Age | Commit message (Collapse) | Author | Files | Lines |
|
numa_clear_kernel_node_hotplug()
On-stack variable numa_kernel_nodes in numa_clear_kernel_node_hotplug()
was not initialized. So we need to initialize it.
[akpm@linux-foundation.org: use NODE_MASK_NONE, per David]
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Tested-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Reported-by: Dave Jones <davej@redhat.com>
Reported-by: David Rientjes <rientjes@google.com>
Tested-by: Dave Jones <davej@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
At very early time, the kernel have to use some memory such as loading
the kernel image. We cannot prevent this anyway. So any node the
kernel resides in should be un-hotpluggable.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Rafael J . Wysocki" <rjw@sisk.pl>
Cc: Chen Tang <imtangchen@gmail.com>
Cc: Gong Chen <gong.chen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Liu Jiang <jiang.liu@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When parsing SRAT, we know that which memory area is hotpluggable. So we
invoke function memblock_mark_hotplug() introduced by previous patch to
mark hotpluggable memory in memblock.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Rafael J . Wysocki" <rjw@sisk.pl>
Cc: Chen Tang <imtangchen@gmail.com>
Cc: Gong Chen <gong.chen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Liu Jiang <jiang.liu@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
[sfr@canb.auug.org.au: fix powerpc build]
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Rafael J . Wysocki" <rjw@sisk.pl>
Cc: Chen Tang <imtangchen@gmail.com>
Cc: Gong Chen <gong.chen@linux.intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Liu Jiang <jiang.liu@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vasilis Liaskovitis <vasilis.liaskovitis@profitbricks.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When booting a 32-bit x86 kernel on a NUMA machine, node data
cannot be allocated from local node if the account of memory for
node 0 covers the low memory space entirely:
[ 0.000000] Initmem setup node 0 [mem 0x00000000-0x83fffffff]
[ 0.000000] NODE_DATA [mem 0x367ed000-0x367edfff]
[ 0.000000] Initmem setup node 1 [mem 0x840000000-0xfffffffff]
[ 0.000000] Cannot find 4096 bytes in node 1
[ 0.000000] 64664MB HIGHMEM available.
[ 0.000000] 871MB LOWMEM available.
To fix this issue, node data is allowed to be allocated from
other nodes if the memory of local node is still not mapped. The
expected result looks like this:
[ 0.000000] Initmem setup node 0 [mem 0x00000000-0x83fffffff]
[ 0.000000] NODE_DATA [mem 0x367ed000-0x367edfff]
[ 0.000000] Initmem setup node 1 [mem 0x840000000-0xfffffffff]
[ 0.000000] NODE_DATA [mem 0x367ec000-0x367ecfff]
[ 0.000000] NODE_DATA(1) on node 0
[ 0.000000] 64664MB HIGHMEM available.
[ 0.000000] 871MB LOWMEM available.
Signed-off-by: Lans Zhang <jia.zhang@windriver.com>
Cc: <andi@firstfloor.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1386303510-18574-1-git-send-email-jia.zhang@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The hot-Pluggable field in SRAT specifies which memory is hotpluggable.
As we mentioned before, if hotpluggable memory is used by the kernel, it
cannot be hot-removed. So memory hotplug users may want to set all
hotpluggable memory in ZONE_MOVABLE so that the kernel won't use it.
Memory hotplug users may also set a node as movable node, which has
ZONE_MOVABLE only, so that the whole node can be hot-removed.
But the kernel cannot use memory in ZONE_MOVABLE. By doing this, the
kernel cannot use memory in movable nodes. This will cause NUMA
performance down. And other users may be unhappy.
So we need a way to allow users to enable and disable this functionality.
In this patch, we introduce movable_node boot option to allow users to
choose to not to consume hotpluggable memory at early boot time and later
we can set it as ZONE_MOVABLE.
To achieve this, the movable_node boot option will control the memblock
allocation direction. That said, after memblock is ready, before SRAT is
parsed, we should allocate memory near the kernel image as we explained in
the previous patches. So if movable_node boot option is set, the kernel
does the following:
1. After memblock is ready, make memblock allocate memory bottom up.
2. After SRAT is parsed, make memblock behave as default, allocate memory
top down.
Users can specify "movable_node" in kernel commandline to enable this
functionality. For those who don't use memory hotplug or who don't want
to lose their NUMA performance, just don't specify anything. The kernel
will work as before.
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Suggested-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Suggested-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Toshi Kani <toshi.kani@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
Note that some harmless section mismatch warnings may result, since
notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c)
are flagged as __cpuinit -- so if we remove the __cpuinit from
arch specific callers, we will also get section mismatch warnings.
As an intermediate step, we intend to turn the linux/init.h cpuinit
content into no-ops as early as possible, since that will get rid
of these warnings. In any case, they are temporary and harmless.
This removes all the arch/x86 uses of the __cpuinit macros from
all C files. x86 only had the one __CPUINIT used in assembly files,
and it wasn't paired off with a .previous or a __FINIT, so we can
delete it directly w/o any corresponding additional change there.
[1] https://lkml.org/lkml/2013/5/20/589
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
|
|
Signed-off-by: Cody P Schafer <cody@linux.vnet.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Tim found:
WARNING: at arch/x86/kernel/smpboot.c:324 topology_sane.isra.2+0x6f/0x80()
Hardware name: S2600CP
sched: CPU #1's llc-sibling CPU #0 is not on the same node! [node: 1 != 0]. Ignoring dependency.
smpboot: Booting Node 1, Processors #1
Modules linked in:
Pid: 0, comm: swapper/1 Not tainted 3.9.0-0-generic #1
Call Trace:
set_cpu_sibling_map+0x279/0x449
start_secondary+0x11d/0x1e5
Don Morris reproduced on a HP z620 workstation, and bisected it to
commit e8d195525809 ("acpi, memory-hotplug: parse SRAT before memblock
is ready")
It turns out movable_map has some problems, and it breaks several things
1. numa_init is called several times, NOT just for srat. so those
nodes_clear(numa_nodes_parsed)
memset(&numa_meminfo, 0, sizeof(numa_meminfo))
can not be just removed. Need to consider sequence is: numaq, srat, amd, dummy.
and make fall back path working.
2. simply split acpi_numa_init to early_parse_srat.
a. that early_parse_srat is NOT called for ia64, so you break ia64.
b. for (i = 0; i < MAX_LOCAL_APIC; i++)
set_apicid_to_node(i, NUMA_NO_NODE)
still left in numa_init. So it will just clear result from early_parse_srat.
it should be moved before that....
c. it breaks ACPI_TABLE_OVERIDE...as the acpi table scan is moved
early before override from INITRD is settled.
3. that patch TITLE is total misleading, there is NO x86 in the title,
but it changes critical x86 code. It caused x86 guys did not
pay attention to find the problem early. Those patches really should
be routed via tip/x86/mm.
4. after that commit, following range can not use movable ram:
a. real_mode code.... well..funny, legacy Node0 [0,1M) could be hot-removed?
b. initrd... it will be freed after booting, so it could be on movable...
c. crashkernel for kdump...: looks like we can not put kdump kernel above 4G
anymore.
d. init_mem_mapping: can not put page table high anymore.
e. initmem_init: vmemmap can not be high local node anymore. That is
not good.
If node is hotplugable, the mem related range like page table and
vmemmap could be on the that node without problem and should be on that
node.
We have workaround patch that could fix some problems, but some can not
be fixed.
So just remove that offending commit and related ones including:
f7210e6c4ac7 ("mm/memblock.c: use CONFIG_HAVE_MEMBLOCK_NODE_MAP to
protect movablecore_map in memblock_overlaps_region().")
01a178a94e8e ("acpi, memory-hotplug: support getting hotplug info from
SRAT")
27168d38fa20 ("acpi, memory-hotplug: extend movablemem_map ranges to
the end of node")
e8d195525809 ("acpi, memory-hotplug: parse SRAT before memblock is
ready")
fb06bc8e5f42 ("page_alloc: bootmem limit with movablecore_map")
42f47e27e761 ("page_alloc: make movablemem_map have higher priority")
6981ec31146c ("page_alloc: introduce zone_movable_limit[] to keep
movable limit for nodes")
34b71f1e04fc ("page_alloc: add movable_memmap kernel parameter")
4d59a75125d5 ("x86: get pg_data_t's memory from other node")
Later we should have patches that will make sure kernel put page table
and vmemmap on local node ram instead of push them down to node0. Also
need to find way to put other kernel used ram to local node ram.
Reported-by: Tim Gardner <tim.gardner@canonical.com>
Reported-by: Don Morris <don.morris@hp.com>
Bisected-by: Don Morris <don.morris@hp.com>
Tested-by: Don Morris <don.morris@hp.com>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Thomas Renninger <trenn@suse.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar.
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm/pageattr: Prevent PSE and GLOABL leftovers to confuse pmd/pte_present and pmd_huge
Revert "x86, mm: Make spurious_fault check explicitly check explicitly check the PRESENT bit"
x86/mm/numa: Don't check if node is NUMA_NO_NODE
x86, efi: Make "noefi" really disable EFI runtime serivces
x86/apic: Fix parsing of the 'lapic' cmdline option
|
|
If we aren't debugging per_cpu maps, the cpu's node is stored in
per_cpu variable numa_node. If `node' is NUMA_NO_NODE, it means
the caller wants to clear the cpu's node. So we should also
call set_cpu_numa_node() in this case.
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
On linux, the pages used by kernel could not be migrated. As a result,
if a memory range is used by kernel, it cannot be hot-removed. So if we
want to hot-remove memory, we should prevent kernel from using it.
The way now used to prevent this is specify a memory range by
movablemem_map boot option and set it as ZONE_MOVABLE.
But when the system is booting, memblock will allocate memory, and
reserve the memory for kernel. And before we parse SRAT, and know the
node memory ranges, memblock is working. And it may allocate memory in
ranges to be set as ZONE_MOVABLE. This memory can be used by kernel,
and never be freed.
So, let's parse SRAT before memblock is called first. And it is early
enough.
The first call of memblock_find_in_range_node() is in:
setup_arch()
|-->setup_real_mode()
so, this patch add a function early_parse_srat() to parse SRAT, and call
it before setup_real_mode() is called.
NOTE:
1) early_parse_srat() is called before numa_init(), and has initialized
numa_meminfo. So DO NOT clear numa_nodes_parsed in numa_init() and DO
NOT zero numa_meminfo in numa_init(), otherwise we will lose memory
numa info.
2) I don't know why using count of memory affinities parsed from SRAT
as a return value in original acpi_numa_init(). So I add a static
variable srat_mem_cnt to remember this count and use it as the return
value of the new acpi_numa_init()
[mhocko@suse.cz: parse SRAT before memblock is ready fix]
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Reviewed-by: Wen Congyang <wency@cn.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Jiang Liu <jiang.liu@huawei.com>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Wu Jianguo <wujianguo@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Len Brown <lenb@kernel.org>
Cc: "Brown, Len" <len.brown@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
During the implementation of SRAT support, we met a problem. In
setup_arch(), we have the following call series:
1) memblock is ready;
2) some functions use memblock to allocate memory;
3) parse ACPI tables, such as SRAT.
Before 3), we don't know which memory is hotpluggable, and as a result,
we cannot prevent memblock from allocating hotpluggable memory. So, in
2), there could be some hotpluggable memory allocated by memblock.
Now, we are trying to parse SRAT earlier, before memblock is ready. But
I think we need more investigation on this topic. So in this v5, I
dropped all the SRAT support, and v5 is just the same as v3, and it is
based on 3.8-rc3.
As we planned, we will support getting info from SRAT without users'
participation at last. And we will post another patch-set to do so.
And also, I think for now, we can add this boot option as the first step
of supporting movable node. Since Linux cannot migrate the direct
mapped pages, the only way for now is to limit the whole node containing
only movable memory.
Using SRAT is one way. But even if we can use SRAT, users still need an
interface to enable/disable this functionality if they don't want to
loose their NUMA performance. So I think, a user interface is always
needed.
For now, users can disable this functionality by not specifying the boot
option. Later, we will post SRAT support, and add another option value
"movablecore_map=acpi" to using SRAT.
This patch:
If system can create movable node which all memory of the node is
allocated as ZONE_MOVABLE, setup_node_data() cannot allocate memory for
the node's pg_data_t. So, use memblock_alloc_try_nid() instead of
memblock_alloc_nid() to retry when the first allocation fails.
Signed-off-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Cc: Wu Jianguo <wujianguo@huawei.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When the node is offlined, there is no memory/cpu on the node. If a
sleep task runs on a cpu of this node, it will be migrated to the cpu on
the other node. So we can clear cpu-to-node mapping.
[akpm@linux-foundation.org: numa_clear_node() and numa_set_node() can no longer be __cpuinit]
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Jiang Liu <liuj97@gmail.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When a cpu is hotpluged, we call acpi_map_cpu2node() in
_acpi_map_lsapic() to store the cpu's node and apicid's node. But we
don't clear the cpu's node in acpi_unmap_lsapic() when this cpu is
hotremoved. If the node is also hotremoved, we will get the following
messages:
kernel BUG at include/linux/gfp.h:329!
invalid opcode: 0000 [#1] SMP
Modules linked in: ebtable_nat ebtables ipt_MASQUERADE iptable_nat nf_nat xt_CHECKSUM iptable_mangle bridge stp llc sunrpc ipt_REJECT nf_conntrack_ipv4 nf_defrag_ipv4 iptable_filter ip_tables ip6t_REJECT nf_conntrack_ipv6 nf_defrag_ipv6 xt_state nf_conntrack ip6table_filter ip6_tables binfmt_misc dm_mirror dm_region_hash dm_log dm_mod vhost_net macvtap macvlan tun uinput iTCO_wdt iTCO_vendor_support coretemp kvm_intel kvm crc32c_intel microcode pcspkr i2c_i801 i2c_core lpc_ich mfd_core ioatdma e1000e i7core_edac edac_core sg acpi_memhotplug igb dca sd_mod crc_t10dif megaraid_sas mptsas mptscsih mptbase scsi_transport_sas scsi_mod
Pid: 3126, comm: init Not tainted 3.6.0-rc3-tangchen-hostbridge+ #13 FUJITSU-SV PRIMEQUEST 1800E/SB
RIP: 0010:[<ffffffff811bc3fd>] [<ffffffff811bc3fd>] allocate_slab+0x28d/0x300
RSP: 0018:ffff88078a049cf8 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000000
RDX: 0000000000000001 RSI: 0000000000000001 RDI: 0000000000000246
RBP: ffff88078a049d38 R08: 00000000000040d0 R09: 0000000000000001
R10: 0000000000000000 R11: 0000000000000b5f R12: 00000000000052d0
R13: ffff8807c1417300 R14: 0000000000030038 R15: 0000000000000003
FS: 00007fa9b1b44700(0000) GS:ffff8807c3800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 00007fa9b09acca0 CR3: 000000078b855000 CR4: 00000000000007e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process init (pid: 3126, threadinfo ffff88078a048000, task ffff8807bb6f2650)
Call Trace:
new_slab+0x30/0x1b0
__slab_alloc+0x358/0x4c0
kmem_cache_alloc_node_trace+0xb4/0x1e0
alloc_fair_sched_group+0xd0/0x1b0
sched_create_group+0x3e/0x110
sched_autogroup_create_attach+0x4d/0x180
sys_setsid+0xd4/0xf0
system_call_fastpath+0x16/0x1b
Code: 89 c4 e9 73 fe ff ff 31 c0 89 de 48 c7 c7 45 de 9e 81 44 89 45 c8 e8 22 05 4b 00 85 db 44 8b 45 c8 0f 89 4f ff ff ff 0f 0b eb fe <0f> 0b 90 eb fd 0f 0b eb fe 89 de 48 c7 c7 45 de 9e 81 31 c0 44
RIP [<ffffffff811bc3fd>] allocate_slab+0x28d/0x300
RSP <ffff88078a049cf8>
---[ end trace adf84c90f3fea3e5 ]---
The reason is that the cpu's node is not NUMA_NO_NODE, we will call
alloc_pages_exact_node() to alloc memory on the node, but the node is
offlined.
If the node is onlined, we still need cpu's node. For example: a task
on the cpu is sleeped when the cpu is hotremoved. We will choose
another cpu to run this task when it is waked up. If we know the cpu's
node, we will choose the cpu on the same node first. So we should clear
cpu-to-node mapping when the node is offlined.
This patch only clears apicid-to-node mapping when the cpu is
hotremoved.
[akpm@linux-foundation.org: fix section error]
Signed-off-by: Wen Congyang <wency@cn.fujitsu.com>
Signed-off-by: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Jiang Liu <liuj97@gmail.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We have removed the remap allocator for x86-32, and x86-64 never had
it (and doesn't need it). Remove residual reference to it.
Reported-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/CAE9FiQVn6_QZi3fNQ-JHYiR-7jeDJ5hT0SyT_%2BzVvfOj=PzF3w@mail.gmail.com
|
|
This code was an optimization for 32-bit NUMA systems.
It has probably been the cause of a number of subtle bugs over
the years, although the conditions to excite them would have
been hard to trigger. Essentially, we remap part of the kernel
linear mapping area, and then sometimes part of that area gets
freed back in to the bootmem allocator. If those pages get
used by kernel data structures (say mem_map[] or a dentry),
there's no big deal. But, if anyone ever tried to use the
linear mapping for these pages _and_ cared about their physical
address, bad things happen.
For instance, say you passed __GFP_ZERO to the page allocator
and then happened to get handed one of these pages, it zero the
remapped page, but it would make a pte to the _old_ page.
There are probably a hundred other ways that it could screw
with things.
We don't need to hang on to performance optimizations for
these old boxes any more. All my 32-bit NUMA systems are long
dead and buried, and I probably had access to more than most
people.
This code is causing real things to break today:
https://lkml.org/lkml/2013/1/9/376
I looked in to actually fixing this, but it requires surgery
to way too much brittle code, as well as stuff like
per_cpu_ptr_to_phys().
[ hpa: Cc: this for -stable, since it is a memory corruption issue.
However, an alternative is to simply mark NUMA as depends BROKEN
rather than EXPERIMENTAL in the X86_32 subclause... ]
Link: http://lkml.kernel.org/r/20130131005616.1C79F411@kernel.stglabs.ibm.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: <stable@vger.kernel.org>
|
|
... and fix the following warning:
arch/x86/mm/numa.c: In function ‘setup_node_data’:
arch/x86/mm/numa.c:222:3: warning: passing argument 1 of ‘__phys_addr_nodebug’ makes integer from pointer without a cast
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1359245901-8512-1-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The KVM code has some repeated bugs in it around use of __pa() on
per-cpu data. Those data are not in an area on which using
__pa() is valid. However, they are also called early enough in
boot that __vmalloc_start_set is not set, and thus the
CONFIG_DEBUG_VIRTUAL debugging does not catch them.
This adds a check to also verify __pa() calls against max_low_pfn,
which we can use earler in boot than is_vmalloc_addr(). However,
if we are super-early in boot, max_low_pfn=0 and this will trip
on every call, so also make sure that max_low_pfn is set before
we try to use it.
With this patch applied, CONFIG_DEBUG_VIRTUAL will actually
catch the bug I was chasing (and fix later in this series).
I'd love to find a generic way so that any __pa() call on percpu
areas could do a BUG_ON(), but there don't appear to be any nice
and easy ways to check if an address is a percpu one. Anybody
have ideas on a way to do this?
Signed-off-by: Dave Hansen <dave@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/20130122212430.F46F8159@kernel.stglabs.ibm.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Print physical address info in a style consistent with the %pR style used
elsewhere in the kernel. For example:
-found SMP MP-table at [ffff8800000fce90] fce90
+found SMP MP-table at [mem 0x000fce90-0x000fce9f] mapped at [ffff8800000fce90]
-initial memory mapped : 0 - 20000000
+initial memory mapped: [mem 0x00000000-0x1fffffff]
-Base memory trampoline at [ffff88000009c000] 9c000 size 8192
+Base memory trampoline [mem 0x0009c000-0x0009dfff] mapped at [ffff88000009c000]
-SRAT: Node 0 PXM 0 0-80000000
+SRAT: Node 0 PXM 0 [mem 0x00000000-0x7fffffff]
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
node_to_cpumask() has been replaced by cpumask_of_node(), and wholly
removed since commit 29c337a0 ("cpumask: remove obsolete node_to_cpumask
now everyone uses cpumask_of_node").
So update the comments for setup_node_to_cpumask_map().
Signed-off-by: Wanlong Gao <gaowanlong@cn.fujitsu.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/numa: Add constraints check for nid parameters
mm, x86: Remove debug_pagealloc_enabled
x86/mm: Initialize high mem before free_all_bootmem()
arch/x86/kernel/e820.c: quiet sparse noise about plain integer as NULL pointer
arch/x86/kernel/e820.c: Eliminate bubble sort from sanitize_e820_map()
x86: Fix mmap random address range
x86, mm: Unify zone_sizes_init()
x86, mm: Prepare zone_sizes_init() for unification
x86, mm: Use max_low_pfn for ZONE_NORMAL on 64-bit
x86, mm: Wrap ZONE_DMA32 with CONFIG_ZONE_DMA32
x86, mm: Use max_pfn instead of highend_pfn
x86, mm: Move zone init from paging_init() on 64-bit
x86, mm: Use MAX_DMA_PFN for ZONE_DMA on 32-bit
|
|
This patch adds constraint checks to the numa_set_distance()
function.
When the check triggers (this should not happen normally) it
emits a warning and avoids a store to a negative index in
numa_distance[] array - i.e. avoids memory corruption.
Negative ids can be passed when the pxm-to-nids mapping is not
properly filled while parsing the SRAT.
Signed-off-by: Petr Holasek <pholasek@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Anton Arapov <anton@redhat.com>
Link: http://lkml.kernel.org/r/20111208121640.GA2229@dhcp-27-244.brq.redhat.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Other than sanity check and debug message, the x86 specific version of
memblock reserve/free functions are simple wrappers around the generic
versions - memblock_reserve/free().
This patch adds debug messages with caller identification to the
generic versions and replaces x86 specific ones and kills them.
arch/x86/include/asm/memblock.h and arch/x86/mm/memblock.c are empty
after this change and removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1310462166-31469-14-git-send-email-tj@kernel.org
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
memblock_x86_hole_size() calculates the total size of holes in a given
range according to memblock and is used by numa emulation code and
numa_meminfo_cover_memory().
Since conversion to MEMBLOCK_NODE_MAP, absent_pages_in_range() also
uses memblock and gives the same result. This patch replaces
memblock_x86_hole_size() uses with absent_pages_in_range(). After the
conversion the x86 function doesn't have any user left and is killed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1310462166-31469-12-git-send-email-tj@kernel.org
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
From 5732e1247898d67cbf837585150fe9f68974671d Mon Sep 17 00:00:00 2001
From: Tejun Heo <tj@kernel.org>
Date: Thu, 14 Jul 2011 11:22:16 +0200
Convert x86 to HAVE_MEMBLOCK_NODE_MAP. The only difference in memory
handling is that allocations can't no longer cross node boundaries
whether they're node affine or not, which shouldn't matter at all.
This conversion will enable further simplification of boot memory
handling.
-v2: Fix build failure on !NUMA configurations discovered by hpa.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20110714094423.GG3455@htj.dyndns.org
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
memblock calls
With the previous changes, generic NUMA aware memblock API has feature
parity with memblock_x86_find_in_range_node(). There currently are
two users - x86 setup_node_data() and __alloc_memory_core_early() in
nobootmem.c.
This patch converts the former to use memblock_alloc_nid() and the
latter memblock_find_range_in_node(), and kills
memblock_x86_find_in_range_node() and related functions including
find_memory_early_core_early() in page_alloc.c.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1310460395-30913-9-git-send-email-tj@kernel.org
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
25818f0f28 (memblock: Make MEMBLOCK_ERROR be 0) thankfully made
MEMBLOCK_ERROR 0 and there already are codes which expect error return
to be 0. There's no point in keeping MEMBLOCK_ERROR around. End its
misery.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1310457490-3356-6-git-send-email-tj@kernel.org
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
SPARSEMEM w/o VMEMMAP and DISCONTIGMEM, both used only on 32bit, use
sections array to map pfn to nid which is limited in granularity. If
NUMA nodes are laid out such that the mapping cannot be accurate, boot
will fail triggering BUG_ON() in mminit_verify_page_links().
On 32bit, it's 512MiB w/ PAE and SPARSEMEM. This seems to have been
granular enough until commit 2706a0bf7b (x86, NUMA: Enable
CONFIG_AMD_NUMA on 32bit too). Apparently, there is a machine which
aligns NUMA nodes to 128MiB and has only AMD NUMA but not SRAT. This
led to the following BUG_ON().
On node 0 totalpages: 2096615
DMA zone: 32 pages used for memmap
DMA zone: 0 pages reserved
DMA zone: 3927 pages, LIFO batch:0
Normal zone: 1740 pages used for memmap
Normal zone: 220978 pages, LIFO batch:31
HighMem zone: 16405 pages used for memmap
HighMem zone: 1853533 pages, LIFO batch:31
BUG: Int 6: CR2 (null)
EDI (null) ESI 00000002 EBP 00000002 ESP c1543ecc
EBX f2400000 EDX 00000006 ECX (null) EAX 00000001
err (null) EIP c16209aa CS 00000060 flg 00010002
Stack: f2400000 00220000 f7200800 c1620613 00220000 01000000 04400000 00238000
(null) f7200000 00000002 f7200b58 f7200800 c1620929 000375fe (null)
f7200b80 c16395f0 00200a02 f7200a80 (null) 000375fe 00000002 (null)
Pid: 0, comm: swapper Not tainted 2.6.39-rc5-00181-g2706a0b #17
Call Trace:
[<c136b1e5>] ? early_fault+0x2e/0x2e
[<c16209aa>] ? mminit_verify_page_links+0x12/0x42
[<c1620613>] ? memmap_init_zone+0xaf/0x10c
[<c1620929>] ? free_area_init_node+0x2b9/0x2e3
[<c1607e99>] ? free_area_init_nodes+0x3f2/0x451
[<c1601d80>] ? paging_init+0x112/0x118
[<c15f578d>] ? setup_arch+0x791/0x82f
[<c15f43d9>] ? start_kernel+0x6a/0x257
This patch implements node_map_pfn_alignment() which determines
maximum internode alignment and update numa_register_memblks() to
reject NUMA configuration if alignment exceeds the pfn -> nid mapping
granularity of the memory model as determined by PAGES_PER_SECTION.
This makes the problematic machine boot w/ flatmem by rejecting the
NUMA config and provides protection against crazy NUMA configurations.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20110712074534.GB2872@htj.dyndns.org
LKML-Reference: <20110628174613.GP478@escobedo.osrc.amd.com>
Reported-and-Tested-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
Cc: Conny Seidel <conny.seidel@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
During testing 32bit numa unifying code from tj, found one system with
more than 64g fails to use numa. It turns out we do not trim numa
meminfo correctly against max_pfn in case start address of a node is
higher than 64GiB. Bug fix made it to tip tree.
This patch moves the checking and trimming to a separate loop. So we
don't need to compare low/high in following merge loops. It makes the
code more readable.
Also it makes the node merge printouts less strange. On a 512GiB numa
system with 32bit,
before:
> NUMA: Node 0 [0,a0000) + [100000,80000000) -> [0,80000000)
> NUMA: Node 0 [0,80000000) + [100000000,1080000000) -> [0,1000000000)
after:
> NUMA: Node 0 [0,a0000) + [100000,80000000) -> [0,80000000)
> NUMA: Node 0 [0,80000000) + [100000000,1000000000) -> [0,1000000000)
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
[Updated patch description and comment slightly.]
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
After using memblock to replace bootmem, that function only sets up
node_data now.
Change the name to reflect what it actually does.
tj: Minor adjustment to the patch description.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
numa_init_array() no longer has users outside of numa.c. Make it
static.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
|
|
With both _numa_init() methods converted and the rest of init code
adjusted, numa_32.c now can switch from the 32bit only init code to
the common one in numa.c.
* Shim get_memcfg_*()'s are dropped and initmem_init() calls
x86_numa_init(), which is updated to handle NUMAQ.
* All boilerplate operations including node range limiting, pgdat
alloc/init are handled by numa_init(). 32bit only implementation is
removed.
* 32bit numa_add_memblk(), numa_set_distance() and
memory_add_physaddr_to_nid() removed and common versions in
numa_32.c enabled for 32bit.
This change causes the following behavior changes.
* NODE_DATA()->node_start_pfn/node_spanned_pages properly initialized
for 32bit too.
* Much more sanity checks and configuration cleanups.
* Proper handling of node distances.
* The same NUMA init messages as 64bit.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
|
|
setup_node_bootmem() is taken from 64bit and doesn't use remap
allocator. It's about to be shared with 32bit so add support for it.
If NODE_DATA is remapped, it's noted in the debug message and node
locality check is skipped as the __pa() of the remapped address
doesn't reflect the actual physical address.
On 64bit, remap allocator becomes noop and doesn't affect the
behavior.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
|
|
Code moved from numa_64.c has assumption that long is 64bit in several
places. This patch removes the assumption by using {s|u}64_t
explicity, using PFN_PHYS() for page number -> addr conversions and
adjusting printf formats.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
|
|
Generic NUMA init code was moved to numa.c from numa_64.c but is still
guaraded by CONFIG_X86_64. This patch removes the compile guard and
enables compiling on 32bit.
* numa_add_memblk() and numa_set_distance() clash with the shim
implementation in numa_32.c and are left out.
* memory_add_physaddr_to_nid() clashes with 32bit implementation and
is left out.
* MAX_DMA_PFN definition in dma.h moved out of !CONFIG_X86_32.
* node_data definition in numa_32.c removed in favor of the one in
numa.c.
There are places where ulong is assumed to be 64bit. The next patch
will fix them up. Note that although the code is compiled it isn't
used yet and this patch doesn't cause any functional change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
|
|
Move the generic 64bit NUMA init machinery from numa_64.c to numa.c.
* node_data[], numa_mem_info and numa_distance
* numa_add_memblk[_to](), numa_remove_memblk[_from]()
* numa_set_distance() and friends
* numa_init() and all the numa_meminfo handling helpers called from it
* dummy_numa_init()
* memory_add_physaddr_to_nid()
A new function x86_numa_init() is added and the content of
numa_64.c::initmem_init() is moved into it. initmem_init() now simply
calls x86_numa_init().
Constants and numa_off declaration are moved from numa_{32|64}.h to
numa.h.
This is code reorganization and doesn't involve any functional change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
|
|
Move numa_nodes_parsed from numa_64.[hc] to numa.[hc] to prepare for
NUMA init path unification.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
|
|
Currently, the only meaningful user of apic->x86_32_numa_cpu_node() is
NUMAQ which returns valid mapping only after CPU is initialized during
SMP bringup; thus, the previous patch to set apicid -> node in
setup_local_APIC() makes __apicid_to_node[] always contain the correct
mapping whether custom apic->x86_32_numa_cpu_node() is used or not.
So, there is no reason to keep separate 32bit implementation. We can
always consult __apicid_to_node[]. Move 64bit implementation from
numa_64.c to numa.c and remove 32bit implementation from numa_32.c.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
|
|
The cpu<->node mappings under CONFIG_DEBUG_PER_CPU_MAPS=y
when NUMA emulation is enabled is currently broken because it does
not iterate through every emulated node and bind cpus that have
affinity to it.
NUMA emulation should bind each cpu to every local node to
accurately represent the true NUMA topology of the underlying
machine.
debug_cpumask_set_cpu() needs to be fixed at the same time so
that the debugging information that it emits shows the new
cpumask of the node being assigned when the cpu is being added
or removed.
It can now take responsibility of setting or clearing the cpu
itself to remove the need for duplicate code.
Also change its last parameter, "enable", to have the correct bool
type since it can only be true or false.
-v2: Fix the return statements, by Kosaki Motohiro
Acked-and-Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Andreas Herrmann <herrmann.der.user@googlemail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.00.1104201918470.12634@chino.kir.corp.google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
CONFIG_DEBUG_PER_CPU_MAPS may return NUMA_NO_NODE when an
early_cpu_to_node() mapping hasn't been initialized. In such a
case, it emits a warning and continues without an issue but
callers may try to use the return value to index into an array.
We can catch those errors and fail silently since a warning has
already been emitted. No current user of numa_add_cpu()
requires this error checking to avoid a crash, but it's better
to be proactive in case a future user happens to have a bug and
a user tries to diagnose it with CONFIG_DEBUG_PER_CPU_MAPS.
Reported-by: Jesper Juhl <jj@chaosbits.net>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Tejun Heo <tj@kernel.org>
LKML-Reference: <alpine.DEB.2.00.1102071407250.7812@chino.kir.corp.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Now that everything else is unified, NUMA initialization can be
unified too.
* numa_init_array() and init_cpu_to_node() are moved from
numa_64 to numa.
* numa_32::initmem_init() is updated to call numa_init_array()
and setup_arch() to call init_cpu_to_node() on 32bit too.
* x86_cpu_to_node_map is now initialized to NUMA_NO_NODE on
32bit too. This is safe now as numa_init_array() will initialize
it early during boot.
This makes NUMA mapping fully initialized before
setup_per_cpu_areas() on 32bit too and thus makes the first
percpu chunk which contains all the static variables and some of
dynamic area allocated with NUMA affinity correctly considered.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-17-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Reported-by: Eric Dumazet <eric.dumazet@gmail.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
|
|
x86_32 has been managing node_to_cpumask_map explicitly from
map_cpu_to_node() and friends in a rather ugly way. With
previous changes, it's now possible to share the code with
64bit.
* When CONFIG_NUMA_EMU is disabled, numa_add/remove_cpu() are
implemented in numa.c and shared by 32 and 64bit. CONFIG_NUMA_EMU
versions still live in numa_64.c.
NUMA_EMU's dependency on 64bit is planned to be removed and the
above should go away together.
* identify_cpu() now calls numa_add_cpu() for 32bit too. This
makes the explicit mask management from map_cpu_to_node() unnecessary.
* The whole x86_32 specific map_cpu_to_node() chunk is no longer
necessary. Dropped.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-16-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
Cc: Shaohui Zheng <shaohui.zheng@intel.com>
|
|
Unlike 64bit, 32bit has been using its own cpu_to_node_map[] for
CPU -> NUMA node mapping. Replace it with early_percpu variable
x86_cpu_to_node_map and share the mapping code with 64bit.
* USE_PERCPU_NUMA_NODE_ID is now enabled for 32bit too.
* x86_cpu_to_node_map and numa_set/clear_node() are moved from
numa_64 to numa. For now, on 32bit, x86_cpu_to_node_map is initialized
with 0 instead of NUMA_NO_NODE. This is to avoid introducing unexpected
behavior change and will be updated once init path is unified.
* srat_detect_node() is now enabled for x86_32 too. It calls
numa_set_node() and initializes the mapping making explicit
cpu_to_node_map[] updates from map/unmap_cpu_to_node() unnecessary.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: penberg@kernel.org
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-15-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
|
|
The mapping between cpu/apicid and node is done via
apicid_to_node[] on 64bit and apicid_2_node[] +
apic->x86_32_numa_cpu_node() on 32bit. This difference makes it
difficult to further unify 32 and 64bit NUMA handling.
This patch unifies it by replacing both apicid_to_node[] and
apicid_2_node[] with __apicid_to_node[] array, which is accessed
by two accessors - set_apicid_to_node() and numa_cpu_node(). On
64bit, numa_cpu_node() always consults __apicid_to_node[]
directly while 32bit goes through apic->numa_cpu_node() method
to allow apic implementations to override it.
srat_detect_node() for amd cpus contains workaround for broken
NUMA configuration which assumes relationship between APIC ID,
HT node ID and NUMA topology. Leave it to access
__apicid_to_node[] directly as mapping through CPU might result
in undesirable behavior change. The comment is reformatted and
updated to note the ugliness.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Cc: eric.dumazet@gmail.com
Cc: yinghai@kernel.org
Cc: brgerst@gmail.com
Cc: gorcunov@gmail.com
Cc: shaohui.zheng@intel.com
Cc: rientjes@google.com
LKML-Reference: <1295789862-25482-14-git-send-email-tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: David Rientjes <rientjes@google.com>
|
|
In order to be able to suppress the use of SRAT tables that
32-bit Linux can't deal with (in one case known to lead to a
non-bootable system, unless disabling ACPI altogether), move the
"numa=" option handling to common code.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Reviewed-by: Thomas Renninger <trenn@suse.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Renninger <trenn@suse.de>
LKML-Reference: <4D36B581020000780002D0FF@vpn.id2.novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
DBG() macro for CONFIG_DEBUG_PER_CPU_MAPS is unused.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
LKML-Reference: <1274706291-13554-1-git-send-email-akinobu.mita@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
This reverts commit 0ac0c0d0f837c499afd02a802f9cf52d3027fa3b, which
caused cross-architecture build problems for all the wrong reasons.
IA64 already added its own version of __node_random(), but the fact is,
there is nothing architectural about the function, and the original
commit was just badly done. Revert it, since no fix is forthcoming.
Requested-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Some workloads that create a large number of small files tend to assign
too many pages to node 0 (multi-node systems). Part of the reason is that
the rotor (in cpuset_mem_spread_node()) used to assign nodes starts at
node 0 for newly created tasks.
This patch changes the rotor to be initialized to a random node number of
the cpuset.
[akpm@linux-foundation.org: fix layout]
[Lee.Schermerhorn@hp.com: Define stub numa_random() for !NUMA configuration]
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Paul Menage <menage@google.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Impact: fix (CONFIG_MAXSMP=y only) boot crash
c032ef60d1aa9af33730b7a35bbea751b131adc1 "cpumask: convert
node_to_cpumask_map[] to cpumask_var_t" didn't get this one
conversion. There was a compile warning, but I missed it.
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Mike Travis <travis@sgi.com>
LKML-Reference: <200903132342.42813.rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|