000) - not-present page
[ 7.309461][ C1] PGD 0 P4D 0
[ 7.309652][ C1] Oops: 0000 [#1] SMP
[ 7.309929][ C1] CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.7.0-rc5-trace-for-next #6
[ 7.310397][ C1] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-20220807_005459-localhost 04/01/2014
[ 7.311068][ C1] RIP: 0010:__common_interrupt+0x52/0xc0
[ 7.311349][ C1] Code: 01 00 4d 85 f6 74 39 49 81 fe 00 f0 ff ff 77 30 4c 89 f7 4d 8b 5e 68 41 ba 91 76 d8 42 45 03 53 fc 74 02 0f 0b cc ff d3 65 48 <8b> 05 30 c7 ff 7e 65 4c 89 3d 28 c7 ff 7e 5b 41 5c 41 5e 41 5f c3
[ 7.312512][ C1] RSP: 0018:ffffc900000e0fd0 EFLAGS: 00010046
[ 7.312899][ C1] RAX: 0000000000000001 RBX: 0000000000000023 RCX: 0000000000000001
[ 7.313334][ C1] RDX: 00000000000003cd RSI: 0000000000000001 RDI: ffff888100d302a4
[ 7.313702][ C1] RBP: 0000000000000001 R08: 0ef439818636191f R09: b1621ff338a3b482
[ 7.314146][ C1] R10: ffffffff81e5127b R11: ffffffff81059810 R12: 0000000000000023
[ 7.314509][ C1] R13: 0000000000000000 R14: ffff888100d30200 R15: 0000000000000000
[ 7.314951][ C1] FS: 0000000000000000(0000) GS:ffff88813bc80000(0000) knlGS:0000000000000000
[ 7.315396][ C1] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 7.315691][ C1] CR2: 000000000002b4d8 CR3: 0000000003028003 CR4: 0000000000370ef0
[ 7.316153][ C1] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 7.316508][ C1] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 7.316948][ C1] Call Trace:
[ 7.317123][ C1] <IRQ>
[ 7.317279][ C1] ? __die_body+0x64/0xb0
[ 7.317482][ C1] ? page_fault_oops+0x248/0x370
[ 7.317712][ C1] ? __wake_up+0x96/0xb0
[ 7.317964][ C1] ? exc_page_fault+0x62/0x130
[ 7.318211][ C1] ? asm_exc_page_fault+0x22/0x30
[ 7.318444][ C1] ? __cfi_native_send_call_func_single_ipi+0x10/0x10
[ 7.318860][ C1] ? default_idle+0xb/0x10
[ 7.319063][ C1] ? __common_interrupt+0x52/0xc0
[ 7.319330][ C1] common_interrupt+0x78/0x90
[ 7.319546][ C1] </IRQ>
[ 7.319679][ C1] <TASK>
[ 7.319854][ C1] asm_common_interrupt+0x22/0x40
[ 7.320082][ C1] RIP: 0010:default_idle+0xb/0x10
[ 7.320309][ C1] Code: 4c 01 c7 4c 29 c2 e9 72 ff ff ff cc cc cc cc 90 90 90 90 90 90 90 90 90 90 90 b8 0c 67 40 a5 66 90 0f 00 2d 09 b9 3b 00 fb f4 <fa> c3 0f 1f 00 90 90 90 90 90 90 90 90 90 90 90 b8 0c 67 40 a5 e9
[ 7.321449][ C1] RSP: 0018:ffffc9000009bee8 EFLAGS: 00000256
[ 7.321808][ C1] RAX: ffff88813bca8b68 RBX: 0000000000000001 RCX: 000000000001ef0c
[ 7.322227][ C1] RDX: 0000000000000000 RSI: 0000000000000001 RDI: 000000000001ef0c
[ 7.322656][ C1] RBP: ffffc9000009bef8 R08: 8000000000000000 R09: 00000000000008c2
[ 7.323083][ C1] R10: 0000000000000000 R11: ffffffff81058e70 R12: 0000000000000000
[ 7.323530][ C1] R13: ffff8881002b30c0 R14: 0000000000000000 R15: 0000000000000000
[ 7.323948][ C1] ? __cfi_lapic_next_deadline+0x10/0x10
[ 7.324239][ C1] default_idle_call+0x31/0x50
[ 7.324464][ C1] do_idle+0xd3/0x240
[ 7.324690][ C1] cpu_startup_entry+0x25/0x30
[ 7.324983][ C1] start_secondary+0xb4/0xc0
[ 7.325217][ C1] secondary_startup_64_no_verify+0x179/0x17b
[ 7.325498][ C1] </TASK>
[ 7.325641][ C1] Modules linked in:
[ 7.325906][ C1] CR2: 000000000002b4d8
[ 7.326104][ C1] ---[ end trace 0000000000000000 ]---
[ 7.326354][ C1] RIP: 0010:__common_interrupt+0x52/0xc0
[ 7.326614][ C1] Code: 01 00 4d 85 f6 74 39 49 81 fe 00 f0 ff ff 77 30 4c 89 f7 4d 8b 5e 68 41 ba 91 76 d8 42 45 03 53 fc 74 02 0f 0b cc ff d3 65 48 <8b> 05 30 c7 ff 7e 65 4c 89 3d 28 c7 ff 7e 5b 41 5c 41 5e 41 5f c3
[ 7.327570][ C1] RSP: 0018:ffffc900000e0fd0 EFLAGS: 00010046
[ 7.327910][ C1] RAX: 0000000000000001 RBX: 0000000000000023 RCX: 0000000000000001
[ 7.328273][ C1] RDX: 00000000000003cd RSI: 0000000000000001 RDI: ffff888100d302a4
[ 7.328632][ C1] RBP: 0000000000000001 R08: 0ef439818636191f R09: b1621ff338a3b482
[ 7.329223][ C1] R10: ffffffff81e5127b R11: ffffffff81059810 R12: 0000000000000023
[ 7.329780][ C1] R13: 0000000000000000 R14: ffff888100d30200 R15: 0000000000000000
[ 7.330193][ C1] FS: 0000000000000000(0000) GS:ffff88813bc80000(0000) knlGS:0000000000000000
[ 7.330632][ C1] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 7.331050][ C1] CR2: 000000000002b4d8 CR3: 0000000003028003 CR4: 0000000000370ef0
[ 7.331454][ C1] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 7.331854][ C1] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 7.332236][ C1] Kernel panic - not syncing: Fatal exception in interrupt
[ 7.332730][ C1] Kernel Offset: disabled
[ 7.333044][ C1] ---[ end Kernel panic - not syncing: Fatal exception in interrupt ]---
The relevant assembly code is (from objdump, faulting address
highlighted):
ffffffff8102ed9d: 41 ff d3 call *%r11
ffffffff8102eda0: 65 48 <8b> 05 30 c7 ff mov %gs:0x7effc730(%rip),%rax
The emulation incorrectly sets the return address to be ffffffff8102ed9d
+ 0x5 = ffffffff8102eda2, which is the 8b byte in the middle of the next
mov. This in turn causes incorrect subsequent instruction decoding and
eventually triggers the page fault above.
Instead of invoking int3_emulate_call, perform push and jmp emulation
directly in kprobe_emulate_call_indirect. At this point we can obtain
the instruction size from p->ainsn.size so that we can calculate the
correct return address.
Link: https://lore.kernel.org/all/20240102233345.385475-1-jinghao7@illinois.edu/
Fixes: 6256e668b7af ("x86/kprobes: Use int3 instead of debug trap for single-step")
Cc: stable@vger.kernel.org
Signed-off-by: Jinghao Jia <jinghao7@illinois.edu>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 971079464001c6856186ca137778e534d983174a upstream.
When commit c59a1f106f5c ("KVM: x86/pmu: Add IA32_PEBS_ENABLE
MSR emulation for extended PEBS") switched the initialization of
cpuc->guest_switch_msrs to use compound literals, it screwed up
the boolean logic:
+ u64 pebs_mask = cpuc->pebs_enabled & x86_pmu.pebs_capable;
...
- arr[0].guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask;
- arr[0].guest &= ~(cpuc->pebs_enabled & x86_pmu.pebs_capable);
+ .guest = intel_ctrl & (~cpuc->intel_ctrl_host_mask | ~pebs_mask),
Before the patch, the value of arr[0].guest would have been intel_ctrl &
~cpuc->intel_ctrl_host_mask & ~pebs_mask. The intent is to always treat
PEBS events as host-only because, while the guest runs, there is no way
to tell the processor about the virtual address where to put PEBS records
intended for the host.
Unfortunately, the new expression can be expanded to
(intel_ctrl & ~cpuc->intel_ctrl_host_mask) | (intel_ctrl & ~pebs_mask)
which makes no sense; it includes any bit that isn't *both* marked as
exclude_guest and using PEBS. So, reinstate the old logic. Another
way to write it could be "intel_ctrl & ~(cpuc->intel_ctrl_host_mask |
pebs_mask)", presumably the intention of the author of the faulty.
However, I personally find the repeated application of A AND NOT B to
be a bit more readable.
This shows up as guest failures when running concurrent long-running
perf workloads on the host, and was reported to happen with rcutorture.
All guests on a given host would die simultaneously with something like an
instruction fault or a segmentation violation.
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Analyzed-by: Sean Christopherson <seanjc@google.com>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Cc: stable@vger.kernel.org
Fixes: c59a1f106f5c ("KVM: x86/pmu: Add IA32_PEBS_ENABLE MSR emulation for extended PEBS")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit c1ad12ee0efc07244be37f69311e6f7c4ac98e62 ]
The cleanup for the CONFIG_KEXEC Kconfig logic accidentally changed the
'depends on CRYPTO=y' dependency to a plain 'depends on CRYPTO', which
causes a link failure when all the crypto support is in a loadable module
and kexec_file support is built-in:
x86_64-linux-ld: vmlinux.o: in function `__x64_sys_kexec_file_load':
(.text+0x32e30a): undefined reference to `crypto_alloc_shash'
x86_64-linux-ld: (.text+0x32e58e): undefined reference to `crypto_shash_update'
x86_64-linux-ld: (.text+0x32e6ee): undefined reference to `crypto_shash_final'
Both s390 and x86 have this problem, while ppc64 and riscv have the
correct dependency already. On riscv, the dependency is only used for the
purgatory, not for the kexec_file code itself, which may be a bit
surprising as it means that with CONFIG_CRYPTO=m, it is possible to enable
KEXEC_FILE but then the purgatory code is silently left out.
Move this into the common Kconfig.kexec file in a way that is correct
everywhere, using the dependency on CRYPTO_SHA256=y only when the
purgatory code is available. This requires reversing the dependency
between ARCH_SUPPORTS_KEXEC_PURGATORY and KEXEC_FILE, but the effect
remains the same, other than making riscv behave like the other ones.
On s390, there is an additional dependency on CRYPTO_SHA256_S390, which
should technically not be required but gives better performance. Remove
this dependency here, noting that it was not present in the initial
Kconfig code but was brought in without an explanation in commit
71406883fd357 ("s390/kexec_file: Add kexec_file_load system call").
[arnd@arndb.de: fix riscv build]
Link: https://lkml.kernel.org/r/67ddd260-d424-4229-a815-e3fcfb864a77@app.fastmail.com
Link: https://lkml.kernel.org/r/20231023110308.1202042-1-arnd@kernel.org
Fixes: 6af5138083005 ("x86/kexec: refactor for kernel/Kconfig.kexec")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Eric DeVolder <eric_devolder@yahoo.com>
Tested-by: Eric DeVolder <eric_devolder@yahoo.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Conor Dooley <conor@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 69a7386c1ec25476a0c78ffeb59de08a2a08f495 upstream.
Chris reported that a Dell PowerEdge T340 system stopped to boot when upgrading
to a kernel which contains the parallel hotplug changes. Disabling parallel
hotplug on the kernel command line makes it boot again.
It turns out that the Dell BIOS has x2APIC enabled and the boot CPU comes up in
X2APIC mode, but the APs come up inconsistently in xAPIC mode.
Parallel hotplug requires that the upcoming CPU reads out its APIC ID from the
local APIC in order to map it to the Linux CPU number.
In this particular case the readout on the APs uses the MMIO mapped registers
because the BIOS failed to enable x2APIC mode. That readout results in a page
fault because the kernel does not have the APIC MMIO space mapped when X2APIC
mode was enabled by the BIOS on the boot CPU and the kernel switched to X2APIC
mode early. That page fault can't be handled on the upcoming CPU that early and
results in a silent boot failure.
If parallel hotplug is disabled the system boots because in that case the APIC
ID read is not required as the Linux CPU number is provided to the AP in the
smpboot control word. When the kernel uses x2APIC mode then the APs are
switched to x2APIC mode too slightly later in the bringup process, but there is
no reason to do it that late.
Cure the BIOS bogosity by checking in the parallel bootup path whether the
kernel uses x2APIC mode and if so switching over the APs to x2APIC mode before
the APIC ID readout.
Fixes: 0c7ffa32dbd6 ("x86/smpboot/64: Implement arch_cpuhp_init_parallel_bringup() and enable it")
Reported-by: Chris Lindee <chris.lindee@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Tested-by: Chris Lindee <chris.lindee@gmail.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/CA%2B2tU59853R49EaU_tyvOZuOTDdcU0RshGyydccp9R1NX9bEeQ@mail.gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|