Age | Commit message (Collapse) | Author | Files | Lines |
|
Add the option to mitigate using IBPB on a kernel entry. Pull in the
Retbleed alternative so that the IBPB call from there can be used. Also,
if Retbleed mitigation is done using IBPB, the same mitigation can and
must be used here.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
Add support for the CPUID flag which denotes that the CPU is not
affected by SRSO.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
Add support for the synthetic CPUID flag which "if this bit is 1,
it indicates that MSR 49h (PRED_CMD) bit 0 (IBPB) flushes all branch
type predictions from the CPU branch predictor."
This flag is there so that this capability in guests can be detected
easily (otherwise one would have to track microcode revisions which is
impossible for guests).
It is also needed only for Zen3 and -4. The other two (Zen1 and -2)
always flush branch type predictions by default.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
Add a mitigation for the speculative return address stack overflow
vulnerability found on AMD processors.
The mitigation works by ensuring all RET instructions speculate to
a controlled location, similar to how speculation is controlled in the
retpoline sequence. To accomplish this, the __x86_return_thunk forces
the CPU to mispredict every function return using a 'safe return'
sequence.
To ensure the safety of this mitigation, the kernel must ensure that the
safe return sequence is itself free from attacker interference. In Zen3
and Zen4, this is accomplished by creating a BTB alias between the
untraining function srso_untrain_ret_alias() and the safe return
function srso_safe_ret_alias() which results in evicting a potentially
poisoned BTB entry and using that safe one for all function returns.
In older Zen1 and Zen2, this is accomplished using a reinterpretation
technique similar to Retbleed one: srso_untrain_ret() and
srso_safe_ret().
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
Load straight from the containers (initrd or builtin, for example).
There's no need to cache the patch per node.
This even simplifies the code a bit with the opportunity for more
cleanups later.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: John Allen <john.allen@amd.com>
Link: https://lore.kernel.org/r/20230720202813.3269888-1-john.allen@amd.com
|
|
Commit c4e34dd99f2e ("x86: simplify load_unaligned_zeropad()
implementation") changes how exceptions around load_unaligned_zeropad()
handled. The kernel now uses the fault_address in fixup_exception() to
verify the address calculations for the load_unaligned_zeropad().
It works fine for #PF, but breaks on #VE since no fault address is
passed down to fixup_exception().
Propagating ve_info.gla down to fixup_exception() resolves the issue.
See commit 1e7769653b06 ("x86/tdx: Handle load_unaligned_zeropad()
page-cross to a shared page") for more context.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Michael Kelley <mikelley@microsoft.com>
Fixes: c4e34dd99f2e ("x86: simplify load_unaligned_zeropad() implementation")
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Unlike Intel's Enhanced IBRS feature, AMD's Automatic IBRS does not
provide protection to processes running at CPL3/user mode, see section
"Extended Feature Enable Register (EFER)" in the APM v2 at
https://bugzilla.kernel.org/attachment.cgi?id=304652
Explicitly enable STIBP to protect against cross-thread CPL3
branch target injections on systems with Automatic IBRS enabled.
Also update the relevant documentation.
Fixes: e7862eda309e ("x86/cpu: Support AMD Automatic IBRS")
Reported-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230720194727.67022-1-kim.phillips@amd.com
|
|
AMD systems from Family 10h to 16h share MCA bank 4 across multiple CPUs.
Therefore, the threshold_bank structure for bank 4, and its threshold_block
structures, will be initialized once at boot time. And the kobject for the
shared bank will be added to each of the CPUs that share it. Furthermore,
the threshold_blocks for the shared bank will be added again to the bank's
kobject. These additions will increase the refcount for the bank's kobject.
For example, a shared bank with two blocks and shared across two CPUs will
be set up like this:
CPU0 init
bank create and add; bank refcount = 1; threshold_create_bank()
block 0 init and add; bank refcount = 2; allocate_threshold_blocks()
block 1 init and add; bank refcount = 3; allocate_threshold_blocks()
CPU1 init
bank add; bank refcount = 3; threshold_create_bank()
block 0 add; bank refcount = 4; __threshold_add_blocks()
block 1 add; bank refcount = 5; __threshold_add_blocks()
Currently in threshold_remove_bank(), if the bank is shared then
__threshold_remove_blocks() is called. Here the shared bank's kobject and
the bank's blocks' kobjects are deleted. This is done on the first call
even while the structures are still shared. Subsequent calls from other
CPUs that share the structures will attempt to delete the kobjects.
During kobject_del(), kobject->sd is removed. If the kobject is not part of
a kset with default_groups, then subsequent kobject_del() calls seem safe
even with kobject->sd == NULL.
Originally, the AMD MCA thresholding structures did not use default_groups.
And so the above behavior was not apparent.
However, a recent change implemented default_groups for the thresholding
structures. Therefore, kobject_del() will go down the sysfs_remove_groups()
code path. In this case, the first kobject_del() may succeed and remove
kobject->sd. But subsequent kobject_del() calls will give a WARNing in
kernfs_remove_by_name_ns() since kobject->sd == NULL.
Use kobject_put() on the shared bank's kobject when "removing" blocks. This
decrements the bank's refcount while keeping kobjects enabled until the
bank is no longer shared. At that point, kobject_put() will be called on
the blocks which drives their refcount to 0 and deletes them and also
decrementing the bank's refcount. And finally kobject_put() will be called
on the bank driving its refcount to 0 and deleting it.
The same example above:
CPU1 shutdown
bank is shared; bank refcount = 5; threshold_remove_bank()
block 0 put parent bank; bank refcount = 4; __threshold_remove_blocks()
block 1 put parent bank; bank refcount = 3; __threshold_remove_blocks()
CPU0 shutdown
bank is no longer shared; bank refcount = 3; threshold_remove_bank()
block 0 put block; bank refcount = 2; deallocate_threshold_blocks()
block 1 put block; bank refcount = 1; deallocate_threshold_blocks()
put bank; bank refcount = 0; threshold_remove_bank()
Fixes: 7f99cb5e6039 ("x86/CPU/AMD: Use default_groups in kobj_type")
Reported-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/alpine.LRH.2.02.2205301145540.25840@file01.intranet.prod.int.rdu2.redhat.com
|
|
Gather Data Sampling (GDS) is a transient execution attack using
gather instructions from the AVX2 and AVX512 extensions. This attack
allows malicious code to infer data that was previously stored in
vector registers. Systems that are not vulnerable to GDS will set the
GDS_NO bit of the IA32_ARCH_CAPABILITIES MSR. This is useful for VM
guests that may think they are on vulnerable systems that are, in
fact, not affected. Guests that are running on affected hosts where
the mitigation is enabled are protected as if they were running
on an unaffected system.
On all hosts that are not affected or that are mitigated, set the
GDS_NO bit.
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
|
|
Gather Data Sampling (GDS) is mitigated in microcode. However, on
systems that haven't received the updated microcode, disabling AVX
can act as a mitigation. Add a Kconfig option that uses the microcode
mitigation if available and disables AVX otherwise. Setting this
option has no effect on systems not affected by GDS. This is the
equivalent of setting gather_data_sampling=force.
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
|
|
The Gather Data Sampling (GDS) vulnerability allows malicious software
to infer stale data previously stored in vector registers. This may
include sensitive data such as cryptographic keys. GDS is mitigated in
microcode, and systems with up-to-date microcode are protected by
default. However, any affected system that is running with older
microcode will still be vulnerable to GDS attacks.
Since the gather instructions used by the attacker are part of the
AVX2 and AVX512 extensions, disabling these extensions prevents gather
instructions from being executed, thereby mitigating the system from
GDS. Disabling AVX2 is sufficient, but we don't have the granularity
to do this. The XCR0[2] disables AVX, with no option to just disable
AVX2.
Add a kernel parameter gather_data_sampling=force that will enable the
microcode mitigation if available, otherwise it will disable AVX on
affected systems.
This option will be ignored if cmdline mitigations=off.
This is a *big* hammer. It is known to break buggy userspace that
uses incomplete, buggy AVX enumeration. Unfortunately, such userspace
does exist in the wild:
https://www.mail-archive.com/bug-coreutils@gnu.org/msg33046.html
[ dhansen: add some more ominous warnings about disabling AVX ]
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
|
|
A legitimate use case of the MCA infrastructure is to have the firmware
log all uncorrectable errors and also, have the OS see all correctable
errors.
The uncorrectable, UCNA errors are usually configured to be reported
through an SMI. CMCI, which is the correctable error reporting
interrupt, uses SMI too and having both enabled, leads to unnecessary
overhead.
So what ends up happening is, people disable CMCI in the wild and leave
on only the UCNA SMI.
When CMCI is disabled, the MCA infrastructure resorts to polling the MCA
banks. If a MCA MSR is shared between the logical threads, one error
ends up getting logged multiple times as the polling runs on every
logical thread.
Therefore, introduce locking on the Intel side of the polling routine to
prevent such duplicate error records from appearing.
Based on a patch by Aristeu Rozanski <aris@ruivo.org>.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Tony Luck <tony.luck@intel.com>
Acked-by: Aristeu Rozanski <aris@ruivo.org>
Link: https://lore.kernel.org/r/20230515143225.GC4090740@cathedrallabs.org
|
|
Gather Data Sampling (GDS) is a hardware vulnerability which allows
unprivileged speculative access to data which was previously stored in
vector registers.
Intel processors that support AVX2 and AVX512 have gather instructions
that fetch non-contiguous data elements from memory. On vulnerable
hardware, when a gather instruction is transiently executed and
encounters a fault, stale data from architectural or internal vector
registers may get transiently stored to the destination vector
register allowing an attacker to infer the stale data using typical
side channel techniques like cache timing attacks.
This mitigation is different from many earlier ones for two reasons.
First, it is enabled by default and a bit must be set to *DISABLE* it.
This is the opposite of normal mitigation polarity. This means GDS can
be mitigated simply by updating microcode and leaving the new control
bit alone.
Second, GDS has a "lock" bit. This lock bit is there because the
mitigation affects the hardware security features KeyLocker and SGX.
It needs to be enabled and *STAY* enabled for these features to be
mitigated against GDS.
The mitigation is enabled in the microcode by default. Disable it by
setting gather_data_sampling=off or by disabling all mitigations with
mitigations=off. The mitigation status can be checked by reading:
/sys/devices/system/cpu/vulnerabilities/gather_data_sampling
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
|
|
Sync with upstream fixes before applying EEVDF.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Add a fix for the Zen2 VZEROUPPER data corruption bug where under
certain circumstances executing VZEROUPPER can cause register
corruption or leak data.
The optimal fix is through microcode but in the case the proper
microcode revision has not been applied, enable a fallback fix using
a chicken bit.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
Avoid new and remove old forward declarations.
No functional changes.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 CFI fixes from Peter Zijlstra:
"Fix kCFI/FineIBT weaknesses
The primary bug Alyssa noticed was that with FineIBT enabled function
prologues have a spurious ENDBR instruction:
__cfi_foo:
endbr64
subl $hash, %r10d
jz 1f
ud2
nop
1:
foo:
endbr64 <--- *sadface*
This means that any indirect call that fails to target the __cfi
symbol and instead targets (the regular old) foo+0, will succeed due
to that second ENDBR.
Fixing this led to the discovery of a single indirect call that was
still doing this: ret_from_fork(). Since that's an assembly stub the
compiler would not generate the proper kCFI indirect call magic and it
would not get patched.
Brian came up with the most comprehensive fix -- convert the thing to
C with only a very thin asm wrapper. This ensures the kernel thread
boostrap is a proper kCFI call.
While discussing all this, Kees noted that kCFI hashes could/should be
poisoned to seal all functions whose address is never taken, further
limiting the valid kCFI targets -- much like we already do for IBT.
So what was a 'simple' observation and fix cascaded into a bunch of
inter-related CFI infrastructure fixes"
* tag 'x86_urgent_for_6.5_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cfi: Only define poison_cfi() if CONFIG_X86_KERNEL_IBT=y
x86/fineibt: Poison ENDBR at +0
x86: Rewrite ret_from_fork() in C
x86/32: Remove schedule_tail_wrapper()
x86/cfi: Extend ENDBR sealing to kCFI
x86/alternative: Rename apply_ibt_endbr()
x86/cfi: Extend {JMP,CAKK}_NOSPEC comment
|
|
There were reports again that the tsc clocksource on 4 sockets x86
servers was wrongly judged as 'unstable' by 'jiffies' and other
watchdogs, and disabled [1][2].
Commit b50db7095fe0 ("x86/tsc: Disable clocksource watchdog for TSC
on qualified platorms") was introduce to deal with these false
alarms of tsc unstable issues, covering qualified platforms for 2
sockets or smaller ones. And from history of chasing TSC issues,
Thomas and Peter only saw real TSC synchronization issue on 8 socket
machines.
So extend the exemption to 4 sockets to fix the issue.
Rui also proposed another way to disable 'jiffies' as clocksource
watchdog [3], which can also solve problem in [1]. in an architecture
independent way, but can't cure the problem in [2]. whose watchdog
is HPET or PMTIMER, while 'jiffies' is mostly used as watchdog in
boot phase.
'nr_online_nodes' has known inaccurate problem for cases like
platform with cpu-less memory nodes, sub numa cluster enabled,
fakenuma, kernel cmdline parameter 'maxcpus=', etc. The harmful case
is the 'maxcpus' one which could possibly under estimates the package
number, and disable the watchdog, but bright side is it is mostly
for debug usage. All these will be addressed in other patches, as
discussed in thread [4].
[1]. https://lore.kernel.org/all/9d3bf570-3108-0336-9c52-9bee15767d29@huawei.com/
[2]. https://lore.kernel.org/lkml/06df410c-2177-4671-832f-339cff05b1d9@paulmck-laptop/
[3]. https://lore.kernel.org/all/bd5b97f89ab2887543fc262348d1c7cafcaae536.camel@intel.com/
[4]. https://lore.kernel.org/all/20221021062131.1826810-1-feng.tang@intel.com/
Reported-by: Yu Liao <liaoyu15@huawei.com>
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
With the SMT vs non-SMT balancing issues sorted, also enable the
cluster domain for Hybrid machines.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
The x86 Control-flow Enforcement Technology (CET) feature includes a new
type of memory called shadow stack. This shadow stack memory has some
unusual properties, which require some core mm changes to function
properly.
One of the properties is that the shadow stack pointer (SSP), which is a
CPU register that points to the shadow stack like the stack pointer points
to the stack, can't be pointing outside of the 32 bit address space when
the CPU is executing in 32 bit mode. It is desirable to prevent executing
in 32 bit mode when shadow stack is enabled because the kernel can't easily
support 32 bit signals.
On x86 it is possible to transition to 32 bit mode without any special
interaction with the kernel, by doing a "far call" to a 32 bit segment.
So the shadow stack implementation can use this address space behavior
as a feature, by enforcing that shadow stack memory is always mapped
outside of the 32 bit address space. This way userspace will trigger a
general protection fault which will in turn trigger a segfault if it
tries to transition to 32 bit mode with shadow stack enabled.
This provides a clean error generating border for the user if they try
attempt to do 32 bit mode shadow stack, rather than leave the kernel in a
half working state for userspace to be surprised by.
So to allow future shadow stack enabling patches to map shadow stacks
out of the 32 bit address space, introduce MAP_ABOVE4G. The behavior
is pretty much like MAP_32BIT, except that it has the opposite address
range. The are a few differences though.
If both MAP_32BIT and MAP_ABOVE4G are provided, the kernel will use the
MAP_ABOVE4G behavior. Like MAP_32BIT, MAP_ABOVE4G is ignored in a 32 bit
syscall.
Since the default search behavior is top down, the normal kaslr base can
be used for MAP_ABOVE4G. This is unlike MAP_32BIT which has to add its
own randomization in the bottom up case.
For MAP_32BIT, only the bottom up search path is used. For MAP_ABOVE4G
both are potentially valid, so both are used. In the bottomup search
path, the default behavior is already consistent with MAP_ABOVE4G since
mmap base should be above 4GB.
Without MAP_ABOVE4G, the shadow stack will already normally be above 4GB.
So without introducing MAP_ABOVE4G, trying to transition to 32 bit mode
with shadow stack enabled would usually segfault anyway. This is already
pretty decent guard rails. But the addition of MAP_ABOVE4G is some small
complexity spent to make it make it more complete.
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-21-rick.p.edgecombe%40intel.com
|
|
The Control-Flow Enforcement Technology contains two related features,
one of which is Shadow Stacks. Future patches will utilize this feature
for shadow stack support in KVM, so add a CPU feature flags for Shadow
Stacks (CPUID.(EAX=7,ECX=0):ECX[bit 7]).
To protect shadow stack state from malicious modification, the registers
are only accessible in supervisor mode. This implementation
context-switches the registers with XSAVES. Make X86_FEATURE_SHSTK depend
on XSAVES.
The shadow stack feature, enumerated by the CPUID bit described above,
encompasses both supervisor and userspace support for shadow stack. In
near future patches, only userspace shadow stack will be enabled. In
expectation of future supervisor shadow stack support, create a software
CPU capability to enumerate kernel utilization of userspace shadow stack
support. This user shadow stack bit should depend on the HW "shstk"
capability and that logic will be implemented in future patches.
Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-9-rick.p.edgecombe%40intel.com
|
|
Today the control protection handler is defined in traps.c and used only
for the kernel IBT feature. To reduce ifdeffery, move it to it's own file.
In future patches, functionality will be added to make this handler also
handle user shadow stack faults. So name the file cet.c.
No functional change.
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-8-rick.p.edgecombe%40intel.com
|
|
poison_cfi() was introduced in:
9831c6253ace ("x86/cfi: Extend ENDBR sealing to kCFI")
... but it's only ever used under CONFIG_X86_KERNEL_IBT=y,
and if that option is disabled, we get:
arch/x86/kernel/alternative.c:1243:13: error: ‘poison_cfi’ defined but not used [-Werror=unused-function]
Guard the definition with CONFIG_X86_KERNEL_IBT.
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
This is now unused, so can remove it.
Link: https://lore.kernel.org/linux-trace-kernel/20230623091640.21952-1-yuehaibing@huawei.com
Cc: <mark.rutland@arm.com>
Cc: <tglx@linutronix.de>
Cc: <mingo@redhat.com>
Cc: <bp@alien8.de>
Cc: <dave.hansen@linux.intel.com>
Cc: <x86@kernel.org>
Cc: <hpa@zytor.com>
Cc: <peterz@infradead.org>
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Alyssa noticed that when building the kernel with CFI_CLANG+IBT and
booting on IBT enabled hardware to obtain FineIBT, the indirect
functions look like:
__cfi_foo:
endbr64
subl $hash, %r10d
jz 1f
ud2
nop
1:
foo:
endbr64
This is because the compiler generates code for kCFI+IBT. In that case
the caller does the hash check and will jump to +0, so there must be
an ENDBR there. The compiler doesn't know about FineIBT at all; also
it is possible to actually use kCFI+IBT when booting with 'cfi=kcfi'
on IBT enabled hardware.
Having this second ENDBR however makes it possible to elide the CFI
check. Therefore, we should poison this second ENDBR when switching to
FineIBT mode.
Fixes: 931ab63664f0 ("x86/ibt: Implement FineIBT")
Reported-by: "Milburn, Alyssa" <alyssa.milburn@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lore.kernel.org/r/20230615193722.194131053@infradead.org
|
|
When kCFI is enabled, special handling is needed for the indirect call
to the kernel thread function. Rewrite the ret_from_fork() function in
C so that the compiler can properly handle the indirect call.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lkml.kernel.org/r/20230623225529.34590-3-brgerst@gmail.com
|
|
Kees noted that IBT sealing could be extended to kCFI.
Fundamentally it is the list of functions that do not have their
address taken and are thus never called indirectly. It doesn't matter
that objtool uses IBT infrastructure to determine this list, once we
have it it can also be used to clobber kCFI hashes and avoid kCFI
indirect calls.
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lkml.kernel.org/r/20230622144321.494426891%40infradead.org
|
|
The current name doesn't reflect what it does very well.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lkml.kernel.org/r/20230622144321.427441595%40infradead.org
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fix from Thomas Gleixner:
"A single fix for the mechanism to park CPUs with an INIT IPI.
On shutdown or kexec, the kernel tries to park the non-boot CPUs with
an INIT IPI. But the same code path is also used by the crash utility.
If the CPU which panics is not the boot CPU then it sends an INIT IPI
to the boot CPU which resets the machine.
Prevent this by validating that the CPU which runs the stop mechanism
is the boot CPU. If not, leave the other CPUs in HLT"
* tag 'x86-core-2023-07-09' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/smp: Don't send INIT to boot CPU
|
|
Parking CPUs in INIT works well, except for the crash case when the CPU
which invokes smp_park_other_cpus_in_init() is not the boot CPU. Sending
INIT to the boot CPU resets the whole machine.
Prevent this by validating that this runs on the boot CPU. If not fall back
and let CPUs hang in HLT.
Fixes: 45e34c8af58f ("x86/smp: Put CPUs into INIT on shutdown if possible")
Reported-by: Baokun Li <libaokun1@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Baokun Li <libaokun1@huawei.com>
Link: https://lore.kernel.org/r/87ttui91jo.ffs@tglx
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing updates from Steven Rostedt:
- Add new feature to have function graph tracer record the return
value. Adds a new option: funcgraph-retval ; when set, will show the
return value of a function in the function graph tracer.
- Also add the option: funcgraph-retval-hex where if it is not set, and
the return value is an error code, then it will return the decimal of
the error code, otherwise it still reports the hex value.
- Add the file /sys/kernel/tracing/osnoise/per_cpu/cpu<cpu>/timerlat_fd
That when a application opens it, it becomes the task that the timer
lat tracer traces. The application can also read this file to find
out how it's being interrupted.
- Add the file /sys/kernel/tracing/available_filter_functions_addrs
that works just the same as available_filter_functions but also shows
the addresses of the functions like kallsyms, except that it gives
the address of where the fentry/mcount jump/nop is. This is used by
BPF to make it easier to attach BPF programs to ftrace hooks.
- Replace strlcpy with strscpy in the tracing boot code.
* tag 'trace-v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing: Fix warnings when building htmldocs for function graph retval
riscv: ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL
tracing/boot: Replace strlcpy with strscpy
tracing/timerlat: Add user-space interface
tracing/osnoise: Skip running osnoise if all instances are off
tracing/osnoise: Switch from PF_NO_SETAFFINITY to migrate_disable
ftrace: Show all functions with addresses in available_filter_functions_addrs
selftests/ftrace: Add funcgraph-retval test case
LoongArch: ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL
x86/ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL
arm64: ftrace: Enable HAVE_FUNCTION_GRAPH_RETVAL
tracing: Add documentation for funcgraph-retval and funcgraph-retval-hex
function_graph: Support recording and printing the return value of function
fgraph: Add declaration of "struct fgraph_ret_regs"
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull mm updates from Andrew Morton:
- Yosry Ahmed brought back some cgroup v1 stats in OOM logs
- Yosry has also eliminated cgroup's atomic rstat flushing
- Nhat Pham adds the new cachestat() syscall. It provides userspace
with the ability to query pagecache status - a similar concept to
mincore() but more powerful and with improved usability
- Mel Gorman provides more optimizations for compaction, reducing the
prevalence of page rescanning
- Lorenzo Stoakes has done some maintanance work on the
get_user_pages() interface
- Liam Howlett continues with cleanups and maintenance work to the
maple tree code. Peng Zhang also does some work on maple tree
- Johannes Weiner has done some cleanup work on the compaction code
- David Hildenbrand has contributed additional selftests for
get_user_pages()
- Thomas Gleixner has contributed some maintenance and optimization
work for the vmalloc code
- Baolin Wang has provided some compaction cleanups,
- SeongJae Park continues maintenance work on the DAMON code
- Huang Ying has done some maintenance on the swap code's usage of
device refcounting
- Christoph Hellwig has some cleanups for the filemap/directio code
- Ryan Roberts provides two patch series which yield some
rationalization of the kernel's access to pte entries - use the
provided APIs rather than open-coding accesses
- Lorenzo Stoakes has some fixes to the interaction between pagecache
and directio access to file mappings
- John Hubbard has a series of fixes to the MM selftesting code
- ZhangPeng continues the folio conversion campaign
- Hugh Dickins has been working on the pagetable handling code, mainly
with a view to reducing the load on the mmap_lock
- Catalin Marinas has reduced the arm64 kmalloc() minimum alignment
from 128 to 8
- Domenico Cerasuolo has improved the zswap reclaim mechanism by
reorganizing the LRU management
- Matthew Wilcox provides some fixups to make gfs2 work better with the
buffer_head code
- Vishal Moola also has done some folio conversion work
- Matthew Wilcox has removed the remnants of the pagevec code - their
functionality is migrated over to struct folio_batch
* tag 'mm-stable-2023-06-24-19-15' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (380 commits)
mm/hugetlb: remove hugetlb_set_page_subpool()
mm: nommu: correct the range of mmap_sem_read_lock in task_mem()
hugetlb: revert use of page_cache_next_miss()
Revert "page cache: fix page_cache_next/prev_miss off by one"
mm/vmscan: fix root proactive reclaim unthrottling unbalanced node
mm: memcg: rename and document global_reclaim()
mm: kill [add|del]_page_to_lru_list()
mm: compaction: convert to use a folio in isolate_migratepages_block()
mm: zswap: fix double invalidate with exclusive loads
mm: remove unnecessary pagevec includes
mm: remove references to pagevec
mm: rename invalidate_mapping_pagevec to mapping_try_invalidate
mm: remove struct pagevec
net: convert sunrpc from pagevec to folio_batch
i915: convert i915_gpu_error to use a folio_batch
pagevec: rename fbatch_count()
mm: remove check_move_unevictable_pages()
drm: convert drm_gem_put_pages() to use a folio_batch
i915: convert shmem_sg_free_table() to use a folio_batch
scatterlist: add sg_set_folio()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from Juergen Gross:
- three patches adding missing prototypes
- a fix for finding the iBFT in a Xen dom0 for supporting diskless
iSCSI boot
* tag 'for-linus-6.5-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
x86: xen: add missing prototypes
x86/xen: add prototypes for paravirt mmu functions
iscsi_ibft: Fix finding the iBFT under Xen Dom 0
xen: xen_debug_interrupt prototype to global header
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Ingo Molar:
"Build footprint & performance improvements:
- Reduce memory usage with CONFIG_DEBUG_INFO=y
In the worst case of an allyesconfig+CONFIG_DEBUG_INFO=y kernel,
DWARF creates almost 200 million relocations, ballooning objtool's
peak heap usage to 53GB. These patches reduce that to 25GB.
On a distro-type kernel with kernel IBT enabled, they reduce
objtool's peak heap usage from 4.2GB to 2.8GB.
These changes also improve the runtime significantly.
Debuggability improvements:
- Add the unwind_debug command-line option, for more extend unwinding
debugging output
- Limit unreachable warnings to once per function
- Add verbose option for disassembling affected functions
- Include backtrace in verbose mode
- Detect missing __noreturn annotations
- Ignore exc_double_fault() __noreturn warnings
- Remove superfluous global_noreturns entries
- Move noreturn function list to separate file
- Add __kunit_abort() to noreturns
Unwinder improvements:
- Allow stack operations in UNWIND_HINT_UNDEFINED regions
- drm/vmwgfx: Add unwind hints around RBP clobber
Cleanups:
- Move the x86 entry thunk restore code into thunk functions
- x86/unwind/orc: Use swap() instead of open coding it
- Remove unnecessary/unused variables
Fixes for modern stack canary handling"
* tag 'objtool-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (42 commits)
x86/orc: Make the is_callthunk() definition depend on CONFIG_BPF_JIT=y
objtool: Skip reading DWARF section data
objtool: Free insns when done
objtool: Get rid of reloc->rel[a]
objtool: Shrink elf hash nodes
objtool: Shrink reloc->sym_reloc_entry
objtool: Get rid of reloc->jump_table_start
objtool: Get rid of reloc->addend
objtool: Get rid of reloc->type
objtool: Get rid of reloc->offset
objtool: Get rid of reloc->idx
objtool: Get rid of reloc->list
objtool: Allocate relocs in advance for new rela sections
objtool: Add for_each_reloc()
objtool: Don't free memory in elf_close()
objtool: Keep GElf_Rel[a] structs synced
objtool: Add elf_create_section_pair()
objtool: Add mark_sec_changed()
objtool: Fix reloc_hash size
objtool: Consolidate rel/rela handling
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
- Introduce cmpxchg128() -- aka. the demise of cmpxchg_double()
The cmpxchg128() family of functions is basically & functionally the
same as cmpxchg_double(), but with a saner interface.
Instead of a 6-parameter horror that forced u128 - u64/u64-halves
layout details on the interface and exposed users to complexity,
fragility & bugs, use a natural 3-parameter interface with u128
types.
- Restructure the generated atomic headers, and add kerneldoc comments
for all of the generic atomic{,64,_long}_t operations.
The generated definitions are much cleaner now, and come with
documentation.
- Implement lock_set_cmp_fn() on lockdep, for defining an ordering when
taking multiple locks of the same type.
This gets rid of one use of lockdep_set_novalidate_class() in the
bcache code.
- Fix raw_cpu_generic_try_cmpxchg() bug due to an unintended variable
shadowing generating garbage code on Clang on certain ARM builds.
* tag 'locking-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits)
locking/atomic: scripts: fix ${atomic}_dec_if_positive() kerneldoc
percpu: Fix self-assignment of __old in raw_cpu_generic_try_cmpxchg()
locking/atomic: treewide: delete arch_atomic_*() kerneldoc
locking/atomic: docs: Add atomic operations to the driver basic API documentation
locking/atomic: scripts: generate kerneldoc comments
docs: scripts: kernel-doc: accept bitwise negation like ~@var
locking/atomic: scripts: simplify raw_atomic*() definitions
locking/atomic: scripts: simplify raw_atomic_long*() definitions
locking/atomic: scripts: split pfx/name/sfx/order
locking/atomic: scripts: restructure fallback ifdeffery
locking/atomic: scripts: build raw_atomic_long*() directly
locking/atomic: treewide: use raw_atomic*_<op>()
locking/atomic: scripts: add trivial raw_atomic*_<op>()
locking/atomic: scripts: factor out order template generation
locking/atomic: scripts: remove leftover "${mult}"
locking/atomic: scripts: remove bogus order parameter
locking/atomic: xtensa: add preprocessor symbols
locking/atomic: x86: add preprocessor symbols
locking/atomic: sparc: add preprocessor symbols
locking/atomic: sh: add preprocessor symbols
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"Scheduler SMP load-balancer improvements:
- Avoid unnecessary migrations within SMT domains on hybrid systems.
Problem:
On hybrid CPU systems, (processors with a mixture of
higher-frequency SMT cores and lower-frequency non-SMT cores),
under the old code lower-priority CPUs pulled tasks from the
higher-priority cores if more than one SMT sibling was busy -
resulting in many unnecessary task migrations.
Solution:
The new code improves the load balancer to recognize SMT cores
with more than one busy sibling and allows lower-priority CPUs
to pull tasks, which avoids superfluous migrations and lets
lower-priority cores inspect all SMT siblings for the busiest
queue.
- Implement the 'runnable boosting' feature in the EAS balancer:
consider CPU contention in frequency, EAS max util & load-balance
busiest CPU selection.
This improves CPU utilization for certain workloads, while leaves
other key workloads unchanged.
Scheduler infrastructure improvements:
- Rewrite the scheduler topology setup code by consolidating it into
the build_sched_topology() helper function and building it
dynamically on the fly.
- Resolve the local_clock() vs. noinstr complications by rewriting
the code: provide separate sched_clock_noinstr() and
local_clock_noinstr() functions to be used in instrumentation code,
and make sure it is all instrumentation-safe.
Fixes:
- Fix a kthread_park() race with wait_woken()
- Fix misc wait_task_inactive() bugs unearthed by the -rt merge:
- Fix UP PREEMPT bug by unifying the SMP and UP implementations
- Fix task_struct::saved_state handling
- Fix various rq clock update bugs, unearthed by turning on the rq
clock debugging code.
- Fix the PSI WINDOW_MIN_US trigger limit, which was easy to trigger
by creating enough cgroups, by removing the warnign and restricting
window size triggers to PSI file write-permission or
CAP_SYS_RESOURCE.
- Propagate SMT flags in the topology when removing degenerate domain
- Fix grub_reclaim() calculation bug in the deadline scheduler code
- Avoid resetting the min update period when it is unnecessary, in
psi_trigger_destroy().
- Don't balance a task to its current running CPU in load_balance(),
which was possible on certain NUMA topologies with overlapping
groups.
- Fix the sched-debug printing of rq->nr_uninterruptible
Cleanups:
- Address various -Wmissing-prototype warnings, as a preparation to
(maybe) enable this warning in the future.
- Remove unused code
- Mark more functions __init
- Fix shadow-variable warnings"
* tag 'sched-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
sched/core: Avoid multiple calling update_rq_clock() in __cfsb_csd_unthrottle()
sched/core: Avoid double calling update_rq_clock() in __balance_push_cpu_stop()
sched/core: Fixed missing rq clock update before calling set_rq_offline()
sched/deadline: Update GRUB description in the documentation
sched/deadline: Fix bandwidth reclaim equation in GRUB
sched/wait: Fix a kthread_park race with wait_woken()
sched/topology: Mark set_sched_topology() __init
sched/fair: Rename variable cpu_util eff_util
arm64/arch_timer: Fix MMIO byteswap
sched/fair, cpufreq: Introduce 'runnable boosting'
sched/fair: Refactor CPU utilization functions
cpuidle: Use local_clock_noinstr()
sched/clock: Provide local_clock_noinstr()
x86/tsc: Provide sched_clock_noinstr()
clocksource: hyper-v: Provide noinstr sched_clock()
clocksource: hyper-v: Adjust hv_read_tsc_page_tsc() to avoid special casing U64_MAX
x86/vdso: Fix gettimeofday masking
math64: Always inline u128 version of mul_u64_u64_shr()
s390/time: Provide sched_clock_noinstr()
loongarch: Provide noinstr sched_clock_read()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull SGX update from Borislav Petkov:
- A fix to avoid using a list iterator variable after the loop it is
used in
* tag 'x86_sgx_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sgx: Avoid using iterator after loop in sgx_mmu_notifier_release()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SEV updates from Borislav Petkov:
- Some SEV and CC platform helpers cleanup and simplifications now that
the usage patterns are becoming apparent
[ I'm sure I'm the only one that has gets confused by all the TLAs, but
in case there are others: here SEV is AMD's "Secure Encrypted
Virtualization" and CC is generic "Confidential Computing".
There's also Intel SGX (Software Guard Extensions) and TDX (Trust
Domain Extensions), along with all the vendor memory encryption
extensions (SME, TSME, TME, and WTF).
And then we have arm64 with RMA and CCA, and I probably forgot another
dozen or so related acronyms - Linus ]
* tag 'x86_sev_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/coco: Get rid of accessor functions
x86/sev: Get rid of special sev_es_enable_key
x86/coco: Mark cc_platform_has() and descendants noinstr
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mtrr updates from Borislav Petkov:
"A serious scrubbing of the MTRR code including adding a new map
mechanism in order to look up the memory type of a region easily.
Also address memory range lookup issues like returning an invalid
memory type. Furthermore, this handles the decoupling of PAT from MTRR
more naturally.
All work by Juergen Gross"
* tag 'x86_mtrr_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/xen: Set default memory type for PV guests to WB
x86/mtrr: Unify debugging printing
x86/mtrr: Remove unused code
x86/mm: Only check uniform after calling mtrr_type_lookup()
x86/mtrr: Don't let mtrr_type_lookup() return MTRR_TYPE_INVALID
x86/mtrr: Use new cache_map in mtrr_type_lookup()
x86/mtrr: Add mtrr=debug command line option
x86/mtrr: Construct a memory map with cache modes
x86/mtrr: Add get_effective_type() service function
x86/mtrr: Allocate mtrr_value array dynamically
x86/mtrr: Move 32-bit code from mtrr.c to legacy.c
x86/mtrr: Have only one set_mtrr() variant
x86/mtrr: Replace vendor tests in MTRR code
x86/xen: Set MTRR state when running as Xen PV initial domain
x86/hyperv: Set MTRR state when running as SEV-SNP Hyper-V guest
x86/mtrr: Support setting MTRR state for software defined MTRRs
x86/mtrr: Replace size_or_mask and size_and_mask with a much easier concept
x86/mtrr: Remove physical address size calculation
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 microcode loader updates from Borislav Petkov:
- Load late on both SMT threads on AMD, just like it is being done in
the early loading procedure
- Cleanups
* tag 'x86_microcode_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode/AMD: Load late on both threads too
x86/microcode/amd: Remove unneeded pointer arithmetic
x86/microcode/AMD: Get rid of __find_equiv_id()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Dave Hansen:
"As usual, these are all over the map. The biggest cluster is work from
Arnd to eliminate -Wmissing-prototype warnings:
- Address -Wmissing-prototype warnings
- Remove repeated 'the' in comments
- Remove unused current_untag_mask()
- Document urgent tip branch timing
- Clean up MSR kernel-doc notation
- Clean up paravirt_ops doc
- Update Srivatsa S. Bhat's maintained areas
- Remove unused extern declaration acpi_copy_wakeup_routine()"
* tag 'x86_cleanups_for_6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (22 commits)
x86/acpi: Remove unused extern declaration acpi_copy_wakeup_routine()
Documentation: virt: Clean up paravirt_ops doc
x86/mm: Remove unused current_untag_mask()
x86/mm: Remove repeated word in comments
x86/lib/msr: Clean up kernel-doc notation
x86/platform: Avoid missing-prototype warnings for OLPC
x86/mm: Add early_memremap_pgprot_adjust() prototype
x86/usercopy: Include arch_wb_cache_pmem() declaration
x86/vdso: Include vdso/processor.h
x86/mce: Add copy_mc_fragile_handle_tail() prototype
x86/fbdev: Include asm/fb.h as needed
x86/hibernate: Declare global functions in suspend.h
x86/entry: Add do_SYSENTER_32() prototype
x86/quirks: Include linux/pnp.h for arch_pnpbios_disabled()
x86/mm: Include asm/numa.h for set_highmem_pages_init()
x86: Avoid missing-prototype warnings for doublefault code
x86/fpu: Include asm/fpu/regset.h
x86: Add dummy prototype for mk_early_pgtbl_32()
x86/pci: Mark local functions as 'static'
x86/ftrace: Move prepare_ftrace_return prototype to header
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 tdx updates from Dave Hansen:
- Fix a race window where load_unaligned_zeropad() could cause a fatal
shutdown during TDX private<=>shared conversion
The race has never been observed in practice but might allow
load_unaligned_zeropad() to catch a TDX page in the middle of its
conversion process which would lead to a fatal and unrecoverable
guest shutdown.
- Annotate sites where VM "exit reasons" are reused as hypercall
numbers.
* tag 'x86_tdx_for_6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Fix enc_status_change_finish_noop()
x86/tdx: Fix race between set_memory_encrypted() and load_unaligned_zeropad()
x86/mm: Allow guest.enc_status_change_prepare() to fail
x86/tdx: Wrap exit reason with hcall_func()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 platform updates from Dave Hansen:
"Allow CPUs in SGX/HPE Ultraviolet to start using Sub-NUMA clustering
(SNC) mode. SNC has been around outside the UV world for a while but
evidently never worked on UV systems.
SNC is rather notorious for breaking bad assumptions of a 1:1
relationship between physical sockets and NUMA nodes. The UV code was
rather prolific with these assumptions and took quite a bit of
refactoring to remove them"
* tag 'x86_platform_for_6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/platform/uv: Update UV[23] platform code for SNC
x86/platform/uv: Remove remaining BUG_ON() and BUG() calls
x86/platform/uv: UV support for sub-NUMA clustering
x86/platform/uv: Helper functions for allocating and freeing conversion tables
x86/platform/uv: When searching for minimums, start at INT_MAX not 99999
x86/platform/uv: Fix printed information in calc_mmioh_map
x86/platform/uv: Introduce helper function uv_pnode_to_socket.
x86/platform/uv: Add platform resolving #defines for misc GAM_MMIOH_REDIRECT*
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 irq updates from Dave Hansen:
"Add Hyper-V interrupts to /proc/stat"
* tag 'x86_irq_for_6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/irq: Add hardcoded hypervisor interrupts to /proc/stat
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu updates from Borislav Petkov:
- Compute the purposeful misalignment of zen_untrain_ret automatically
and assert __x86_return_thunk's alignment so that future changes to
the symbol macros do not accidentally break them.
- Remove CONFIG_X86_FEATURE_NAMES Kconfig option as its existence is
pointless
* tag 'x86_cpu_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/retbleed: Add __x86_return_thunk alignment checks
x86/cpu: Remove X86_FEATURE_NAMES
x86/Kconfig: Make X86_FEATURE_NAMES non-configurable in prompt
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 confidential computing update from Borislav Petkov:
- Add support for unaccepted memory as specified in the UEFI spec v2.9.
The gist of it all is that Intel TDX and AMD SEV-SNP confidential
computing guests define the notion of accepting memory before using
it and thus preventing a whole set of attacks against such guests
like memory replay and the like.
There are a couple of strategies of how memory should be accepted -
the current implementation does an on-demand way of accepting.
* tag 'x86_cc_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
virt: sevguest: Add CONFIG_CRYPTO dependency
x86/efi: Safely enable unaccepted memory in UEFI
x86/sev: Add SNP-specific unaccepted memory support
x86/sev: Use large PSC requests if applicable
x86/sev: Allow for use of the early boot GHCB for PSC requests
x86/sev: Put PSC struct on the stack in prep for unaccepted memory support
x86/sev: Fix calculation of end address based on number of pages
x86/tdx: Add unaccepted memory support
x86/tdx: Refactor try_accept_one()
x86/tdx: Make _tdx_hypercall() and __tdx_module_call() available in boot stub
efi/unaccepted: Avoid load_unaligned_zeropad() stepping into unaccepted memory
efi: Add unaccepted memory support
x86/boot/compressed: Handle unaccepted memory
efi/libstub: Implement support for unaccepted memory
efi/x86: Get full memory map in allocate_e820()
mm: Add support for unaccepted memory
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 resource control updates from Borislav Petkov:
- Implement a rename operation in resctrlfs to facilitate handling of
application containers with dynamically changing task lists
- When reading the tasks file, show the tasks' pid which are only in
the current namespace as opposed to showing the pids from the init
namespace too
- Other fixes and improvements
* tag 'x86_cache_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation/x86: Documentation for MON group move feature
x86/resctrl: Implement rename op for mon groups
x86/resctrl: Factor rdtgroup lock for multi-file ops
x86/resctrl: Only show tasks' pid in current pid namespace
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 instruction alternatives updates from Borislav Petkov:
- Up until now the Fast Short Rep Mov optimizations implied the
presence of the ERMS CPUID flag. AMD decoupled them with a BIOS
setting so decouple that dependency in the kernel code too
- Teach the alternatives machinery to handle relocations
- Make debug_alternative accept flags in order to see only that set of
patching done one is interested in
- Other fixes, cleanups and optimizations to the patching code
* tag 'x86_alternatives_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/alternative: PAUSE is not a NOP
x86/alternatives: Add cond_resched() to text_poke_bp_batch()
x86/nospec: Shorten RESET_CALL_DEPTH
x86/alternatives: Add longer 64-bit NOPs
x86/alternatives: Fix section mismatch warnings
x86/alternative: Optimize returns patching
x86/alternative: Complicate optimize_nops() some more
x86/alternative: Rewrite optimize_nops() some
x86/lib/memmove: Decouple ERMS from FSRM
x86/alternative: Support relocations in alternatives
x86/alternative: Make debug-alternative selective
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS updates from Borislav Petkov:
- Add initial support for RAS hardware found on AMD server GPUs (MI200).
Those GPUs and CPUs are connected together through the coherent
fabric and the GPU memory controllers report errors through x86's MCA
so EDAC needs to support them. The amd64_edac driver supports now HBM
(High Bandwidth Memory) and thus such heterogeneous memory controller
systems
- Other small cleanups and improvements
* tag 'ras_core_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
EDAC/amd64: Cache and use GPU node map
EDAC/amd64: Add support for AMD heterogeneous Family 19h Model 30h-3Fh
EDAC/amd64: Document heterogeneous system enumeration
x86/MCE/AMD, EDAC/mce_amd: Decode UMC_V2 ECC errors
x86/amd_nb: Re-sort and re-indent PCI defines
x86/amd_nb: Add MI200 PCI IDs
ras/debugfs: Fix error checking for debugfs_create_dir()
x86/MCE: Check a hw error's address to determine proper recovery action
|
|
ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Thomas Gleixner:
"A set of fixes for kexec(), reboot and shutdown issues:
- Ensure that the WBINVD in stop_this_cpu() has been completed before
the control CPU proceedes.
stop_this_cpu() is used for kexec(), reboot and shutdown to park
the APs in a HLT loop.
The control CPU sends an IPI to the APs and waits for their CPU
online bits to be cleared. Once they all are marked "offline" it
proceeds.
But stop_this_cpu() clears the CPU online bit before issuing
WBINVD, which means there is no guarantee that the AP has reached
the HLT loop.
This was reported to cause intermittent reboot/shutdown failures
due to some dubious interaction with the firmware.
This is not only a problem of WBINVD. The code to actually "stop"
the CPU which runs between clearing the online bit and reaching the
HLT loop can cause large enough delays on its own (think
virtualization). That's especially dangerous for kexec() as kexec()
expects that all APs are in a safe state and not executing code
while the boot CPU jumps to the new kernel. There are more issues
vs kexec() which are addressed separately.
Cure this by implementing an explicit synchronization point right
before the AP reaches HLT. This guarantees that the AP has
completed the full stop proceedure.
- Fix the condition for WBINVD in stop_this_cpu().
The WBINVD in stop_this_cpu() is required for ensuring that when
switching to or from memory encryption no dirty data is left in the
cache lines which might cause a write back in the wrong more later.
This checks CPUID directly because the feature bit might have been
cleared due to a command line option.
But that CPUID check accesses leaf 0x8000001f::EAX unconditionally.
Intel CPUs return the content of the highest supported leaf when a
non-existing leaf is read, while AMD CPUs return all zeros for
unsupported leafs.
So the result of the test on Intel CPUs is lottery and on AMD its
just correct by chance.
While harmless it's incorrect and causes the conditional wbinvd()
to be issued where not required, which caused the above issue to be
unearthed.
- Make kexec() robust against AP code execution
Ashok observed triple faults when doing kexec() on a system which
had been booted with "nosmt".
It turned out that the SMT siblings which had been brought up
partially are parked in mwait_play_dead() to enable power savings.
mwait_play_dead() is monitoring the thread flags of the AP's idle
task, which has been chosen as it's unlikely to be written to.
But kexec() can overwrite the previous kernel text and data
including page tables etc. When it overwrites the cache lines
monitored by an AP that AP resumes execution after the MWAIT on
eventually overwritten text, stack and page tables, which obviously
might end up in a triple fault easily.
Make this more robust in several steps:
1) Use an explicit per CPU cache line for monitoring.
2) Write a command to these cache lines to kick APs out of MWAIT
before proceeding with kexec(), shutdown or reboot.
The APs confirm the wakeup by writing status back and then
enter a HLT loop.
3) If the system uses INIT/INIT/STARTUP for AP bringup, park the
APs in INIT state.
HLT is not a guarantee that an AP won't wake up and resume
execution. HLT is woken up by NMI and SMI. SMI puts the CPU
back into HLT (+/- firmware bugs), but NMI is delivered to the
CPU which executes the NMI handler. Same issue as the MWAIT
scenario described above.
Sending an INIT/INIT sequence to the APs puts them into wait
for STARTUP state, which is safe against NMI.
There is still an issue remaining which can't be fixed: #MCE
If the AP sits in HLT and receives a broadcast #MCE it will try to
handle it with the obvious consequences.
INIT/INIT clears CR4.MCE in the AP which will cause a broadcast
#MCE to shut down the machine.
So there is a choice between fire (HLT) and frying pan (INIT).
Frying pan has been chosen as it's at least preventing the NMI
issue.
On systems which are not using INIT/INIT/STARTUP there is not much
which can be done right now, but at least the obvious and easy to
trigger MWAIT issue has been addressed"
* tag 'x86-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/smp: Put CPUs into INIT on shutdown if possible
x86/smp: Split sending INIT IPI out into a helper function
x86/smp: Cure kexec() vs. mwait_play_dead() breakage
x86/smp: Use dedicated cache-line for mwait_play_dead()
x86/smp: Remove pointless wmb()s from native_stop_other_cpus()
x86/smp: Dont access non-existing CPUID leaf
x86/smp: Make stop_other_cpus() more robust
|