Age | Commit message (Collapse) | Author | Files | Lines |
|
branch
Conflicts:
arch/x86/include/asm/percpu.h
arch/x86/include/asm/text-patching.h
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Make sure the default return thunk is not used after all return
instructions have been patched by the alternatives because the default
return thunk is insufficient when it comes to mitigating Retbleed or
SRSO.
Fix based on an earlier version by David Kaplan <david.kaplan@amd.com>.
[ bp: Fix the compilation error of warn_thunk_thunk being an invisible
symbol, hoist thunk macro into calling.h ]
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Co-developed-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231010171020.462211-4-david.kaplan@amd.com
Link: https://lore.kernel.org/r/20240104132446.GEZZaxnrIgIyat0pqf@fat_crate.local
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- Correct the minimum CPU family for Transmeta Crusoe in Kconfig so
that such hw can boot again
- Do not take into accout XSTATE buffer size info supplied by userspace
when constructing a sigreturn frame
- Switch get_/put_user* to EX_TYPE_UACCESS exception handling when an
MCE is encountered so that it can be properly recovered from instead
of simply panicking
* tag 'x86_urgent_for_v6.8_rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/Kconfig: Transmeta Crusoe is CPU family 5, not 6
x86/fpu: Stop relying on userspace for info to fault in xsave buffer
x86/lib: Revert to _ASM_EXTABLE_UA() for {get,put}_user() fixups
|
|
It is more accurate to check if KVM is enabled, instead of having the
architecture say so. Architectures always "have" KVM, so for example
checking CONFIG_HAVE_KVM in x86 code is pointless, but if KVM is disabled
in a specific build, there is no need for support code.
Alternatively, many of the #ifdefs could simply be deleted. However,
this would add completely dead code. For example, when KVM is disabled,
there should not be any posted interrupts, i.e. NOT wiring up the "dummy"
handlers and treating IRQs on those vectors as spurious is the right
thing to do.
Cc: x86@kernel.org
Cc: kbingham@kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Pull kvm fixes from Paolo Bonzini:
"x86 guest:
- Avoid false positive for check that only matters on AMD processors
x86:
- Give a hint when Win2016 might fail to boot due to XSAVES &&
!XSAVEC configuration
- Do not allow creating an in-kernel PIT unless an IOAPIC already
exists
RISC-V:
- Allow ISA extensions that were enabled for bare metal in 6.8 (Zbc,
scalar and vector crypto, Zfh[min], Zihintntl, Zvfh[min], Zfa)
S390:
- fix CC for successful PQAP instruction
- fix a race when creating a shadow page"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
x86/coco: Define cc_vendor without CONFIG_ARCH_HAS_CC_PLATFORM
x86/kvm: Fix SEV check in sev_map_percpu_data()
KVM: x86: Give a hint when Win2016 might fail to boot due to XSAVES erratum
KVM: x86: Check irqchip mode before create PIT
KVM: riscv: selftests: Add Zfa extension to get-reg-list test
RISC-V: KVM: Allow Zfa extension for Guest/VM
KVM: riscv: selftests: Add Zvfh[min] extensions to get-reg-list test
RISC-V: KVM: Allow Zvfh[min] extensions for Guest/VM
KVM: riscv: selftests: Add Zihintntl extension to get-reg-list test
RISC-V: KVM: Allow Zihintntl extension for Guest/VM
KVM: riscv: selftests: Add Zfh[min] extensions to get-reg-list test
RISC-V: KVM: Allow Zfh[min] extensions for Guest/VM
KVM: riscv: selftests: Add vector crypto extensions to get-reg-list test
RISC-V: KVM: Allow vector crypto extensions for Guest/VM
KVM: riscv: selftests: Add scaler crypto extensions to get-reg-list test
RISC-V: KVM: Allow scalar crypto extensions for Guest/VM
KVM: riscv: selftests: Add Zbc extension to get-reg-list test
RISC-V: KVM: Allow Zbc extension for Guest/VM
KVM: s390: fix cc for successful PQAP
KVM: s390: vsie: fix race during shadow creation
|
|
The KVM PTP driver now refers to the clocksource ID CSID_X86_KVM_CLK, not
to the clocksource itself any more. There are no remaining users of the
clocksource export.
Therefore, make the clocksource static again.
Signed-off-by: Peter Hilber <peter.hilber@opensynergy.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240201010453.2212371-9-peter.hilber@opensynergy.com
|
|
The clocksource pointer in struct system_counterval_t is not evaluated any
more. Remove the code setting the member, and the member itself.
Signed-off-by: Peter Hilber <peter.hilber@opensynergy.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240201010453.2212371-8-peter.hilber@opensynergy.com
|
|
Add a clocksource ID for the x86 kvmclock.
Also, for ptp_kvm, set the recently added struct system_counterval_t member
cs_id to the clocksource ID (x86 kvmclock or ARM Generic Timer). In the
future, get_device_system_crosststamp() will compare the clocksource ID in
struct system_counterval_t, rather than the clocksource.
For now, to avoid touching too many subsystems at once, extract the
clocksource ID from the clocksource. The clocksource dereference will be
removed once everything is converted over..
Signed-off-by: Peter Hilber <peter.hilber@opensynergy.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240201010453.2212371-5-peter.hilber@opensynergy.com
|
|
Add a clocksource ID for TSC and a distinct one for the early TSC.
Use distinct IDs for TSC and early TSC, since those also have distinct
clocksource structs. This should help to keep existing semantics when
comparing clocksources.
Also, set the recently added struct system_counterval_t member cs_id to the
TSC ID in the cases where the clocksource member is being set to the TSC
clocksource. In the future, get_device_system_crosststamp() will compare
the clocksource ID in struct system_counterval_t, rather than the
clocksource.
For the x86 ART related code, system_counterval_t.cs == NULL corresponds to
system_counterval_t.cs_id == CSID_GENERIC (0).
Signed-off-by: Peter Hilber <peter.hilber@opensynergy.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240201010453.2212371-4-peter.hilber@opensynergy.com
|
|
Add or modify function descriptions to remove kernel-doc warnings:
tsc.c:655: warning: missing initial short description on line:
* native_calibrate_tsc
tsc.c:1339: warning: Excess function parameter 'cycles' description in 'convert_art_ns_to_tsc'
tsc.c:1339: warning: Excess function parameter 'cs' description in 'convert_art_ns_to_tsc'
tsc.c:1373: warning: Function parameter or member 'work' not described in 'tsc_refine_calibration_work'
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20231221033620.32379-1-rdunlap@infradead.org
|
|
Refer to commit fd10cde9294f ("KVM paravirt: Add async PF initialization
to PV guest") and commit 344d9588a9df ("KVM: Add PV MSR to enable
asynchronous page faults delivery"). It turns out that at the time when
asyncpf was introduced, the purpose was defining the shared PV data 'struct
kvm_vcpu_pv_apf_data' with the size of 64 bytes. However, it made a mistake
and defined the size to 68 bytes, which failed to make fit in a cache line
and made the code inconsistent with the documentation.
Below justification quoted from Sean[*]
KVM (the host side) has *never* read kvm_vcpu_pv_apf_data.enabled, and
the documentation clearly states that enabling is based solely on the
bit in the synthetic MSR.
So rather than update the documentation, fix the goof by removing the
enabled filed and use the separate percpu variable instread.
KVM-as-a-host obviously doesn't enforce anything or consume the size,
and changing the header will only affect guests that are rebuilt against
the new header, so there's no chance of ABI breakage between KVM and its
guests. The only possible breakage is if some other hypervisor is
emulating KVM's async #PF (LOL) and relies on the guest to set
kvm_vcpu_pv_apf_data.enabled. But (a) I highly doubt such a hypervisor
exists, (b) that would arguably be a violation of KVM's "spec", and
(c) the worst case scenario is that the guest would simply lose async
#PF functionality.
[*] https://lore.kernel.org/all/ZS7ERnnRqs8Fl0ZF@google.com/T/#u
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20231025055914.1201792-2-xiaoyao.li@intel.com
[sean: use true/false instead of 1/0 for booleans]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
The early startup code executes from a 1:1 mapping of memory, which
differs from the mapping that the code was linked and/or relocated to
run at. The latter mapping is not active yet at this point, and so
symbol references that rely on it will fault.
Given that the core kernel is built without -fPIC, symbol references are
typically emitted as absolute, and so any such references occuring in
the early startup code will therefore crash the kernel.
While an attempt was made to work around this for the early SEV/SME
startup code, by forcing RIP-relative addressing for certain global
SEV/SME variables via inline assembly (see snp_cpuid_get_table() for
example), RIP-relative addressing must be pervasively enforced for
SEV/SME global variables when accessed prior to page table fixups.
__startup_64() already handles this issue for select non-SEV/SME global
variables using fixup_pointer(), which adjusts the pointer relative to a
`physaddr` argument. To avoid having to pass around this `physaddr`
argument across all functions needing to apply pointer fixups, introduce
a macro RIP_RELATIVE_REF() which generates a RIP-relative reference to
a given global variable. It is used where necessary to force
RIP-relative accesses to global variables.
For backporting purposes, this patch makes no attempt at cleaning up
other occurrences of this pattern, involving either inline asm or
fixup_pointer(). Those will be addressed later.
[ bp: Call it "rip_rel_ref" everywhere like other code shortens
"rIP-relative reference" and make the asm wrapper __always_inline. ]
Co-developed-by: Kevin Loughlin <kevinloughlin@google.com>
Signed-off-by: Kevin Loughlin <kevinloughlin@google.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/all/20240130220845.1978329-1-kevinloughlin@google.com
|
|
Now that the driver core can properly handle constant struct bus_type,
make mce_subsys a constant structure.
Suggested-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Ricardo B. Marliere <ricardo@marliere.net>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lore.kernel.org/r/20240204-bus_cleanup-x86-v1-1-4e7171be88e8@marliere.net
|
|
The function sev_map_percpu_data() checks if it is running on an SEV
platform by checking the CC_ATTR_GUEST_MEM_ENCRYPT attribute. However,
this attribute is also defined for TDX.
To avoid false positives, add a cc_vendor check.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Fixes: 4d96f9109109 ("x86/sev: Replace occurrences of sev_active() with cc_platform_has()")
Suggested-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: David Rientjes <rientjes@google.com>
Message-Id: <20240124130317.495519-1-kirill.shutemov@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Let cpu_init_exception_handling() call cpu_init_fred_exceptions() to
initialize FRED. However if FRED is unavailable or disabled, it falls
back to set up TSS IST and initialize IDT.
Co-developed-by: Xin Li <xin3.li@intel.com>
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-36-xin3.li@intel.com
|
|
Add cpu_init_fred_exceptions() to:
- Set FRED entrypoints for events happening in ring 0 and 3.
- Specify the stack level for IRQs occurred ring 0.
- Specify dedicated event stacks for #DB/NMI/#MCE/#DF.
- Enable FRED and invalidtes IDT.
- Force 32-bit system calls to use "int $0x80" only.
Add fred_complete_exception_setup() to:
- Initialize system_vectors as done for IDT systems.
- Set unused sysvec_table entries to fred_handle_spurious_interrupt().
Co-developed-by: Xin Li <xin3.li@intel.com>
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-35-xin3.li@intel.com
|
|
Because FRED uses the ring 3 FRED entrypoint for SYSCALL and SYSENTER and
ERETU is the only legit instruction to return to ring 3, there is NO need
to setup SYSCALL and SYSENTER MSRs for FRED, except the IA32_STAR MSR.
Split IDT syscall setup code into idt_syscall_init() to make it easy to
skip syscall setup code when FRED is enabled.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-34-xin3.li@intel.com
|
|
Add sysvec_install() to install a system interrupt handler into the IDT
or the FRED system interrupt handler table.
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-28-xin3.li@intel.com
|
|
Like #DB, when occurred on different ring level, i.e., from user or kernel
context, #MCE needs to be handled on different stack: User #MCE on current
task stack, while kernel #MCE on a dedicated stack.
This is exactly how FRED event delivery invokes an exception handler: ring
3 event on level 0 stack, i.e., current task stack; ring 0 event on the
the FRED machine check entry stub doesn't do stack switch.
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-26-xin3.li@intel.com
|
|
On a FRED system, NMIs nest both with themselves and faults, transient
information is saved into the stack frame, and NMI unblocking only
happens when the stack frame indicates that so should happen.
Thus, the NMI entry stub for FRED is really quite small...
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231216063139.25567-1-xin3.li@intel.com
|
|
When occurred on different ring level, i.e., from user or kernel context,
stack, while kernel #DB on a dedicated stack. This is exactly how FRED
event delivery invokes an exception handler: ring 3 event on level 0
stack, i.e., current task stack; ring 0 event on the #DB dedicated stack
specified in the IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED debug
exception entry stub doesn't do stack switch.
On a FRED system, the debug trap status information (DR6) is passed on
the stack, to avoid the problem of transient state. Furthermore, FRED
transitions avoid a lot of ugly corner cases the handling of which can,
and should be, skipped.
The FRED debug trap status information saved on the stack differs from
DR6 in both stickiness and polarity; it is exactly in the format which
debug_read_clear_dr6() returns for the IDT entry points.
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-24-xin3.li@intel.com
|
|
Entering a new task is logically speaking a return from a system call
(exec, fork, clone, etc.). As such, if ptrace enables single stepping
a single step exception should be allowed to trigger immediately upon
entering user space. This is not optional.
NMI should *never* be disabled in user space. As such, this is an
optional, opportunistic way to catch errors.
Allow single-step trap and NMI when starting a new task, thus once
the new task enters user space, single-step trap and NMI are both
enabled immediately.
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-21-xin3.li@intel.com
|
|
Because FRED always restores the full value of %rsp, ESPFIX is
no longer needed when it's enabled.
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-20-xin3.li@intel.com
|
|
SWAPGS is no longer needed thus NOT allowed with FRED because FRED
transitions ensure that an operating system can _always_ operate
with its own GS base address:
- For events that occur in ring 3, FRED event delivery swaps the GS
base address with the IA32_KERNEL_GS_BASE MSR.
- ERETU (the FRED transition that returns to ring 3) also swaps the
GS base address with the IA32_KERNEL_GS_BASE MSR.
And the operating system can still setup the GS segment for a user
thread without the need of loading a user thread GS with:
- Using LKGS, available with FRED, to modify other attributes of the
GS segment without compromising its ability always to operate with
its own GS base address.
- Accessing the GS segment base address for a user thread as before
using RDMSR or WRMSR on the IA32_KERNEL_GS_BASE MSR.
Note, LKGS loads the GS base address into the IA32_KERNEL_GS_BASE MSR
instead of the GS segment's descriptor cache. As such, the operating
system never changes its runtime GS base address.
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-19-xin3.li@intel.com
|
|
struct pt_regs is hard to read because the member or section related
comments are not aligned with the members.
The 'cs' and 'ss' members of pt_regs are type of 'unsigned long' while
in reality they are only 16-bit wide. This works so far as the
remaining space is unused, but FRED will use the remaining bits for
other purposes.
To prepare for FRED:
- Cleanup the formatting
- Convert 'cs' and 'ss' to u16 and embed them into an union
with a u64
- Fixup the related printk() format strings
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Originally-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-14-xin3.li@intel.com
|
|
Add X86_CR4_FRED macro for the FRED bit in %cr4. This bit must not be
changed after initialization, so add it to the pinned CR4 bits.
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-12-xin3.li@intel.com
|
|
Since
866b556efa12 ("x86/head/64: Install startup GDT")
the primary startup sequence sets the code segment register (CS) to
__KERNEL_CS before calling into the startup code shared between primary
and secondary boot.
This means a simple indirect call is sufficient here.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240129180502.4069817-24-ardb+git@google.com
|
|
Let command line option "fred" accept multiple options to make it
easier to tweak its behavior.
Currently, two options 'on' and 'off' are allowed, and the default
behavior is to disable FRED. To enable FRED, append "fred=on" to the
kernel command line.
[ bp: Use cpu_feature_enabled(), touch ups. ]
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-9-xin3.li@intel.com
|
|
Before this change, the expected size of the user space buffer was
taken from fx_sw->xstate_size. fx_sw->xstate_size can be changed
from user-space, so it is possible construct a sigreturn frame where:
* fx_sw->xstate_size is smaller than the size required by valid bits in
fx_sw->xfeatures.
* user-space unmaps parts of the sigrame fpu buffer so that not all of
the buffer required by xrstor is accessible.
In this case, xrstor tries to restore and accesses the unmapped area
which results in a fault. But fault_in_readable succeeds because buf +
fx_sw->xstate_size is within the still mapped area, so it goes back and
tries xrstor again. It will spin in this loop forever.
Instead, fault in the maximum size which can be touched by XRSTOR (taken
from fpstate->user_size).
[ dhansen: tweak subject / changelog ]
Fixes: fcb3635f5018 ("x86/fpu/signal: Handle #PF in the direct restore path")
Reported-by: Konstantin Bogomolov <bogomolov@google.com>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrei Vagin <avagin@google.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc:stable@vger.kernel.org
Link: https://lore.kernel.org/all/20240130063603.3392627-1-avagin%40google.com
|
|
Remove the include statement for <asm/bootparam.h> from several files
that don't require it and limit the exposure of those definitions within
the Linux kernel code.
[ bp: Massage commit message. ]
Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240112095000.8952-5-tzimmermann@suse.de
|
|
Add a kdump safe version of sev_firmware_shutdown() and register it as a
crash_kexec_post_notifier so it will be invoked during panic/crash to do
SEV/SNP shutdown. This is required for transitioning all IOMMU pages to
reclaim/hypervisor state, otherwise re-init of IOMMU pages during
crashdump kernel boot fails and panics the crashdump kernel.
This panic notifier runs in atomic context, hence it ensures not to
acquire any locks/mutexes and polls for PSP command completion instead
of depending on PSP command completion interrupt.
[ mdr: Remove use of "we" in comments. ]
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240126041126.1927228-21-michael.roth@amd.com
|
|
SNP enabled platforms require the MtrrFixDramModeEn bit to be set across
all CPUs when SNP is enabled. Therefore, don't print error messages when
MtrrFixDramModeEn is set when bringing CPUs online.
Closes: https://lore.kernel.org/kvm/68b2d6bf-bce7-47f9-bebb-2652cc923ff9@linux.microsoft.com/
Reported-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240126041126.1927228-6-michael.roth@amd.com
|
|
The memory integrity guarantees of SEV-SNP are enforced through a new
structure called the Reverse Map Table (RMP). The RMP is a single data
structure shared across the system that contains one entry for every 4K
page of DRAM that may be used by SEV-SNP VMs. The APM Volume 2 section
on Secure Nested Paging (SEV-SNP) details a number of steps needed to
detect/enable SEV-SNP and RMP table support on the host:
- Detect SEV-SNP support based on CPUID bit
- Initialize the RMP table memory reported by the RMP base/end MSR
registers and configure IOMMU to be compatible with RMP access
restrictions
- Set the MtrrFixDramModEn bit in SYSCFG MSR
- Set the SecureNestedPagingEn and VMPLEn bits in the SYSCFG MSR
- Configure IOMMU
RMP table entry format is non-architectural and it can vary by
processor. It is defined by the PPR document for each respective CPU
family. Restrict SNP support to CPU models/families which are compatible
with the current RMP table entry format to guard against any undefined
behavior when running on other system types. Future models/support will
handle this through an architectural mechanism to allow for broader
compatibility.
SNP host code depends on CONFIG_KVM_AMD_SEV config flag which may be
enabled even when CONFIG_AMD_MEM_ENCRYPT isn't set, so update the
SNP-specific IOMMU helpers used here to rely on CONFIG_KVM_AMD_SEV
instead of CONFIG_AMD_MEM_ENCRYPT.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Co-developed-by: Ashish Kalra <ashish.kalra@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Co-developed-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Co-developed-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Link: https://lore.kernel.org/r/20240126041126.1927228-5-michael.roth@amd.com
|
|
Without SEV-SNP, Automatic IBRS protects only the kernel. But when
SEV-SNP is enabled, the Automatic IBRS protection umbrella widens to all
host-side code, including userspace. This protection comes at a cost:
reduced userspace indirect branch performance.
To avoid this performance loss, don't use Automatic IBRS on SEV-SNP
hosts and all back to retpolines instead.
[ mdr: squash in changes from review discussion. ]
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lore.kernel.org/r/20240126041126.1927228-3-michael.roth@amd.com
|
|
Add CPU feature detection for Secure Encrypted Virtualization with
Secure Nested Paging. This feature adds a strong memory integrity
protection to help prevent malicious hypervisor-based attacks like
data replay, memory re-mapping, and more.
Since enabling the SNP CPU feature imposes a number of additional
requirements on host initialization and handling legacy firmware APIs
for SEV/SEV-ES guests, only introduce the CPU feature bit so that the
relevant handling can be added, but leave it disabled via a
disabled-features mask.
Once all the necessary changes needed to maintain legacy SEV/SEV-ES
support are introduced in subsequent patches, the SNP feature bit will
be unmasked/enabled.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Jarkko Sakkinen <jarkko@profian.com>
Signed-off-by: Ashish Kalra <Ashish.Kalra@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240126041126.1927228-2-michael.roth@amd.com
|
|
Compare the opcode bytes at rIP for each #VC exit reason to verify the
instruction which raised the #VC exception is actually the right one.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240105101407.11694-1-bp@alien8.de
|
|
Any FRED enabled CPU will always have the following features as its
baseline:
1) LKGS, load attributes of the GS segment but the base address into
the IA32_KERNEL_GS_BASE MSR instead of the GS segment’s descriptor
cache.
2) WRMSRNS, non-serializing WRMSR for faster MSR writes.
Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-7-xin3.li@intel.com
|
|
On some AMD machines, unknown NMI messages were printed on the console
continuously when using perf command with IBS. It was reported that it
can slow down the kernel. Ratelimit the unknown NMI messages.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Ravi Bangoria <ravi.bangoria@amd.com>
Acked-by: Guilherme Amadio <amadio@gentoo.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20231209015211.357983-1-namhyung@kernel.org
|
|
Add model ranges starting at 0x20, 0x40 and 0x70 to the synthetic
feature flag X86_FEATURE_ZEN5.
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240124220749.2983-1-mario.limonciello@amd.com
|
|
The kernel test robot reported the following warning after commit
54e35eb8611c ("x86/resctrl: Read supported bandwidth sources from CPUID").
even though the issue is present even in the original commit
92bd5a139033 ("x86/resctrl: Add interface to write mbm_total_bytes_config")
which added this function. The reported warning is:
$ make C=1 CHECK=scripts/coccicheck arch/x86/kernel/cpu/resctrl/rdtgroup.o
...
arch/x86/kernel/cpu/resctrl/rdtgroup.c:1621:5-8: Unneeded variable: "ret". Return "0" on line 1655
Remove the local variable 'ret'.
[ bp: Massage commit message, make mbm_config_write_domain() void. ]
Fixes: 92bd5a139033 ("x86/resctrl: Add interface to write mbm_total_bytes_config")
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202401241810.jbd8Ipa1-lkp@intel.com/
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/202401241810.jbd8Ipa1-lkp@intel.com
|
|
The mba_MBps feedback loop increases throttling when a group is using
more bandwidth than the target set by the user in the schemata file, and
decreases throttling when below target.
To avoid possibly stepping throttling up and down on every poll a flag
"delta_comp" is set whenever throttling is changed to indicate that the
actual change in bandwidth should be recorded on the next poll in
"delta_bw". Throttling is only reduced if the current bandwidth plus
delta_bw is below the user target.
This algorithm works well if the workload has steady bandwidth needs.
But it can go badly wrong if the workload moves to a different phase
just as the throttling level changed. E.g. if the workload becomes
essentially idle right as throttling level is increased, the value
calculated for delta_bw will be more or less the old bandwidth level.
If the workload then resumes, Linux may never reduce throttling because
current bandwidth plus delta_bw is above the target set by the user.
Implement a simpler heuristic by assuming that in the worst case the
currently measured bandwidth is being controlled by the current level of
throttling. Compute how much it may increase if throttling is relaxed to
the next higher level. If that is still below the user target, then it
is ok to reduce the amount of throttling.
Fixes: ba0f26d8529c ("x86/intel_rdt/mba_sc: Prepare for feedback loop")
Reported-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Xiaochen Shen <xiaochen.shen@intel.com>
Link: https://lore.kernel.org/r/20240122180807.70518-1-tony.luck@intel.com
|
|
If the BMEC (Bandwidth Monitoring Event Configuration) feature is
supported, the bandwidth events can be configured. The maximum supported
bandwidth bitmask can be read from CPUID:
CPUID_Fn80000020_ECX_x03 [Platform QoS Monitoring Bandwidth Event Configuration]
Bits Description
31:7 Reserved
6:0 Identifies the bandwidth sources that can be tracked.
While at it, move the mask checking to mon_config_write() before
iterating over all the domains. Also, print the valid bitmask when the
user tries to configure invalid event configuration value.
The CPUID details are documented in the Processor Programming Reference
(PPR) Vol 1.1 for AMD Family 19h Model 11h B1 - 55901 Rev 0.25 in the
Link tag.
Fixes: dc2a3e857981 ("x86/resctrl: Add interface to read mbm_total_bytes_config")
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Link: https://lore.kernel.org/r/669896fa512c7451319fa5ca2fdb6f7e015b5635.1705359148.git.babu.moger@amd.com
|
|
The QOS Memory Bandwidth Enforcement Limit is reported by
CPUID_Fn80000020_EAX_x01 and CPUID_Fn80000020_EAX_x02:
Bits Description
31:0 BW_LEN: Size of the QOS Memory Bandwidth Enforcement Limit.
Newer processors can support higher bandwidth limit than the current
hard-coded value. Remove latter and detect using CPUID instead. Also,
update the register variables eax and edx to match the AMD CPUID
definition.
The CPUID details are documented in the Processor Programming Reference
(PPR) Vol 1.1 for AMD Family 19h Model 11h B1 - 55901 Rev 0.25 in the
Link tag below.
Fixes: 4d05bf71f157 ("x86/resctrl: Introduce AMD QOS feature")
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Link: https://lore.kernel.org/r/c26a8ca79d399ed076cf8bf2e9fbc58048808289.1705359148.git.babu.moger@amd.com
|
|
Add a synthetic feature flag for Zen5.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240104201138.5072-1-bp@alien8.de
|
|
In a "W=1" build gcc throws a warning:
arch/x86/kernel/cpu/resctrl/core.c: In function ‘cache_alloc_hsw_probe’:
arch/x86/kernel/cpu/resctrl/core.c:139:16: warning: variable ‘h’ set but not used
Switch from wrmsr_safe() to wrmsrl_safe(), and from rdmsr() to rdmsrl()
using a single u64 argument for the MSR value instead of the pair of u32
for the high and low halves.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/ZULCd/TGJL9Dmncf@agluck-desk3
|
|
Several inlined functions subject to paravirt patching are referencing
BUG_func() after the recent switch to the alternative patching
mechanism.
As those functions can legally be used by non-GPL modules, BUG_func()
must be usable by those modules, too. So use EXPORT_SYMBOL() when
exporting BUG_func().
Fixes: 9824b00c2b58 ("x86/paravirt: Move some functions and defines to alternative.c")
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240109082232.22657-1-jgross@suse.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
Pull RTC updates from Alexandre Belloni:
"There are three new drivers this cycle. Also the cmos driver is
getting fixes for longstanding wakeup issues on AMD.
New drivers:
- Analog Devices MAX31335
- Nuvoton ma35d1
- Texas Instrument TPS6594 PMIC RTC
Drivers:
- cmos: use ACPI alarm instead of HPET on recent AMD platforms
- nuvoton: add NCT3015Y-R and NCT3018Y-R support
- rv8803: proper suspend/resume and wakeup-source support"
* tag 'rtc-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux: (26 commits)
rtc: nuvoton: Compatible with NCT3015Y-R and NCT3018Y-R
rtc: da9063: Use dev_err_probe()
rtc: da9063: Use device_get_match_data()
rtc: da9063: Make IRQ as optional
rtc: max31335: Fix comparison in max31335_volatile_reg()
rtc: max31335: use regmap_update_bits_check
rtc: max31335: remove unecessary locking
rtc: max31335: add driver support
dt-bindings: rtc: max31335: add max31335 bindings
rtc: rv8803: add wakeup-source support
rtc: ac100: remove misuses of kernel-doc
rtc: class: Remove usage of the deprecated ida_simple_xx() API
rtc: MAINTAINERS: drop Alessandro Zummo
rtc: ma35d1: remove hardcoded UIE support
dt-bindings: rtc: qcom-pm8xxx: fix inconsistent example
rtc: rv8803: Add power management support
rtc: ds3232: avoid unused-const-variable warning
rtc: lpc24xx: add missing dependency
rtc: tps6594: Add driver for TPS6594 RTC
rtc: Add driver for Nuvoton ma35d1 rtc controller
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull iommu updates from Joerg Roedel:
"Core changes:
- Fix race conditions in device probe path
- Retire IOMMU bus_ops
- Support for passing custom allocators to page table drivers
- Clean up Kconfig around IOMMU_SVA
- Support for sharing SVA domains with all devices bound to a mm
- Firmware data parsing cleanup
- Tracing improvements for iommu-dma code
- Some smaller fixes and cleanups
ARM-SMMU drivers:
- Device-tree binding updates:
- Add additional compatible strings for Qualcomm SoCs
- Document Adreno clocks for Qualcomm's SM8350 SoC
- SMMUv2:
- Implement support for the ->domain_alloc_paging() callback
- Ensure Secure context is restored following suspend of Qualcomm
SMMU implementation
- SMMUv3:
- Disable stalling mode for the "quiet" context descriptor
- Minor refactoring and driver cleanups
Intel VT-d driver:
- Cleanup and refactoring
AMD IOMMU driver:
- Improve IO TLB invalidation logic
- Small cleanups and improvements
Rockchip IOMMU driver:
- DT binding update to add Rockchip RK3588
Apple DART driver:
- Apple M1 USB4/Thunderbolt DART support
- Cleanups
Virtio IOMMU driver:
- Add support for iotlb_sync_map
- Enable deferred IO TLB flushes"
* tag 'iommu-updates-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (66 commits)
iommu: Don't reserve 0-length IOVA region
iommu/vt-d: Move inline helpers to header files
iommu/vt-d: Remove unused vcmd interfaces
iommu/vt-d: Remove unused parameter of intel_pasid_setup_pass_through()
iommu/vt-d: Refactor device_to_iommu() to retrieve iommu directly
iommu/sva: Fix memory leak in iommu_sva_bind_device()
dt-bindings: iommu: rockchip: Add Rockchip RK3588
iommu/dma: Trace bounce buffer usage when mapping buffers
iommu/arm-smmu: Convert to domain_alloc_paging()
iommu/arm-smmu: Pass arm_smmu_domain to internal functions
iommu/arm-smmu: Implement IOMMU_DOMAIN_BLOCKED
iommu/arm-smmu: Convert to a global static identity domain
iommu/arm-smmu: Reorganize arm_smmu_domain_add_master()
iommu/arm-smmu-v3: Remove ARM_SMMU_DOMAIN_NESTED
iommu/arm-smmu-v3: Master cannot be NULL in arm_smmu_write_strtab_ent()
iommu/arm-smmu-v3: Add a type for the STE
iommu/arm-smmu-v3: disable stall for quiet_cd
iommu/qcom: restore IOMMU state if needed
iommu/arm-smmu-qcom: Add QCM2290 MDSS compatible
iommu/arm-smmu-qcom: Add missing GMU entry to match table
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 TDX updates from Dave Hansen:
"This contains the initial support for host-side TDX support so that
KVM can run TDX-protected guests. This does not include the actual
KVM-side support which will come from the KVM folks. The TDX host
interactions with kexec also needs to be ironed out before this is
ready for prime time, so this code is currently Kconfig'd off when
kexec is on.
The majority of the code here is the kernel telling the TDX module
which memory to protect and handing some additional memory over to it
to use to store TDX module metadata. That sounds pretty simple, but
the TDX architecture is rather flexible and it takes quite a bit of
back-and-forth to say, "just protect all memory, please."
There is also some code tacked on near the end of the series to handle
a hardware erratum. The erratum can make software bugs such as a
kernel write to TDX-protected memory cause a machine check and
masquerade as a real hardware failure. The erratum handling watches
out for these and tries to provide nicer user errors"
* tag 'x86_tdx_for_6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
x86/virt/tdx: Make TDX host depend on X86_MCE
x86/virt/tdx: Disable TDX host support when kexec is enabled
Documentation/x86: Add documentation for TDX host support
x86/mce: Differentiate real hardware #MCs from TDX erratum ones
x86/cpu: Detect TDX partial write machine check erratum
x86/virt/tdx: Handle TDX interaction with sleep and hibernation
x86/virt/tdx: Initialize all TDMRs
x86/virt/tdx: Configure global KeyID on all packages
x86/virt/tdx: Configure TDX module with the TDMRs and global KeyID
x86/virt/tdx: Designate reserved areas for all TDMRs
x86/virt/tdx: Allocate and set up PAMTs for TDMRs
x86/virt/tdx: Fill out TDMRs to cover all TDX memory regions
x86/virt/tdx: Add placeholder to construct TDMRs to cover all TDX memory regions
x86/virt/tdx: Get module global metadata for module initialization
x86/virt/tdx: Use all system memory when initializing TDX module as TDX memory
x86/virt/tdx: Add skeleton to enable TDX on demand
x86/virt/tdx: Add SEAMCALL error printing for module initialization
x86/virt/tdx: Handle SEAMCALL no entropy error in common code
x86/virt/tdx: Make INTEL_TDX_HOST depend on X86_X2APIC
x86/virt/tdx: Define TDX supported page sizes as macros
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here are the set of driver core and kernfs changes for 6.8-rc1.
Nothing major in here this release cycle, just lots of small cleanups
and some tweaks on kernfs that in the very end, got reverted and will
come back in a safer way next release cycle.
Included in here are:
- more driver core 'const' cleanups and fixes
- fw_devlink=rpm is now the default behavior
- kernfs tiny changes to remove some string functions
- cpu handling in the driver core is updated to work better on many
systems that add topologies and cpus after booting
- other minor changes and cleanups
All of the cpu handling patches have been acked by the respective
maintainers and are coming in here in one series. Everything has been
in linux-next for a while with no reported issues"
* tag 'driver-core-6.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (51 commits)
Revert "kernfs: convert kernfs_idr_lock to an irq safe raw spinlock"
kernfs: convert kernfs_idr_lock to an irq safe raw spinlock
class: fix use-after-free in class_register()
PM: clk: make pm_clk_add_notifier() take a const pointer
EDAC: constantify the struct bus_type usage
kernfs: fix reference to renamed function
driver core: device.h: fix Excess kernel-doc description warning
driver core: class: fix Excess kernel-doc description warning
driver core: mark remaining local bus_type variables as const
driver core: container: make container_subsys const
driver core: bus: constantify subsys_register() calls
driver core: bus: make bus_sort_breadthfirst() take a const pointer
kernfs: d_obtain_alias(NULL) will do the right thing...
driver core: Better advertise dev_err_probe()
kernfs: Convert kernfs_path_from_node_locked() from strlcpy() to strscpy()
kernfs: Convert kernfs_name_locked() from strlcpy() to strscpy()
kernfs: Convert kernfs_walk_ns() from strlcpy() to strscpy()
initramfs: Expose retained initrd as sysfs file
fs/kernfs/dir: obey S_ISGID
kernel/cgroup: use kernfs_create_dir_ns()
...
|