Age | Commit message (Collapse) | Author | Files | Lines |
|
$ make CC=clang clang-analyzer
(needs clang-tidy installed on the system too)
on x86_64 defconfig triggers:
arch/x86/kernel/cpu/cacheinfo.c:880:24: warning: Value stored to 'this_cpu_ci' \
during its initialization is never read [clang-analyzer-deadcode.DeadStores]
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
^
arch/x86/kernel/cpu/cacheinfo.c:880:24: note: Value stored to 'this_cpu_ci' \
during its initialization is never read
So simply remove this unneeded dead-store initialization.
As compilers will detect this unneeded assignment and optimize this
anyway the resulting object code is identical before and after this
change.
No functional change. No change to object code.
[ bp: Massage commit message. ]
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lkml.kernel.org/r/1617177624-24670-1-git-send-email-yang.lee@linux.alibaba.com
|
|
Commit 8cdddd182bd7 ("ACPI: processor: Fix CPU0 wakeup in
acpi_idle_play_dead()") tried to fix CPU0 hotplug breakage by copying
wakeup_cpu0() + start_cpu0() logic from hlt_play_dead()//mwait_play_dead()
into acpi_idle_play_dead(). The problem is that these functions are not
exported to modules so when CONFIG_ACPI_PROCESSOR=m build fails.
The issue could've been fixed by exporting both wakeup_cpu0()/start_cpu0()
(the later from assembly) but it seems putting the whole pattern into a
new function and exporting it instead is better.
Reported-by: kernel test robot <lkp@intel.com>
Fixes: 8cdddd182bd7 ("CPI: processor: Fix CPU0 wakeup in acpi_idle_play_dead()")
Cc: <stable@vger.kernel.org> # 5.10+
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
And extract sgx_set_attribute() out of sgx_ioc_enclave_provision() and
export it as symbol for KVM to use.
The provisioning key is sensitive. The SGX driver only allows to create
an enclave which can access the provisioning key when the enclave
creator has permission to open /dev/sgx_provision. It should apply to
a VM as well, as the provisioning key is platform-specific, thus an
unrestricted VM can also potentially compromise the provisioning key.
Move the provisioning device creation out of sgx_drv_init() to
sgx_init() as a preparation for adding SGX virtualization support,
so that even if the SGX driver is not enabled due to flexible launch
control not being available, SGX virtualization can still be enabled,
and use it to restrict a VM's capability of being able to access the
provisioning key.
[ bp: Massage commit message. ]
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/0f4d044d621561f26d5f4ef73e8dc6cd18cc7e79.1616136308.git.kai.huang@intel.com
|
|
The host kernel must intercept ECREATE to impose policies on guests, and
intercept EINIT to be able to write guest's virtual SGX_LEPUBKEYHASH MSR
values to hardware before running guest's EINIT so it can run correctly
according to hardware behavior.
Provide wrappers around __ecreate() and __einit() to hide the ugliness
of overloading the ENCLS return value to encode multiple error formats
in a single int. KVM will trap-and-execute ECREATE and EINIT as part
of SGX virtualization, and reflect ENCLS execution result to guest by
setting up guest's GPRs, or on an exception, injecting the correct fault
based on return value of __ecreate() and __einit().
Use host userspace addresses (provided by KVM based on guest physical
address of ENCLS parameters) to execute ENCLS/EINIT when possible.
Accesses to both EPC and memory originating from ENCLS are subject to
segmentation and paging mechanisms. It's also possible to generate
kernel mappings for ENCLS parameters by resolving PFN but using
__uaccess_xx() is simpler.
[ bp: Return early if the __user memory accesses fail, use
cpu_feature_enabled(). ]
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/20e09daf559aa5e9e680a0b4b5fba940f1bad86e.1616136308.git.kai.huang@intel.com
|
|
Add a helper to update SGX_LEPUBKEYHASHn MSRs. SGX virtualization also
needs to update those MSRs based on guest's "virtual" SGX_LEPUBKEYHASHn
before EINIT from guest.
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/dfb7cd39d4dd62ea27703b64afdd8bccb579f623.1616136308.git.kai.huang@intel.com
|
|
Add a helper to extract the fault indicator from an encoded ENCLS return
value. SGX virtualization will also need to detect ENCLS faults.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/c1f955898110de2f669da536fc6cf62e003dff88.1616136308.git.kai.huang@intel.com
|
|
Move the ENCLS leaf definitions to sgx.h so that they can be used by
KVM.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/2e6cd7c5c1ced620cfcd292c3c6c382827fde6b2.1616136308.git.kai.huang@intel.com
|
|
Expose SGX architectural structures, as KVM will use many of the
architectural constants and structs to virtualize SGX.
Name the new header file as asm/sgx.h, rather than asm/sgx_arch.h, to
have single header to provide SGX facilities to share with other kernel
componments. Also update MAINTAINERS to include asm/sgx.h.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/6bf47acd91ab4d709e66ad1692c7803e4c9063a0.1616136308.git.kai.huang@intel.com
|
|
Modify sgx_init() to always try to initialize the virtual EPC driver,
even if the SGX driver is disabled. The SGX driver might be disabled
if SGX Launch Control is in locked mode, or not supported in the
hardware at all. This allows (non-Linux) guests that support non-LC
configurations to use SGX.
[ bp: De-silli-fy the test. ]
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/d35d17a02bbf8feef83a536cec8b43746d4ea557.1616136308.git.kai.huang@intel.com
|
|
The kernel will currently disable all SGX support if the hardware does
not support launch control. Make it more permissive to allow SGX
virtualization on systems without Launch Control support. This will
allow KVM to expose SGX to guests that have less-strict requirements on
the availability of flexible launch control.
Improve error message to distinguish between three cases. There are two
cases where SGX support is completely disabled:
1) SGX has been disabled completely by the BIOS
2) SGX LC is locked by the BIOS. Bare-metal support is disabled because
of LC unavailability. SGX virtualization is unavailable (because of
Kconfig).
One where it is partially available:
3) SGX LC is locked by the BIOS. Bare-metal support is disabled because
of LC unavailability. SGX virtualization is supported.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/b3329777076509b3b601550da288c8f3c406a865.1616136308.git.kai.huang@intel.com
|
|
Add a misc device /dev/sgx_vepc to allow userspace to allocate "raw"
Enclave Page Cache (EPC) without an associated enclave. The intended
and only known use case for raw EPC allocation is to expose EPC to a
KVM guest, hence the 'vepc' moniker, virt.{c,h} files and X86_SGX_KVM
Kconfig.
The SGX driver uses the misc device /dev/sgx_enclave to support
userspace in creating an enclave. Each file descriptor returned from
opening /dev/sgx_enclave represents an enclave. Unlike the SGX driver,
KVM doesn't control how the guest uses the EPC, therefore EPC allocated
to a KVM guest is not associated with an enclave, and /dev/sgx_enclave
is not suitable for allocating EPC for a KVM guest.
Having separate device nodes for the SGX driver and KVM virtual EPC also
allows separate permission control for running host SGX enclaves and KVM
SGX guests.
To use /dev/sgx_vepc to allocate a virtual EPC instance with particular
size, the hypervisor opens /dev/sgx_vepc, and uses mmap() with the
intended size to get an address range of virtual EPC. Then it may use
the address range to create one KVM memory slot as virtual EPC for
a guest.
Implement the "raw" EPC allocation in the x86 core-SGX subsystem via
/dev/sgx_vepc rather than in KVM. Doing so has two major advantages:
- Does not require changes to KVM's uAPI, e.g. EPC gets handled as
just another memory backend for guests.
- EPC management is wholly contained in the SGX subsystem, e.g. SGX
does not have to export any symbols, changes to reclaim flows don't
need to be routed through KVM, SGX's dirty laundry doesn't have to
get aired out for the world to see, and so on and so forth.
The virtual EPC pages allocated to guests are currently not reclaimable.
Reclaiming an EPC page used by enclave requires a special reclaim
mechanism separate from normal page reclaim, and that mechanism is not
supported for virutal EPC pages. Due to the complications of handling
reclaim conflicts between guest and host, reclaiming virtual EPC pages
is significantly more complex than basic support for SGX virtualization.
[ bp:
- Massage commit message and comments
- use cpu_feature_enabled()
- vertically align struct members init
- massage Virtual EPC clarification text
- move Kconfig prompt to Virtualization ]
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/0c38ced8c8e5a69872db4d6a1c0dabd01e07cad7.1616136308.git.kai.huang@intel.com
|
|
* acpi-tables:
ACPI: tables: x86: Reserve memory occupied by ACPI tables
* acpi-scan:
ACPI: scan: Fix _STA getting called on devices with unmet dependencies
|
|
Currently, optimize_nops() scans to see if the alternative starts with
NOPs. However, the emit pattern is:
141: \oldinstr
142: .skip (len-(142b-141b)), 0x90
That is, when 'oldinstr' is short, the tail is padded with NOPs. This case
never gets optimized.
Rewrite optimize_nops() to replace any trailing string of NOPs inside
the alternative to larger NOPs. Also run it irrespective of patching,
replacing NOPs in both the original and replaced code.
A direct consequence is that 'padlen' becomes superfluous, so remove it.
[ bp:
- Adjust commit message
- remove a stale comment about needing to pad
- add a comment in optimize_nops()
- exit early if the NOP verif. loop catches a mismatch - function
should not not add NOPs in that case
- fix the "optimized NOPs" offsets output ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210326151259.442992235@infradead.org
|
|
a semantic conflict
Conflict-merge this main commit in essence:
a89dfde3dc3c: ("x86: Remove dynamic NOP selection")
With this upstream commit:
b90829704780: ("bpf: Use NOP_ATOMIC5 instead of emit_nops(&prog, 5) for BPF_TRAMP_F_CALL_ORIG")
Semantic merge conflict:
arch/x86/net/bpf_jit_comp.c
- memcpy(prog, ideal_nops[NOP_ATOMIC5], X86_PATCH_SIZE);
+ memcpy(prog, x86_nops[5], X86_PATCH_SIZE);
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
In particular we want to have this upstream commit:
b90829704780: ("bpf: Use NOP_ATOMIC5 instead of emit_nops(&prog, 5) for BPF_TRAMP_F_CALL_ORIG")
... before merging in x86/cpu changes and the removal of the NOP optimizations, and
applying PeterZ's !retpoline objtool series.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Commit 496121c02127 ("ACPI: processor: idle: Allow probing on platforms
with one ACPI C-state") broke CPU0 hotplug on certain systems, e.g.
I'm observing the following on AWS Nitro (e.g r5b.xlarge but other
instance types are affected as well):
# echo 0 > /sys/devices/system/cpu/cpu0/online
# echo 1 > /sys/devices/system/cpu/cpu0/online
<10 seconds delay>
-bash: echo: write error: Input/output error
In fact, the above mentioned commit only revealed the problem and did
not introduce it. On x86, to wakeup CPU an NMI is being used and
hlt_play_dead()/mwait_play_dead() loops are prepared to handle it:
/*
* If NMI wants to wake up CPU0, start CPU0.
*/
if (wakeup_cpu0())
start_cpu0();
cpuidle_play_dead() -> acpi_idle_play_dead() (which is now being called on
systems where it wasn't called before the above mentioned commit) serves
the same purpose but it doesn't have a path for CPU0. What happens now on
wakeup is:
- NMI is sent to CPU0
- wakeup_cpu0_nmi() works as expected
- we get back to while (1) loop in acpi_idle_play_dead()
- safe_halt() puts CPU0 to sleep again.
The straightforward/minimal fix is add the special handling for CPU0 on x86
and that's what the patch is doing.
Fixes: 496121c02127 ("ACPI: processor: idle: Allow probing on platforms with one ACPI C-state")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: 5.10+ <stable@vger.kernel.org> # 5.10+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Pick up dependent changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
Add a helper to decode kernel instructions; there's no point in
endlessly repeating those last two arguments.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210326151259.379242587@infradead.org
|
|
To prevent another incidental removal of the IRQ2 ignore logic in the
IO/APIC code going unnoticed add a sanity check. Add some commentry at the
other place which ignores IRQ2 while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210318192819.795280387@linutronix.de
|
|
The following problem has been reported by George Kennedy:
Since commit 7fef431be9c9 ("mm/page_alloc: place pages to tail
in __free_pages_core()") the following use after free occurs
intermittently when ACPI tables are accessed.
BUG: KASAN: use-after-free in ibft_init+0x134/0xc49
Read of size 4 at addr ffff8880be453004 by task swapper/0/1
CPU: 3 PID: 1 Comm: swapper/0 Not tainted 5.12.0-rc1-7a7fd0d #1
Call Trace:
dump_stack+0xf6/0x158
print_address_description.constprop.9+0x41/0x60
kasan_report.cold.14+0x7b/0xd4
__asan_report_load_n_noabort+0xf/0x20
ibft_init+0x134/0xc49
do_one_initcall+0xc4/0x3e0
kernel_init_freeable+0x5af/0x66b
kernel_init+0x16/0x1d0
ret_from_fork+0x22/0x30
ACPI tables mapped via kmap() do not have their mapped pages
reserved and the pages can be "stolen" by the buddy allocator.
Apparently, on the affected system, the ACPI table in question is
not located in "reserved" memory, like ACPI NVS or ACPI Data, that
will not be used by the buddy allocator, so the memory occupied by
that table has to be explicitly reserved to prevent the buddy
allocator from using it.
In order to address this problem, rearrange the initialization of the
ACPI tables on x86 to locate the initial tables earlier and reserve
the memory occupied by them.
The other architectures using ACPI should not be affected by this
change.
Link: https://lore.kernel.org/linux-acpi/1614802160-29362-1-git-send-email-george.kennedy@oracle.com/
Reported-by: George Kennedy <george.kennedy@oracle.com>
Tested-by: George Kennedy <george.kennedy@oracle.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: 5.10+ <stable@vger.kernel.org> # 5.10+
|
|
Bus locks degrade performance for the whole system, not just for the CPU
that requested the bus lock. Two CPU features "#AC for split lock" and
"#DB for bus lock" provide hooks so that the operating system may choose
one of several mitigation strategies.
#AC for split lock is already implemented. Add code to use the #DB for
bus lock feature to cover additional situations with new options to
mitigate.
split_lock_detect=
#AC for split lock #DB for bus lock
off Do nothing Do nothing
warn Kernel OOPs Warn once per task and
Warn once per task and and continues to run.
disable future checking
When both features are
supported, warn in #AC
fatal Kernel OOPs Send SIGBUS to user.
Send SIGBUS to user
When both features are
supported, fatal in #AC
ratelimit:N Do nothing Limit bus lock rate to
N per second in the
current non-root user.
Default option is "warn".
Hardware only generates #DB for bus lock detect when CPL>0 to avoid
nested #DB from multiple bus locks while the first #DB is being handled.
So no need to handle #DB for bus lock detected in the kernel.
#DB for bus lock is enabled by bus lock detection bit 2 in DEBUGCTL MSR
while #AC for split lock is enabled by split lock detection bit 29 in
TEST_CTRL MSR.
Both breakpoint and bus lock in the same instruction can trigger one #DB.
The bus lock is handled before the breakpoint in the #DB handler.
Delivery of #DB for bus lock in userspace clears DR6[11], which is set by
the #DB handler right after reading DR6.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/r/20210322135325.682257-3-fenghua.yu@intel.com
|
|
cpu_current_top_of_stack is currently stored in TSS.sp1. TSS is exposed
through the cpu_entry_area which is visible with user CR3 when PTI is
enabled and active.
This makes it a coveted fruit for attackers. An attacker can fetch the
kernel stack top from it and continue next steps of actions based on the
kernel stack.
But it is actualy not necessary to be stored in the TSS. It is only
accessed after the entry code switched to kernel CR3 and kernel GS_BASE
which means it can be in any regular percpu variable.
The reason why it is in TSS is historical (pre PTI) because TSS is also
used as scratch space in SYSCALL_64 and therefore cache hot.
A syscall also needs the per CPU variable current_task and eventually
__preempt_count, so placing cpu_current_top_of_stack next to them makes it
likely that they end up in the same cache line which should avoid
performance regressions. This is not enforced as the compiler is free to
place these variables, so these entry relevant variables should move into
a data structure to make this enforceable.
The seccomp_benchmark doesn't show any performance loss in the "getpid
native" test result. Actually, the result changes from 93ns before to 92ns
with this change when KPTI is disabled. The test is very stable and
although the test doesn't show a higher degree of precision it gives enough
confidence that moving cpu_current_top_of_stack does not cause a
regression.
[ tglx: Removed unneeded export. Massaged changelog ]
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210125173444.22696-2-jiangshanlai@gmail.com
|
|
When the TSC frequency is known because it is retrieved from the
hypervisor, skip TSC refined calibration by setting X86_FEATURE_TSC_KNOWN_FREQ.
Signed-off-by: Alexey Makhalov <amakhalov@vmware.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210105004752.131069-1-amakhalov@vmware.com
|
|
SGX driver can accurately track how enclave pages are used. This
enables SECS to be specifically targeted and EREMOVE'd only after all
child pages have been EREMOVE'd. This ensures that SGX driver will
never encounter SGX_CHILD_PRESENT in normal operation.
Virtual EPC is different. The host does not track how EPC pages are
used by the guest, so it cannot guarantee EREMOVE success. It might,
for instance, encounter a SECS with a non-zero child count.
Add a definition of SGX_CHILD_PRESENT. It will be used exclusively by
the SGX virtualization driver to handle recoverable EREMOVE errors when
saniziting EPC pages after they are freed.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/050b198e882afde7e6eba8e6a0d4da39161dbb5a.1616136308.git.kai.huang@intel.com
|
|
EREMOVE takes a page and removes any association between that page and
an enclave. It must be run on a page before it can be added into another
enclave. Currently, EREMOVE is run as part of pages being freed into the
SGX page allocator. It is not expected to fail, as it would indicate a
use-after-free of EPC pages. Rather than add the page back to the pool
of available EPC pages, the kernel intentionally leaks the page to avoid
additional errors in the future.
However, KVM does not track how guest pages are used, which means that
SGX virtualization use of EREMOVE might fail. Specifically, it is
legitimate that EREMOVE returns SGX_CHILD_PRESENT for EPC assigned to
KVM guest, because KVM/kernel doesn't track SECS pages.
To allow SGX/KVM to introduce a more permissive EREMOVE helper and
to let the SGX virtualization code use the allocator directly, break
out the EREMOVE call from the SGX page allocator. Rename the original
sgx_free_epc_page() to sgx_encl_free_epc_page(), indicating that
it is used to free an EPC page assigned to a host enclave. Replace
sgx_free_epc_page() with sgx_encl_free_epc_page() in all call sites so
there's no functional change.
At the same time, improve the error message when EREMOVE fails, and
add documentation to explain to the user what that failure means and
to suggest to the user what to do when this bug happens in the case it
happens.
[ bp: Massage commit message, fix typos and sanitize text, simplify. ]
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/20210325093057.122834-1-kai.huang@intel.com
|
|
Add SGX1 and SGX2 feature flags, via CPUID.0x12.0x0.EAX, as scattered
features, since adding a new leaf for only two bits would be wasteful.
As part of virtualizing SGX, KVM will expose the SGX CPUID leafs to its
guest, and to do so correctly needs to query hardware and kernel support
for SGX1 and SGX2.
Suppress both SGX1 and SGX2 from /proc/cpuinfo. SGX1 basically means
SGX, and for SGX2 there is no concrete use case of using it in
/proc/cpuinfo.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/d787827dbfca6b3210ac3e432e3ac1202727e786.1616136308.git.kai.huang@intel.com
|
|
Move SGX_LC feature bit to CPUID dependency table to make clearing all
SGX feature bits easier. Also remove clear_sgx_caps() since it is just
a wrapper of setup_clear_cpu_cap(X86_FEATURE_SGX) now.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/5d4220fd0a39f52af024d3fa166231c1d498dd10.1616136308.git.kai.huang@intel.com
|
|
Address this GCC warning:
arch/x86/kernel/kprobes/core.c:940:1:
warning: 'inline' is not at beginning of declaration [-Wold-style-declaration]
940 | static int nokprobe_inline kprobe_is_ss(struct kprobe_ctlblk *kcb)
| ^~~~~~
[ mingo: Tidied up the changelog. ]
Fixes: 6256e668b7af: ("x86/kprobes: Use int3 instead of debug trap for single-step")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/20210324144502.1154883-1-weiyongjun1@huawei.com
|
|
Fix can_boost() to identify indirect jmp and others using range case
correctly.
Since the condition in switch statement is opcode & 0xf0, it can not
evaluate to 0xff case. This should be under the 0xf0 case. However,
there is no reason to use the conbinations of the bit-masked condition
and lower bit checking.
Use range case to clean up the switch statement too.
Fixes: 6256e668b7 ("x86/kprobes: Use int3 instead of debug trap for single-step")
Reported-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/161666692308.1120877.4675552834049546493.stgit@devnote2
|
|
There are 2 bugs in the can_boost() function because of using
x86 insn decoder. Since the insn->opcode never has a prefix byte,
it can not find CS override prefix in it. And the insn->attr is
the attribute of the opcode, thus inat_is_address_size_prefix(
insn->attr) always returns false.
Fix those by checking each prefix bytes with for_each_insn_prefix
loop and getting the correct attribute for each prefix byte.
Also, this removes unlikely, because this is a slow path.
Fixes: a8d11cd0714f ("kprobes/x86: Consolidate insn decoder users for copying code")
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/161666691162.1120877.2808435205294352583.stgit@devnote2
|
|
kmap() is inefficient and is being replaced by kmap_local_page(), if
possible. There is no readily apparent reason why initp_page needs to be
allocated and kmap'ed() except that 'sigstruct' needs to be page-aligned
and 'token' 512 byte-aligned.
Rather than change it to kmap_local_page(), use kmalloc() instead
because kmalloc() can give this alignment when allocating PAGE_SIZE
bytes.
Remove the alloc_page()/kmap() and replace with kmalloc(PAGE_SIZE, ...)
to get a page aligned kernel address.
In addition, add a comment to document the alignment requirements so that
others don't attempt to 'fix' this again.
[ bp: Massage commit message. ]
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210324182246.2484875-1-ira.weiny@intel.com
|
|
Linux has support for free page reporting now (36e66c554b5c) for
virtualized environment. On Hyper-V when virtually backed VMs are
configured, Hyper-V will advertise cold memory discard capability,
when supported. This patch adds the support to hook into the free
page reporting infrastructure and leverage the Hyper-V cold memory
discard hint hypercall to report/free these pages back to the host.
Signed-off-by: Sunil Muthuswamy <sunilmut@microsoft.com>
Tested-by: Matheus Castello <matheus@castello.eng.br>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lore.kernel.org/r/SN4PR2101MB0880121FA4E2FEC67F35C1DCC0649@SN4PR2101MB0880.namprd21.prod.outlook.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
|
|
Add an injection file in order to specify the IPID too when injecting
an error. One use case example is using the machinery to decode MCEs
collected from other machines.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210314201806.12798-1-bp@alien8.de
|
|
Currently, the first several pages are reserved both to avoid leaking
their contents on systems with L1TF and to avoid corrupting BIOS memory.
Merge the two memory reservations.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210302100406.22059-3-rppt@kernel.org
|
|
The early reservations of memory areas used by the firmware, bootloader,
kernel text and data are spread over setup_arch(). Moreover, some of them
happen *after* memblock allocations, e.g trim_platform_memory_ranges() and
trim_low_memory_range() are called after reserve_real_mode() that allocates
memory.
There was no corruption of these memory regions because memblock always
allocates memory either from the end of memory (in top-down mode) or above
the kernel image (in bottom-up mode). However, the bottom up mode is going
to be updated to span the entire memory [1] to avoid limitations caused by
KASLR.
Consolidate early memory reservations in a dedicated function to improve
robustness against future changes. Having the early reservations in one
place also makes it clearer what memory must be reserved before memblock
allocations are allowed.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Borislav Petkov <bp@suse.de>
Acked-by: David Hildenbrand <david@redhat.com>
Link: [1] https://lore.kernel.org/lkml/20201217201214.3414100-2-guro@fb.com
Link: https://lkml.kernel.org/r/20210302100406.22059-2-rppt@kernel.org
|
|
Use int3 instead of debug trap exception for single-stepping the
probed instructions. Some instructions which change the ip
registers or modify IF flags are emulated because those are not
able to be single-stepped by int3 or may allow the interrupt
while single-stepping.
This actually changes the kprobes behavior.
- kprobes can not probe following instructions; int3, iret,
far jmp/call which get absolute address as immediate,
indirect far jmp/call, indirect near jmp/call with addressing
by memory (register-based indirect jmp/call are OK), and
vmcall/vmlaunch/vmresume/vmxoff.
- If the kprobe post_handler doesn't set before registering,
it may not be called in some case even if you set it afterwards.
(IOW, kprobe booster is enabled at registration, user can not
change it)
But both are rare issue, unsupported instructions will not be
used in the kernel (or rarely used), and post_handlers are
rarely used (I don't see it except for the test code).
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/161469874601.49483.11985325887166921076.stgit@devnote2
|
|
Since Grp5 far indirect JMP is FF "mod 101 r/m", it should be
(modrm & 0x38) == 0x28, and near indirect JMP is also 0x38 == 0x20.
So we can mask modrm with 0x30 and check 0x20.
This is actually what the original code does, it also doesn't care
the last bit. So the result code is same.
Thus, I think this is just a cosmetic cleanup.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/161469873475.49483.13257083019966335137.stgit@devnote2
|
|
Since the opcodes start from 0xff are group5 instruction group which is
not 2 bytes opcode but the extended opcode determined by the MOD/RM byte.
The commit abd82e533d88 ("x86/kprobes: Do not decode opcode in resume_execution()")
used insn->opcode.bytes[1], but that is not correct. We have to refer
the insn->modrm.bytes[1] instead.
Fixes: abd82e533d88 ("x86/kprobes: Do not decode opcode in resume_execution()")
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/161469872400.49483.18214724458034233166.stgit@devnote2
|
|
gcc-11 warns about using string operations on pointers that are
defined at compile time as offsets from a NULL pointer. Unfortunately
that also happens on the result of fix_to_virt(), which is a
compile-time constant for a constant input:
arch/x86/kernel/tboot.c: In function 'tboot_probe':
arch/x86/kernel/tboot.c:70:13: error: '__builtin_memcmp_eq' specified bound 16 exceeds source size 0 [-Werror=stringop-overread]
70 | if (memcmp(&tboot_uuid, &tboot->uuid, sizeof(tboot->uuid))) {
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I hope this can get addressed in gcc-11 before the release.
As a workaround, split up the tboot_probe() function in two halves
to separate the pointer generation from the usage. This is a bit
ugly, and hopefully gcc understands that the code is actually correct
before it learns to peek into the noinline function.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Sebor <msebor@gmail.com>
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99578
Link: https://lore.kernel.org/r/20210322160253.4032422-3-arnd@kernel.org
|
|
Currently, the late microcode loading mechanism checks whether any CPUs
are offlined, and, in such a case, aborts the load attempt.
However, this must be done before the kernel caches new microcode from
the filesystem. Otherwise, when offlined CPUs are onlined later, those
cores are going to be updated through the CPU hotplug notifier callback
with the new microcode, while CPUs previously onine will continue to run
with the older microcode.
For example:
Turn off one core (2 threads):
echo 0 > /sys/devices/system/cpu/cpu3/online
echo 0 > /sys/devices/system/cpu/cpu1/online
Install the ucode fails because a primary SMT thread is offline:
cp intel-ucode/06-8e-09 /lib/firmware/intel-ucode/
echo 1 > /sys/devices/system/cpu/microcode/reload
bash: echo: write error: Invalid argument
Turn the core back on
echo 1 > /sys/devices/system/cpu/cpu3/online
echo 1 > /sys/devices/system/cpu/cpu1/online
cat /proc/cpuinfo |grep microcode
microcode : 0x30
microcode : 0xde
microcode : 0x30
microcode : 0xde
The rationale for why the update is aborted when at least one primary
thread is offline is because even if that thread is soft-offlined
and idle, it will still have to participate in broadcasted MCE's
synchronization dance or enter SMM, and in both examples it will execute
instructions so it better have the same microcode revision as the other
cores.
[ bp: Heavily edit and extend commit message with the reasoning behind all
this. ]
Fixes: 30ec26da9967 ("x86/microcode: Do not upload microcode if CPUs are offline")
Signed-off-by: Otavio Pontes <otavio.pontes@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Acked-by: Ashok Raj <ashok.raj@intel.com>
Link: https://lkml.kernel.org/r/20210319165515.9240-2-otavio.pontes@intel.com
|
|
Fix another ~42 single-word typos in arch/x86/ code comments,
missed a few in the first pass, in particular in .S files.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: linux-kernel@vger.kernel.org
|
|
Conflicts:
arch/x86/kernel/kprobes/ftrace.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
"The freshest pile of shiny x86 fixes for 5.12:
- Add the arch-specific mapping between physical and logical CPUs to
fix devicetree-node lookups
- Restore the IRQ2 ignore logic
- Fix get_nr_restart_syscall() to return the correct restart syscall
number. Split in a 4-patches set to avoid kABI breakage when
backporting to dead kernels"
* tag 'x86_urgent_for_v5.12-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic/of: Fix CPU devicetree-node lookups
x86/ioapic: Ignore IRQ2 again
x86: Introduce restart_block->arch_data to remove TS_COMPAT_RESTART
x86: Introduce TS_COMPAT_RESTART to fix get_nr_restart_syscall()
x86: Move TS_COMPAT back to asm/thread_info.h
kernel, fs: Introduce and use set_restart_fn() and arch_set_restart_data()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux
Pull RISC-V fixes from Palmer Dabbelt:
"A handful of fixes for 5.12:
- fix the SBI remote fence numbers for hypervisor fences, which had
been transcribed in the wrong order in Linux. These fences are only
used with the KVM patches applied.
- fix a whole host of build warnings, these should have no functional
change.
- fix init_resources() to prevent an off-by-one error from causing an
out-of-bounds array reference. This was manifesting during boot on
vexriscv.
- ensure the KASAN mappings are visible before proceeding to use
them"
* tag 'riscv-for-linus-5.12-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux:
riscv: Correct SPARSEMEM configuration
RISC-V: kasan: Declare kasan_shallow_populate() static
riscv: Ensure page table writes are flushed when initializing KASAN vmalloc
RISC-V: Fix out-of-bounds accesses in init_resources()
riscv: Fix compilation error with Canaan SoC
ftrace: Fix spelling mistake "disabed" -> "disabled"
riscv: fix bugon.cocci warnings
riscv: process: Fix no prototype for arch_dup_task_struct
riscv: ftrace: Use ftrace_get_regs helper
riscv: process: Fix no prototype for show_regs
riscv: syscall_table: Reduce W=1 compilation warnings noise
riscv: time: Fix no prototype for time_init
riscv: ptrace: Fix no prototype warnings
riscv: sbi: Fix comment of __sbi_set_timer_v01
riscv: irq: Fix no prototype warning
riscv: traps: Fix no prototype warnings
RISC-V: correct enum sbi_ext_rfence_fid
|
|
New CPU model, same MSRs to control and read the inventory number.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210319173919.291428-1-tony.luck@intel.com
|
|
Architectures that describe the CPU topology in devicetree and do not have
an identity mapping between physical and logical CPU ids must override the
default implementation of arch_match_cpu_phys_id().
Failing to do so breaks CPU devicetree-node lookups using of_get_cpu_node()
and of_cpu_device_node_get() which several drivers rely on. It also causes
the CPU struct devices exported through sysfs to point to the wrong
devicetree nodes.
On x86, CPUs are described in devicetree using their APIC ids and those
do not generally coincide with the logical ids, even if CPU0 typically
uses APIC id 0.
Add the missing implementation of arch_match_cpu_phys_id() so that CPU-node
lookups work also with SMP.
Apart from fixing the broken sysfs devicetree-node links this likely does
not affect current users of mainline kernels on x86.
Fixes: 4e07db9c8db8 ("x86/devicetree: Use CPU description from Device Tree")
Signed-off-by: Johan Hovold <johan@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210312092033.26317-1-johan@kernel.org
|
|
Background
==========
SGX enclave memory is enumerated by the processor in contiguous physical
ranges called Enclave Page Cache (EPC) sections. Currently, there is a
free list per section, but allocations simply target the lowest-numbered
sections. This is functional, but has no NUMA awareness.
Fortunately, EPC sections are covered by entries in the ACPI SRAT table.
These entries allow each EPC section to be associated with a NUMA node,
just like normal RAM.
Solution
========
Implement a NUMA-aware enclave page allocator. Mirror the buddy allocator
and maintain a list of enclave pages for each NUMA node. Attempt to
allocate enclave memory first from local nodes, then fall back to other
nodes.
Note that the fallback is not as sophisticated as the buddy allocator
and is itself not aware of NUMA distances. When a node's free list is
empty, it searches for the next-highest node with enclave pages (and
will wrap if necessary). This could be improved in the future.
Other
=====
NUMA_KEEP_MEMINFO dependency is required for phys_to_target_node().
[ Kai Huang: Do not return NULL from __sgx_alloc_epc_page() because
callers do not expect that and that leads to a NULL ptr deref. ]
[ dhansen: Fix an uninitialized 'nid' variable in
__sgx_alloc_epc_page() as
Reported-by: kernel test robot <lkp@intel.com>
to avoid any potential allocations from the wrong NUMA node or even
premature allocation failures. ]
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/lkml/158188326978.894464.217282995221175417.stgit@dwillia2-desk3.amr.corp.intel.com/
Link: https://lkml.kernel.org/r/20210319040602.178558-1-kai.huang@intel.com
Link: https://lkml.kernel.org/r/20210318214933.29341-1-dave.hansen@intel.com
Link: https://lkml.kernel.org/r/20210317235332.362001-2-jarkko.sakkinen@intel.com
|
|
Reorganize the code and improve the comments to make the function more
readable and easier to understand.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210303141716.29223-4-joro@8bytes.org
|
|
Vitaly ran into an issue with hotplugging CPU0 on an Amazon instance where
the matrix allocator claimed to be out of vectors. He analyzed it down to
the point that IRQ2, the PIC cascade interrupt, which is supposed to be not
ever routed to the IO/APIC ended up having an interrupt vector assigned
which got moved during unplug of CPU0.
The underlying issue is that IRQ2 for various reasons (see commit
af174783b925 ("x86: I/O APIC: Never configure IRQ2" for details) is treated
as a reserved system vector by the vector core code and is not accounted as
a regular vector. The Amazon BIOS has an routing entry of pin2 to IRQ2
which causes the IO/APIC setup to claim that interrupt which is granted by
the vector domain because there is no sanity check. As a consequence the
allocation counter of CPU0 underflows which causes a subsequent unplug to
fail with:
[ ... ] CPU 0 has 4294967295 vectors, 589 available. Cannot disable CPU
There is another sanity check missing in the matrix allocator, but the
underlying root cause is that the IO/APIC code lost the IRQ2 ignore logic
during the conversion to irqdomains.
For almost 6 years nobody complained about this wreckage, which might
indicate that this requirement could be lifted, but for any system which
actually has a PIC IRQ2 is unusable by design so any routing entry has no
effect and the interrupt cannot be connected to a device anyway.
Due to that and due to history biased paranoia reasons restore the IRQ2
ignore logic and treat it as non existent despite a routing entry claiming
otherwise.
Fixes: d32932d02e18 ("x86/irq: Convert IOAPIC to use hierarchical irqdomain interfaces")
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210318192819.636943062@linutronix.de
|
|
There are a few places left in the SEV-ES C code where hlt loops and/or
terminate requests are implemented. Replace them all with calls to
sev_es_terminate().
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210312123824.306-9-joro@8bytes.org
|