Age | Commit message (Collapse) | Author | Files | Lines |
|
If a vCPU is outside guest mode and is scheduled out, it might be in the
process of making a memory access. A problem occurs if another vCPU uses
the PV TLB flush feature during the period when the vCPU is scheduled
out, and a virtual address has already been translated but has not yet
been accessed, because this is equivalent to using a stale TLB entry.
To avoid this, only report a vCPU as preempted if sure that the guest
is at an instruction boundary. A rescheduling request will be delivered
to the host physical CPU as an external interrupt, so for simplicity
consider any vmexit *not* instruction boundary except for external
interrupts.
It would in principle be okay to report the vCPU as preempted also
if it is sleeping in kvm_vcpu_block(): a TLB flush IPI will incur the
vmentry/vmexit overhead unnecessarily, and optimistic spinning is
also unlikely to succeed. However, leave it for later because right
now kvm_vcpu_check_block() is doing memory accesses. Even
though the TLB flush issue only applies to virtual memory address,
it's very much preferrable to be conservative.
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Thomas Gleixner:
"A set of small x86 cleanups:
- Remove unused headers in the IDT code
- Kconfig indendation and comment fixes
- Fix all 'the the' typos in one go instead of waiting for bots to
fix one at a time"
* tag 'x86-cleanups-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Fix all occurences of the "the the" typo
x86/idt: Remove unused headers
x86/Kconfig: Fix indentation of arch/x86/Kconfig.debug
x86/Kconfig: Fix indentation and add endif comments to arch/x86/Kconfig
|
|
Rather than waiting for the bots to fix these one-by-one,
fix all occurences of "the the" throughout arch/x86.
Signed-off-by: Bo Liu <liubo03@inspur.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20220527061400.5694-1-liubo03@inspur.com
|
|
Change the printf format character from 'd' to 'u' for the
VM-instruction error in vmwrite_error().
Fixes: 6aa8b732ca01 ("[PATCH] kvm: userspace interface")
Reported-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220510224035.1792952-2-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Include the value of the "VM-instruction error" field from the current
VMCS (if any) in the error message for VMCLEAR and VMPTRLD, since each
of these instructions may result in more than one VM-instruction
error. Previously, this field was only reported for VMWRITE errors.
Signed-off-by: David Matlack <dmatlack@google.com>
[Rebased and refactored code; dropped the error number for INVVPID and
INVEPT; reworded commit message.]
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220510224035.1792952-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When kernel handles the vm-exit caused by external interrupts and NMI,
it always sets kvm_intr_type to tell if it's dealing an IRQ or NMI. For
the PMI scenario, it could be IRQ or NMI.
However, intel_pt PMIs are only generated for HARDWARE perf events, and
HARDWARE events are always configured to generate NMIs. Use
kvm_handling_nmi_from_guest() to precisely identify if the intel_pt PMI
came from the guest; this avoids false positives if an intel_pt PMI/NMI
arrives while the host is handling an unrelated IRQ VM-Exit.
Fixes: db215756ae59 ("KVM: x86: More precisely identify NMI from guest when handling PMI")
Signed-off-by: Yanfei Xu <yanfei.xu@intel.com>
Message-Id: <20220523140821.1345605-1-yanfei.xu@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM/riscv changes for 5.19
- Added Sv57x4 support for G-stage page table
- Added range based local HFENCE functions
- Added remote HFENCE functions based on VCPU requests
- Added ISA extension registers in ONE_REG interface
- Updated KVM RISC-V maintainers entry to cover selftests support
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 5.19
- Add support for the ARMv8.6 WFxT extension
- Guard pages for the EL2 stacks
- Trap and emulate AArch32 ID registers to hide unsupported features
- Ability to select and save/restore the set of hypercalls exposed
to the guest
- Support for PSCI-initiated suspend in collaboration with userspace
- GICv3 register-based LPI invalidation support
- Move host PMU event merging into the vcpu data structure
- GICv3 ITS save/restore fixes
- The usual set of small-scale cleanups and fixes
[Due to the conflict, KVM_SYSTEM_EVENT_SEV_TERM is relocated
from 4 to 6. - Paolo]
|
|
The enumeration of MD_CLEAR in CPUID(EAX=7,ECX=0).EDX{bit 10} is not an
accurate indicator on all CPUs of whether the VERW instruction will
overwrite fill buffers. FB_CLEAR enumeration in
IA32_ARCH_CAPABILITIES{bit 17} covers the case of CPUs that are not
vulnerable to MDS/TAA, indicating that microcode does overwrite fill
buffers.
Guests running in VMM environments may not be aware of all the
capabilities/vulnerabilities of the host CPU. Specifically, a guest may
apply MDS/TAA mitigations when a virtual CPU is enumerated as vulnerable
to MDS/TAA even when the physical CPU is not. On CPUs that enumerate
FB_CLEAR_CTRL the VMM may set FB_CLEAR_DIS to skip overwriting of fill
buffers by the VERW instruction. This is done by setting FB_CLEAR_DIS
during VMENTER and resetting on VMEXIT. For guests that enumerate
FB_CLEAR (explicitly asking for fill buffer clear capability) the VMM
will not use FB_CLEAR_DIS.
Irrespective of guest state, host overwrites CPU buffers before VMENTER
to protect itself from an MMIO capable guest, as part of mitigation for
MMIO Stale Data vulnerabilities.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
Processor MMIO Stale Data is a class of vulnerabilities that may
expose data after an MMIO operation. For details please refer to
Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst.
These vulnerabilities are broadly categorized as:
Device Register Partial Write (DRPW):
Some endpoint MMIO registers incorrectly handle writes that are
smaller than the register size. Instead of aborting the write or only
copying the correct subset of bytes (for example, 2 bytes for a 2-byte
write), more bytes than specified by the write transaction may be
written to the register. On some processors, this may expose stale
data from the fill buffers of the core that created the write
transaction.
Shared Buffers Data Sampling (SBDS):
After propagators may have moved data around the uncore and copied
stale data into client core fill buffers, processors affected by MFBDS
can leak data from the fill buffer.
Shared Buffers Data Read (SBDR):
It is similar to Shared Buffer Data Sampling (SBDS) except that the
data is directly read into the architectural software-visible state.
An attacker can use these vulnerabilities to extract data from CPU fill
buffers using MDS and TAA methods. Mitigate it by clearing the CPU fill
buffers using the VERW instruction before returning to a user or a
guest.
On CPUs not affected by MDS and TAA, user application cannot sample data
from CPU fill buffers using MDS or TAA. A guest with MMIO access can
still use DRPW or SBDR to extract data architecturally. Mitigate it with
VERW instruction to clear fill buffers before VMENTER for MMIO capable
guests.
Add a kernel parameter mmio_stale_data={off|full|full,nosmt} to control
the mitigation.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
Intel MKTME KeyID bits (including Intel TDX private KeyID bits) should
never be set to SPTE. Set shadow_me_value to 0 and shadow_me_mask to
include all MKTME KeyID bits to include them to shadow_zero_check.
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <27bc10e97a3c0b58a4105ff9107448c190328239.1650363789.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Passing per_cpu() to list_for_each_entry() causes the macro to be
evaluated N+1 times for N sleeping vCPUs. This is a very small
inefficiency, and the code is cleaner if the address of the per-CPU
variable is loaded earlier. Do this for both the list and the spinlock.
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Message-Id: <1649244302-6777-1-git-send-email-lirongqing@baidu.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Exit to userspace with an emulation error if KVM encounters an injected
exception with invalid guest state, in addition to the existing check of
bailing if there's a pending exception (KVM doesn't support emulating
exceptions except when emulating real mode via vm86).
In theory, KVM should never get to such a situation as KVM is supposed to
exit to userspace before injecting an exception with invalid guest state.
But in practice, userspace can intervene and manually inject an exception
and/or stuff registers to force invalid guest state while a previously
injected exception is awaiting reinjection.
Fixes: fc4fad79fc3d ("KVM: VMX: Reject KVM_RUN if emulation is required with pending exception")
Reported-by: syzbot+cfafed3bb76d3e37581b@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220502221850.131873-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The helper function, vcpu_to_pi_desc(), is defined to get the posted
interrupt descriptor from vcpu. There is one place that doesn't use
it, and instead references vmx_vcpu->pi_desc directly. Remove the
inconsistency.
Signed-off-by: Yuan Yao <yuan.yao@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-Id: <ee7be7832bc424546fd4f05015a844a0205b5ba2.1646422845.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
root_role.level is always the same value as shadow_level:
- it's kvm_mmu_get_tdp_level(vcpu) when going through init_kvm_tdp_mmu
- it's the level argument when going through kvm_init_shadow_ept_mmu
- it's assigned directly from new_role.base.level when going
through shadow_mmu_init_context
Remove the duplication and get the level directly from the role.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Replace the per-vendor hack-a-fix for KVM's #PF => #PF => #DF workaround
with an explicit, common workaround in kvm_inject_emulated_page_fault().
Aside from being a hack, the current approach is brittle and incomplete,
e.g. nSVM's KVM_SET_NESTED_STATE fails to set ->inject_page_fault(),
and nVMX fails to apply the workaround when VMX is intercepting #PF due
to allow_smaller_maxphyaddr=1.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
NMI-watchdog is one of the favorite features of kernel developers,
but it does not work in AMD guest even with vPMU enabled and worse,
the system misrepresents this capability via /proc.
This is a PMC emulation error. KVM does not pass the latest valid
value to perf_event in time when guest NMI-watchdog is running, thus
the perf_event corresponding to the watchdog counter will enter the
old state at some point after the first guest NMI injection, forcing
the hardware register PMC0 to be constantly written to 0x800000000001.
Meanwhile, the running counter should accurately reflect its new value
based on the latest coordinated pmc->counter (from vPMC's point of view)
rather than the value written directly by the guest.
Fixes: 168d918f2643 ("KVM: x86: Adjust counter sample period after a wrmsr")
Reported-by: Dongli Cao <caodongli@kingsoft.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Yanan Wang <wangyanan55@huawei.com>
Tested-by: Yanan Wang <wangyanan55@huawei.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220409015226.38619-1-likexu@tencent.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Defer APICv updates that occur while L2 is active until nested VM-Exit,
i.e. until L1 regains control. vmx_refresh_apicv_exec_ctrl() assumes L1
is active and (a) stomps all over vmcs02 and (b) neglects to ever updated
vmcs01. E.g. if vmcs12 doesn't enable the TPR shadow for L2 (and thus no
APICv controls), L1 performs nested VM-Enter APICv inhibited, and APICv
becomes unhibited while L2 is active, KVM will set various APICv controls
in vmcs02 and trigger a failed VM-Entry. The kicker is that, unless
running with nested_early_check=1, KVM blames L1 and chaos ensues.
In all cases, ignoring vmcs02 and always deferring the inhibition change
to vmcs01 is correct (or at least acceptable). The ABSENT and DISABLE
inhibitions cannot truly change while L2 is active (see below).
IRQ_BLOCKING can change, but it is firmly a best effort debug feature.
Furthermore, only L2's APIC is accelerated/virtualized to the full extent
possible, e.g. even if L1 passes through its APIC to L2, normal MMIO/MSR
interception will apply to the virtual APIC managed by KVM.
The exception is the SELF_IPI register when x2APIC is enabled, but that's
an acceptable hole.
Lastly, Hyper-V's Auto EOI can technically be toggled if L1 exposes the
MSRs to L2, but for that to work in any sane capacity, L1 would need to
pass through IRQs to L2 as well, and IRQs must be intercepted to enable
virtual interrupt delivery. I.e. exposing Auto EOI to L2 and enabling
VID for L2 are, for all intents and purposes, mutually exclusive.
Lack of dynamic toggling is also why this scenario is all but impossible
to encounter in KVM's current form. But a future patch will pend an
APICv update request _during_ vCPU creation to plug a race where a vCPU
that's being created doesn't get included in the "all vCPUs request"
because it's not yet visible to other vCPUs. If userspaces restores L2
after VM creation (hello, KVM selftests), the first KVM_RUN will occur
while L2 is active and thus service the APICv update request made during
VM creation.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220420013732.3308816-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Clear the IDT vectoring field in vmcs12 on next VM-Exit due to a double
or triple fault. Per the SDM, a VM-Exit isn't considered to occur during
event delivery if the exit is due to an intercepted double fault or a
triple fault. Opportunistically move the default clearing (no event
"pending") into the helper so that it's more obvious that KVM does indeed
handle this case.
Note, the double fault case is worded rather wierdly in the SDM:
The original event results in a double-fault exception that causes the
VM exit directly.
Temporarily ignoring injected events, double faults can _only_ occur if
an exception occurs while attempting to deliver a different exception,
i.e. there's _always_ an original event. And for injected double fault,
while there's no original event, injected events are never subject to
interception.
Presumably the SDM is calling out that a the vectoring info will be valid
if a different exit occurs after a double fault, e.g. if a #PF occurs and
is intercepted while vectoring #DF, then the vectoring info will show the
double fault. In other words, the clause can simply be read as:
The VM exit is caused by a double-fault exception.
Fixes: 4704d0befb07 ("KVM: nVMX: Exiting from L2 to L1")
Cc: Chenyi Qiang <chenyi.qiang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220407002315.78092-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Don't modify vmcs12 exit fields except EXIT_REASON and EXIT_QUALIFICATION
when performing a nested VM-Exit due to failed VM-Entry. Per the SDM,
only the two aformentioned fields are filled and "All other VM-exit
information fields are unmodified".
Fixes: 4704d0befb07 ("KVM: nVMX: Exiting from L2 to L1")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220407002315.78092-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Remove WARNs that sanity check that KVM never lets a triple fault for L2
escape and incorrectly end up in L1. In normal operation, the sanity
check is perfectly valid, but it incorrectly assumes that it's impossible
for userspace to induce KVM_REQ_TRIPLE_FAULT without bouncing through
KVM_RUN (which guarantees kvm_check_nested_state() will see and handle
the triple fault).
The WARN can currently be triggered if userspace injects a machine check
while L2 is active and CR4.MCE=0. And a future fix to allow save/restore
of KVM_REQ_TRIPLE_FAULT, e.g. so that a synthesized triple fault isn't
lost on migration, will make it trivially easy for userspace to trigger
the WARN.
Clearing KVM_REQ_TRIPLE_FAULT when forcibly leaving guest mode is
tempting, but wrong, especially if/when the request is saved/restored,
e.g. if userspace restores events (including a triple fault) and then
restores nested state (which may forcibly leave guest mode). Ignoring
the fact that KVM doesn't currently provide the necessary APIs, it's
userspace's responsibility to manage pending events during save/restore.
------------[ cut here ]------------
WARNING: CPU: 7 PID: 1399 at arch/x86/kvm/vmx/nested.c:4522 nested_vmx_vmexit+0x7fe/0xd90 [kvm_intel]
Modules linked in: kvm_intel kvm irqbypass
CPU: 7 PID: 1399 Comm: state_test Not tainted 5.17.0-rc3+ #808
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:nested_vmx_vmexit+0x7fe/0xd90 [kvm_intel]
Call Trace:
<TASK>
vmx_leave_nested+0x30/0x40 [kvm_intel]
vmx_set_nested_state+0xca/0x3e0 [kvm_intel]
kvm_arch_vcpu_ioctl+0xf49/0x13e0 [kvm]
kvm_vcpu_ioctl+0x4b9/0x660 [kvm]
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
---[ end trace 0000000000000000 ]---
Fixes: cb6a32c2b877 ("KVM: x86: Handle triple fault in L2 without killing L1")
Cc: stable@vger.kernel.org
Cc: Chenyi Qiang <chenyi.qiang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220407002315.78092-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The pmu_ops should be moved to kvm_x86_init_ops and tagged as __initdata.
That'll save those precious few bytes, and more importantly make
the original ops unreachable, i.e. make it harder to sneak in post-init
modification bugs.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220329235054.3534728-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Derive the mask of RWX bits reported on EPT violations from the mask of
RWX bits that are shoved into EPT entries; the layout is the same, the
EPT violation bits are simply shifted by three. Use the new shift and a
slight copy-paste of the mask derivation instead of completely open
coding the same to convert between the EPT entry bits and the exit
qualification when synthesizing a nested EPT Violation.
No functional change intended.
Cc: SU Hang <darcy.sh@antgroup.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220329030108.97341-3-darcy.sh@antgroup.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Remove redundant parentheses.
Signed-off-by: Peng Hao <flyingpeng@tencent.com>
Message-Id: <20220228030902.88465-1-flyingpeng@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Merge branch for features that did not make it into 5.18:
* New ioctls to get/set TSC frequency for a whole VM
* Allow userspace to opt out of hypercall patching
Nested virtualization improvements for AMD:
* Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE,
nested vGIF)
* Allow AVIC to co-exist with a nested guest running
* Fixes for LBR virtualizations when a nested guest is running,
and nested LBR virtualization support
* PAUSE filtering for nested hypervisors
Guest support:
* Decoupling of vcpu_is_preempted from PV spinlocks
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Pull kvm fixes from Paolo Bonzini:
- Only do MSR filtering for MSRs accessed by rdmsr/wrmsr
- Documentation improvements
- Prevent module exit until all VMs are freed
- PMU Virtualization fixes
- Fix for kvm_irq_delivery_to_apic_fast() NULL-pointer dereferences
- Other miscellaneous bugfixes
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (42 commits)
KVM: x86: fix sending PV IPI
KVM: x86/mmu: do compare-and-exchange of gPTE via the user address
KVM: x86: Remove redundant vm_entry_controls_clearbit() call
KVM: x86: cleanup enter_rmode()
KVM: x86: SVM: fix tsc scaling when the host doesn't support it
kvm: x86: SVM: remove unused defines
KVM: x86: SVM: move tsc ratio definitions to svm.h
KVM: x86: SVM: fix avic spec based definitions again
KVM: MIPS: remove reference to trap&emulate virtualization
KVM: x86: document limitations of MSR filtering
KVM: x86: Only do MSR filtering when access MSR by rdmsr/wrmsr
KVM: x86/emulator: Emulate RDPID only if it is enabled in guest
KVM: x86/pmu: Fix and isolate TSX-specific performance event logic
KVM: x86: mmu: trace kvm_mmu_set_spte after the new SPTE was set
KVM: x86/svm: Clear reserved bits written to PerfEvtSeln MSRs
KVM: x86: Trace all APICv inhibit changes and capture overall status
KVM: x86: Add wrappers for setting/clearing APICv inhibits
KVM: x86: Make APICv inhibit reasons an enum and cleanup naming
KVM: X86: Handle implicit supervisor access with SMAP
KVM: X86: Rename variable smap to not_smap in permission_fault()
...
|
|
available
Currently KVM setup posted interrupt VMCS only depending on
per-vcpu APICv activation status at the vCPU creation time.
However, this status can be toggled dynamically under some
circumstance. So potentially, later posted interrupt enabling
may be problematic without VMCS readiness.
To fix this, always settle the VMCS setting for posted interrupt
as long as APICv is available and lapic locates in kernel.
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220315145836.9910-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When emulating exit from long mode, EFER_LMA is cleared with
vmx_set_efer(). This will already unset the VM_ENTRY_IA32E_MODE control
bit as requested by SDM, so there is no need to unset VM_ENTRY_IA32E_MODE
again in exit_lmode() explicitly. In case EFER isn't supported by
hardware, long mode isn't supported, so exit_lmode() cannot be reached.
Note that, thanks to the shadow controls mechanism, this change doesn't
eliminate vmread or vmwrite.
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@intel.com>
Message-Id: <20220311102643.807507-3-zhenzhong.duan@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
vmx_set_efer() sets uret->data but, in fact if the value of uret->data
will be used vmx_setup_uret_msrs() will have rewritten it with the value
returned by update_transition_efer(). uret->data is consumed if and only
if uret->load_into_hardware is true, and vmx_setup_uret_msrs() takes care
of (a) updating uret->data before setting uret->load_into_hardware to true
(b) setting uret->load_into_hardware to false if uret->data isn't updated.
Opportunistically use "vmx" directly instead of redoing to_vmx().
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@intel.com>
Message-Id: <20220311102643.807507-2-zhenzhong.duan@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
It was decided that when TSC scaling is not supported,
the virtual MSR_AMD64_TSC_RATIO should still have the default '1.0'
value.
However in this case kvm_max_tsc_scaling_ratio is not set,
which breaks various assumptions.
Fix this by always calculating kvm_max_tsc_scaling_ratio regardless of
host support. For consistency, do the same for VMX.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220322172449.235575-8-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
HSW_IN_TX* bits are used in generic code which are not supported on
AMD. Worse, these bits overlap with AMD EventSelect[11:8] and hence
using HSW_IN_TX* bits unconditionally in generic code is resulting in
unintentional pmu behavior on AMD. For example, if EventSelect[11:8]
is 0x2, pmc_reprogram_counter() wrongly assumes that
HSW_IN_TX_CHECKPOINTED is set and thus forces sampling period to be 0.
Also per the SDM, both bits 32 and 33 "may only be set if the processor
supports HLE or RTM" and for "IN_TXCP (bit 33): this bit may only be set
for IA32_PERFEVTSEL2."
Opportunistically eliminate code redundancy, because if the HSW_IN_TX*
bit is set in pmc->eventsel, it is already set in attr.config.
Reported-by: Ravi Bangoria <ravi.bangoria@amd.com>
Reported-by: Jim Mattson <jmattson@google.com>
Fixes: 103af0a98788 ("perf, kvm: Support the in_tx/in_tx_cp modifiers in KVM arch perfmon emulation v5")
Co-developed-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220309084257.88931-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Use an enum for the APICv inhibit reasons, there is no meaning behind
their values and they most definitely are not "unsigned longs". Rename
the various params to "reason" for consistency and clarity (inhibit may
be confused as a command, i.e. inhibit APICv, instead of the reason that
is getting toggled/checked).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220311043517.17027-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The third nybble of AMD's event select overlaps with Intel's IN_TX and
IN_TXCP bits. Therefore, we can't use AMD64_RAW_EVENT_MASK on Intel
platforms that support TSX.
Declare a raw_event_mask in the kvm_pmu structure, initialize it in
the vendor-specific pmu_refresh() functions, and use that mask for
PERF_TYPE_RAW configurations in reprogram_gp_counter().
Fixes: 710c47651431 ("KVM: x86/pmu: Use AMD64_RAW_EVENT_MASK for PERF_TYPE_RAW")
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220308012452.3468611-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Pull kvm updates from Paolo Bonzini:
"ARM:
- Proper emulation of the OSLock feature of the debug architecture
- Scalibility improvements for the MMU lock when dirty logging is on
- New VMID allocator, which will eventually help with SVA in VMs
- Better support for PMUs in heterogenous systems
- PSCI 1.1 support, enabling support for SYSTEM_RESET2
- Implement CONFIG_DEBUG_LIST at EL2
- Make CONFIG_ARM64_ERRATUM_2077057 default y
- Reduce the overhead of VM exit when no interrupt is pending
- Remove traces of 32bit ARM host support from the documentation
- Updated vgic selftests
- Various cleanups, doc updates and spelling fixes
RISC-V:
- Prevent KVM_COMPAT from being selected
- Optimize __kvm_riscv_switch_to() implementation
- RISC-V SBI v0.3 support
s390:
- memop selftest
- fix SCK locking
- adapter interruptions virtualization for secure guests
- add Claudio Imbrenda as maintainer
- first step to do proper storage key checking
x86:
- Continue switching kvm_x86_ops to static_call(); introduce
static_call_cond() and __static_call_ret0 when applicable.
- Cleanup unused arguments in several functions
- Synthesize AMD 0x80000021 leaf
- Fixes and optimization for Hyper-V sparse-bank hypercalls
- Implement Hyper-V's enlightened MSR bitmap for nested SVM
- Remove MMU auditing
- Eager splitting of page tables (new aka "TDP" MMU only) when dirty
page tracking is enabled
- Cleanup the implementation of the guest PGD cache
- Preparation for the implementation of Intel IPI virtualization
- Fix some segment descriptor checks in the emulator
- Allow AMD AVIC support on systems with physical APIC ID above 255
- Better API to disable virtualization quirks
- Fixes and optimizations for the zapping of page tables:
- Zap roots in two passes, avoiding RCU read-side critical
sections that last too long for very large guests backed by 4
KiB SPTEs.
- Zap invalid and defunct roots asynchronously via
concurrency-managed work queue.
- Allowing yielding when zapping TDP MMU roots in response to the
root's last reference being put.
- Batch more TLB flushes with an RCU trick. Whoever frees the
paging structure now holds RCU as a proxy for all vCPUs running
in the guest, i.e. to prolongs the grace period on their behalf.
It then kicks the the vCPUs out of guest mode before doing
rcu_read_unlock().
Generic:
- Introduce __vcalloc and use it for very large allocations that need
memcg accounting"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
KVM: use kvcalloc for array allocations
KVM: x86: Introduce KVM_CAP_DISABLE_QUIRKS2
kvm: x86: Require const tsc for RT
KVM: x86: synthesize CPUID leaf 0x80000021h if useful
KVM: x86: add support for CPUID leaf 0x80000021
KVM: x86: do not use KVM_X86_OP_OPTIONAL_RET0 for get_mt_mask
Revert "KVM: x86/mmu: Zap only TDP MMU leafs in kvm_zap_gfn_range()"
kvm: x86/mmu: Flush TLB before zap_gfn_range releases RCU
KVM: arm64: fix typos in comments
KVM: arm64: Generalise VM features into a set of flags
KVM: s390: selftests: Add error memop tests
KVM: s390: selftests: Add more copy memop tests
KVM: s390: selftests: Add named stages for memop test
KVM: s390: selftests: Add macro as abstraction for MEM_OP
KVM: s390: selftests: Split memop tests
KVM: s390x: fix SCK locking
RISC-V: KVM: Implement SBI HSM suspend call
RISC-V: KVM: Add common kvm_riscv_vcpu_wfi() function
RISC-V: Add SBI HSM suspend related defines
RISC-V: KVM: Implement SBI v0.3 SRST extension
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 perf event updates from Ingo Molnar:
- Fix address filtering for Intel/PT,ARM/CoreSight
- Enable Intel/PEBS format 5
- Allow more fixed-function counters for x86
- Intel/PT: Enable not recording Taken-Not-Taken packets
- Add a few branch-types
* tag 'perf-core-2022-03-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/intel/uncore: Fix the build on !CONFIG_PHYS_ADDR_T_64BIT
perf: Add irq and exception return branch types
perf/x86/intel/uncore: Make uncore_discovery clean for 64 bit addresses
perf/x86/intel/pt: Add a capability and config bit for disabling TNTs
perf/x86/intel/pt: Add a capability and config bit for event tracing
perf/x86/intel: Increase max number of the fixed counters
KVM: x86: use the KVM side max supported fixed counter
perf/x86/intel: Enable PEBS format 5
perf/core: Allow kernel address filter when not filtering the kernel
perf/x86/intel/pt: Fix address filter config for 32-bit kernel
perf/core: Fix address filter parser for multiple filters
x86: Share definition of __is_canonical_address()
perf/x86/intel/pt: Relax address filter validation
|
|
Merge bugfixes from 5.17 before merging more tricky work.
|
|
Move the vAPIC offset adjustments done in the APIC-write trap path from
common x86 to VMX in anticipation of using the nodecode path for SVM's
AVIC. The adjustment reflects hardware behavior, i.e. it's technically a
property of VMX, no common x86. SVM's AVIC behavior is identical, so
it's a bit of a moot point, the goal is purely to make it easier to
understand why the adjustment is ok.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220204214205.3306634-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Now that __kvm_mmu_new_pgd does not look at the MMU's root_level and
shadow_root_level anymore, pull the PGD load after the initialization of
the shadow MMUs.
Besides being more intuitive, this enables future simplifications
and optimizations because it's not necessary anymore to compute the
role outside kvm_init_mmu. In particular, kvm_mmu_reset_context was not
attempting to use a cached PGD to avoid having to figure out the new role.
With this change, it could follow what nested_{vmx,svm}_load_cr3 are doing,
and avoid unloading all the cached roots.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
These functions only operate on a given MMU, of which there is more
than one in a vCPU (we care about two, because the third does not have
any roots and is only used to walk guest page tables). They do need a
struct kvm in order to lock the mmu_lock, but they do not needed anything
else in the struct kvm_vcpu. So, pass the vcpu->kvm directly to them.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The root_hpa and root_pgd fields form essentially a struct kvm_mmu_root_info.
Use the struct to have more consistency between mmu->root and
mmu->prev_roots.
The patch is entirely search and replace except for cached_root_available,
which does not need a temporary struct kvm_mmu_root_info anymore.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a new capability, KVM_CAP_PMU_CAPABILITY, that takes a bitmask of
settings/features to allow userspace to configure PMU virtualization on
a per-VM basis. For now, support a single flag, KVM_PMU_CAP_DISABLE,
to allow disabling PMU virtualization for a VM even when KVM is configured
with enable_pmu=true a module level.
To keep KVM simple, disallow changing VM's PMU configuration after vCPUs
have been created.
Signed-off-by: David Dunn <daviddunn@google.com>
Message-Id: <20220223225743.2703915-2-daviddunn@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
From: Peng Hao <flyingpeng@tencent.com>
Remove a redundant 'cpu' declaration from inside an if-statement that
that shadows an identical declaration at function scope. Both variables
are used as scratch variables in for_each_*_cpu() loops, thus there's no
harm in sharing a variable.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peng Hao <flyingpeng@tencent.com>
Message-Id: <20220222103954.70062-1-flyingpeng@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Fix a comment documenting the memory barrier related to clearing a
loaded_vmcs; loaded_vmcs tracks the host CPU the VMCS is loaded on via
the field 'cpu', it doesn't have a 'vcpu' field.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peng Hao <flyingpeng@tencent.com>
Message-Id: <20220222104029.70129-1-flyingpeng@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Make sure nested_vmx_hardware_setup/unsetup() are called in pairs under
the same conditions. Calling nested_vmx_hardware_unsetup() when nested
is false "works" right now because it only calls free_page() on zero-
initialized pointers, but it's possible that more code will be added to
nested_vmx_hardware_unsetup() in the future.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peng Hao <flyingpeng@tencent.com>
Message-Id: <20220222104054.70286-1-flyingpeng@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Revert back to refreshing vmcs.HOST_CR3 immediately prior to VM-Enter.
The PCID (ASID) part of CR3 can be bumped without KVM being scheduled
out, as the kernel will switch CR3 during __text_poke(), e.g. in response
to a static key toggling. If switch_mm_irqs_off() chooses a new ASID for
the mm associate with KVM, KVM will do VM-Enter => VM-Exit with a stale
vmcs.HOST_CR3.
Add a comment to explain why KVM must wait until VM-Enter is imminent to
refresh vmcs.HOST_CR3.
The following splat was captured by stashing vmcs.HOST_CR3 in kvm_vcpu
and adding a WARN in load_new_mm_cr3() to fire if a new ASID is being
loaded for the KVM-associated mm while KVM has a "running" vCPU:
static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
{
struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
...
WARN(vcpu && (vcpu->cr3 & GENMASK(11, 0)) != (new_mm_cr3 & GENMASK(11, 0)) &&
(vcpu->cr3 & PHYSICAL_PAGE_MASK) == (new_mm_cr3 & PHYSICAL_PAGE_MASK),
"KVM is hosed, loading CR3 = %lx, vmcs.HOST_CR3 = %lx", new_mm_cr3, vcpu->cr3);
}
------------[ cut here ]------------
KVM is hosed, loading CR3 = 8000000105393004, vmcs.HOST_CR3 = 105393003
WARNING: CPU: 4 PID: 20717 at arch/x86/mm/tlb.c:291 load_new_mm_cr3+0x82/0xe0
Modules linked in: vhost_net vhost vhost_iotlb tap kvm_intel
CPU: 4 PID: 20717 Comm: stable Tainted: G W 5.17.0-rc3+ #747
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:load_new_mm_cr3+0x82/0xe0
RSP: 0018:ffffc9000489fa98 EFLAGS: 00010082
RAX: 0000000000000000 RBX: 8000000105393004 RCX: 0000000000000027
RDX: 0000000000000027 RSI: 00000000ffffdfff RDI: ffff888277d1b788
RBP: 0000000000000004 R08: ffff888277d1b780 R09: ffffc9000489f8b8
R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000000
R13: ffff88810678a800 R14: 0000000000000004 R15: 0000000000000c33
FS: 00007fa9f0e72700(0000) GS:ffff888277d00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 00000001001b5003 CR4: 0000000000172ea0
Call Trace:
<TASK>
switch_mm_irqs_off+0x1cb/0x460
__text_poke+0x308/0x3e0
text_poke_bp_batch+0x168/0x220
text_poke_finish+0x1b/0x30
arch_jump_label_transform_apply+0x18/0x30
static_key_slow_inc_cpuslocked+0x7c/0x90
static_key_slow_inc+0x16/0x20
kvm_lapic_set_base+0x116/0x190
kvm_set_apic_base+0xa5/0xe0
kvm_set_msr_common+0x2f4/0xf60
vmx_set_msr+0x355/0xe70 [kvm_intel]
kvm_set_msr_ignored_check+0x91/0x230
kvm_emulate_wrmsr+0x36/0x120
vmx_handle_exit+0x609/0x6c0 [kvm_intel]
kvm_arch_vcpu_ioctl_run+0x146f/0x1b80
kvm_vcpu_ioctl+0x279/0x690
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
---[ end trace 0000000000000000 ]---
This reverts commit 15ad9762d69fd8e40a4a51828c1d6b0c1b8fbea0.
Fixes: 15ad9762d69f ("KVM: VMX: Save HOST_CR3 in vmx_prepare_switch_to_guest()")
Reported-by: Wanpeng Li <kernellwp@gmail.com>
Cc: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Acked-by: Lai Jiangshan <jiangshanlai@gmail.com>
Message-Id: <20220224191917.3508476-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Undo a nested VMX fix as a step toward reverting the commit it fixed,
15ad9762d69f ("KVM: VMX: Save HOST_CR3 in vmx_prepare_switch_to_guest()"),
as the underlying premise that "host CR3 in the vcpu thread can only be
changed when scheduling" is wrong.
This reverts commit a9f2705ec84449e3b8d70c804766f8e97e23080d.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220224191917.3508476-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The two ioctls used to implement userspace-accelerated TPR,
KVM_TPR_ACCESS_REPORTING and KVM_SET_VAPIC_ADDR, are available
even if hardware-accelerated TPR can be used. So there is
no reason not to report KVM_CAP_VAPIC.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
There is a local that contains a pointer to vcpu_vmx already. Just use
that instead to get at the structure directly instead of doing pointer
arithmetic.
No functional change intended.
Signed-off-by: Oliver Upton <oupton@google.com>
Message-Id: <20220204204705.3538240-8-oupton@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When delivering a virtual interrupt, don't actually send a posted interrupt
if the target vCPU is also the currently running vCPU and is IN_GUEST_MODE,
in which case the interrupt is being sent from a VM-Exit fastpath and the
core run loop in vcpu_enter_guest() will manually move the interrupt from
the PIR to vmcs.GUEST_RVI. IRQs are disabled while IN_GUEST_MODE, thus
there's no possibility of the virtual interrupt being sent from anything
other than KVM, i.e. KVM won't suppress a wake event from an IRQ handler
(see commit fdba608f15e2, "KVM: VMX: Wake vCPU when delivering posted IRQ
even if vCPU == this vCPU").
Eliding the posted interrupt restores the performance provided by the
combination of commits 379a3c8ee444 ("KVM: VMX: Optimize posted-interrupt
delivery for timer fastpath") and 26efe2fd92e5 ("KVM: VMX: Handle
preemption timer fastpath").
Thanks Sean for better comments.
Suggested-by: Chao Gao <chao.gao@intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1643111979-36447-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|