Age | Commit message (Collapse) | Author | Files | Lines |
|
commit a729691b541f6e63043beae72e635635abe5dc09 upstream.
When this platform was relatively new in November 2011, with early BIOS
revisions, a reboot quirk was added in commit 6be30bb7d750 ("x86/reboot:
Blacklist Dell OptiPlex 990 known to require PCI reboot")
However, this quirk (and several others) are open-ended to all BIOS
versions and left no automatic expiry if/when the system BIOS fixed the
issue, meaning that nobody is likely to come along and re-test.
What is really problematic with using PCI reboot as this quirk does, is
that it causes this platform to do a full power down, wait one second,
and then power back on. This is less than ideal if one is using it for
boot testing and/or bisecting kernels when legacy rotating hard disks
are installed.
It was only by chance that the quirk was noticed in dmesg - and when
disabled it turned out that it wasn't required anymore (BIOS A24), and a
default reboot would work fine without the "harshness" of power cycling the
machine (and disks) down and up like the PCI reboot does.
Doing a bit more research, it seems that the "newest" BIOS for which the
issue was reported[1] was version A06, however Dell[2] seemed to suggest
only up to and including version A05, with the A06 having a large number of
fixes[3] listed.
As is typical with a new platform, the initial BIOS updates come frequently
and then taper off (and in this case, with a revival for CPU CVEs); a
search for O990-A<ver>.exe reveals the following dates:
A02 16 Mar 2011
A03 11 May 2011
A06 14 Sep 2011
A07 24 Oct 2011
A10 08 Dec 2011
A14 06 Sep 2012
A16 15 Oct 2012
A18 30 Sep 2013
A19 23 Sep 2015
A20 02 Jun 2017
A23 07 Mar 2018
A24 21 Aug 2018
While it's overkill to flash and test each of the above, it would seem
likely that the issue was contained within A0x BIOS versions, given the
dates above and the dates of issue reports[4] from distros. So rather than
just throw out the quirk entirely, limit the scope to just those early BIOS
versions, in case people are still running systems from 2011 with the
original as-shipped early A0x BIOS versions.
[1] https://lore.kernel.org/lkml/1320373471-3942-1-git-send-email-trenn@suse.de/
[2] https://www.dell.com/support/kbdoc/en-ca/000131908/linux-based-operating-systems-stall-upon-reboot-on-optiplex-390-790-990-systems
[3] https://www.dell.com/support/home/en-ca/drivers/driversdetails?driverid=85j10
[4] https://bugs.launchpad.net/ubuntu/+source/linux/+bug/768039
Fixes: 6be30bb7d750 ("x86/reboot: Blacklist Dell OptiPlex 990 known to require PCI reboot")
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210530162447.996461-4-paul.gortmaker@windriver.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 064855a69003c24bd6b473b367d364e418c57625 upstream.
Creating a new sub monitoring group in the root /sys/fs/resctrl leads to
getting the "Unavailable" value for mbm_total_bytes and mbm_local_bytes
on the entire filesystem.
Steps to reproduce:
1. mount -t resctrl resctrl /sys/fs/resctrl/
2. cd /sys/fs/resctrl/
3. cat mon_data/mon_L3_00/mbm_total_bytes
23189832
4. Create sub monitor group:
mkdir mon_groups/test1
5. cat mon_data/mon_L3_00/mbm_total_bytes
Unavailable
When a new monitoring group is created, a new RMID is assigned to the
new group. But the RMID is not active yet. When the events are read on
the new RMID, it is expected to report the status as "Unavailable".
When the user reads the events on the default monitoring group with
multiple subgroups, the events on all subgroups are consolidated
together. Currently, if any of the RMID reads report as "Unavailable",
then everything will be reported as "Unavailable".
Fix the issue by discarding the "Unavailable" reads and reporting all
the successful RMID reads. This is not a problem on Intel systems as
Intel reports 0 on Inactive RMIDs.
Fixes: d89b7379015f ("x86/intel_rdt/cqm: Add mon_data")
Reported-by: Paweł Szulik <pawel.szulik@intel.com>
Signed-off-by: Babu Moger <Babu.Moger@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: stable@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=213311
Link: https://lkml.kernel.org/r/162793309296.9224.15871659871696482080.stgit@bmoger-ubuntu
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0c0e37dc11671384e53ba6ede53a4d91162a2cc5 upstream.
The IO/APIC cannot handle interrupt affinity changes safely after startup
other than from an interrupt handler. The startup sequence in the generic
interrupt code violates that assumption.
Mark the irq chip with the new IRQCHIP_AFFINITY_PRE_STARTUP flag so that
the default interrupt setting happens before the interrupt is started up
for the first time.
Fixes: 18404756765c ("genirq: Expose default irq affinity mask (take 3)")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210729222542.832143400@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ff363f480e5997051dd1de949121ffda3b753741 upstream.
The X86 MSI mechanism cannot handle interrupt affinity changes safely after
startup other than from an interrupt handler, unless interrupt remapping is
enabled. The startup sequence in the generic interrupt code violates that
assumption.
Mark the irq chips with the new IRQCHIP_AFFINITY_PRE_STARTUP flag so that
the default interrupt setting happens before the interrupt is started up
for the first time.
While the interrupt remapping MSI chip does not require this, there is no
point in treating it differently as this might spare an interrupt to a CPU
which is not in the default affinity mask.
For the non-remapping case go to the direct write path when the interrupt
is not yet started similar to the not yet activated case.
Fixes: 18404756765c ("genirq: Expose default irq affinity mask (take 3)")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210729222542.886722080@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 07d6688b22e09be465652cf2da0da6bf86154df6 ]
If the count argument is larger than the xstate size, this will happily
copy beyond the end of xstate.
Fixes: 91c3dba7dbc1 ("x86/fpu/xstate: Fix PTRACE frames for XSAVES")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121452.120741557@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 9625895011d130033d1bc7aac0d77a9bf68ff8a6 ]
The gap handling in copy_xstate_to_kernel() is wrong when XSAVES is in
use.
Using init_fpstate for copying the init state of features which are
not set in the xstate header is only correct for the legacy area, but
not for the extended features area because when XSAVES is in use then
init_fpstate is in compacted form which means the xstate offsets which
are used to copy from init_fpstate are not valid.
Fortunately, this is not a real problem today because all extended
features in use have an all-zeros init state, but it is wrong
nevertheless and with a potentially dynamically sized init_fpstate this
would result in an access outside of the init_fpstate.
Fix this by keeping track of the last copied state in the target buffer and
explicitly zero it when there is a feature or alignment gap.
Use the compacted offset when accessing the extended feature space in
init_fpstate.
As this is not a functional issue on older kernels this is intentionally
not tagged for stable.
Fixes: b8be15d58806 ("x86/fpu/xstate: Re-enable XSAVES")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121451.294282032@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 2beb4a53fc3f1081cedc1c1a198c7f56cc4fc60c ]
The kernel pushes context on to the userspace stack to prepare for the
user's signal handler. When the user has supplied an alternate signal
stack, via sigaltstack(2), it is easy for the kernel to verify that the
stack size is sufficient for the current hardware context.
Check if writing the hardware context to the alternate stack will exceed
it's size. If yes, then instead of corrupting user-data and proceeding with
the original signal handler, an immediate SIGSEGV signal is delivered.
Refactor the stack pointer check code from on_sig_stack() and use the new
helper.
While the kernel allows new source code to discover and use a sufficient
alternate signal stack size, this check is still necessary to protect
binaries with insufficient alternate signal stack size from data
corruption.
Fixes: c2bc11f10a39 ("x86, AVX-512: Enable AVX-512 States Context Switch")
Reported-by: Florian Weimer <fweimer@redhat.com>
Suggested-by: Jann Horn <jannh@google.com>
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Len Brown <len.brown@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20210518200320.17239-6-chang.seok.bae@intel.com
Link: https://bugzilla.kernel.org/show_bug.cgi?id=153531
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 450605c28d571eddca39a65fdbc1338add44c6d9 ]
Microsoft Hypervisor expects the logical processor index to be the same
as CPU's index during logical processor creation. Using cpu_physical_id
confuses hypervisor's scheduler. That causes the root partition not boot
when core scheduler is used.
This patch removes the call to cpu_physical_id and uses the CPU index
directly for bringing up logical processor. This scheme works for both
classic scheduler and core scheduler.
Fixes: 333abaf5abb3 (x86/hyperv: implement and use hv_smp_prepare_cpus)
Signed-off-by: Praveen Kumar <kumarpraveen@linux.microsoft.com>
Link: https://lore.kernel.org/r/20210531074046.113452-1-kumarpraveen@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 8d9d46bbf3b6b7ff8edcac33603ab45c29e0e07f ]
The source file has been renamed froms sev-es.c to sev.c, but the
messages are still prefixed with "SEV-ES: ". Change that to "SEV: " to
make it consistent.
Fixes: e759959fe3b8 ("x86/sev-es: Rename sev-es.{ch} to sev.{ch}")
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210622144825.27588-4-joro@8bytes.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit be1a5408868af341f61f93c191b5e346ee88c82a ]
Split up the #VC handler code into a from-user and a from-kernel part.
This allows clean and correct state tracking, as the #VC handler needs
to enter NMI-state when raised from kernel mode and plain IRQ state when
raised from user-mode.
Fixes: 62441a1fb532 ("x86/sev-es: Correctly track IRQ states in runtime #VC handler")
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210618115409.22735-3-joro@8bytes.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit d187f217335dba2b49fc9002aab2004e04acddee ]
The #VC handler only cares about IRQs being disabled while the GHCB is
active, as it must not be interrupted by something which could cause
another #VC while it holds the GHCB (NMI is the exception for which the
backup GHCB exits).
Make sure nothing interrupts the code path while the GHCB is active
by making sure that callers of __sev_{get,put}_ghcb() have disabled
interrupts upfront.
[ bp: Massage commit message. ]
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210618115409.22735-2-joro@8bytes.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 7560c02bdffb7c52d1457fa551b9e745d4b9e754 ]
Some sorts of per-CPU clock sources have a history of going out of
synchronization with each other. However, this problem has purportedy been
solved in the past ten years. Except that it is all too possible that the
problem has instead simply been made less likely, which might mean that
some of the occasional "Marking clocksource 'tsc' as unstable" messages
might be due to desynchronization. How would anyone know?
Therefore apply CPU-to-CPU synchronization checking to newly unstable
clocksource that are marked with the new CLOCK_SOURCE_VERIFY_PERCPU flag.
Lists of desynchronized CPUs are printed, with the caveat that if it
is the reporting CPU that is itself desynchronized, it will appear that
all the other clocks are wrong. Just like in real life.
Reported-by: Chris Mason <clm@fb.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Feng Tang <feng.tang@intel.com>
Link: https://lore.kernel.org/r/20210527190124.440372-2-paulmck@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit f1a0a376ca0c4ef1fc3d24e3e502acbb5b795674 ]
As pointed out by commit
de9b8f5dcbd9 ("sched: Fix crash trying to dequeue/enqueue the idle thread")
init_idle() can and will be invoked more than once on the same idle
task. At boot time, it is invoked for the boot CPU thread by
sched_init(). Then smp_init() creates the threads for all the secondary
CPUs and invokes init_idle() on them.
As the hotplug machinery brings the secondaries to life, it will issue
calls to idle_thread_get(), which itself invokes init_idle() yet again.
In this case it's invoked twice more per secondary: at _cpu_up(), and at
bringup_cpu().
Given smp_init() already initializes the idle tasks for all *possible*
CPUs, no further initialization should be required. Now, removing
init_idle() from idle_thread_get() exposes some interesting expectations
with regards to the idle task's preempt_count: the secondary startup always
issues a preempt_disable(), requiring some reset of the preempt count to 0
between hot-unplug and hotplug, which is currently served by
idle_thread_get() -> idle_init().
Given the idle task is supposed to have preemption disabled once and never
see it re-enabled, it seems that what we actually want is to initialize its
preempt_count to PREEMPT_DISABLED and leave it there. Do that, and remove
init_idle() from idle_thread_get().
Secondary startups were patched via coccinelle:
@begone@
@@
-preempt_disable();
...
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210512094636.2958515-1-valentin.schneider@arm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 31b77c70d9bc04d3b024ea56c129523f9edc1328 upstream.
Let's reserve JSL stolen memory for graphics.
JasperLake is a gen11 platform which is compatible with
ICL/EHL changes.
This was missed in commit 24ea098b7c0d ("drm/i915/jsl: Split
EHL/JSL platform info and PCI ids")
V2:
- Added maintainer list in cc
- Added patch ref in commit message
V1:
- Added Cc: x86@kernel.org
Fixes: 24ea098b7c0d ("drm/i915/jsl: Split EHL/JSL platform info and PCI ids")
Cc: <stable@vger.kernel.org> # v5.11+
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: José Roberto de Souza <jose.souza@intel.com>
Signed-off-by: Tejas Upadhyay <tejaskumarx.surendrakumar.upadhyay@intel.com>
Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20210608053411.394166-1-tejaskumarx.surendrakumar.upadhyay@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The XSAVE init code initializes all enabled and supported components with
XRSTOR(S) to init state. Then it XSAVEs the state of the components back
into init_fpstate which is used in several places to fill in the init state
of components.
This works correctly with XSAVE, but not with XSAVEOPT and XSAVES because
those use the init optimization and skip writing state of components which
are in init state. So init_fpstate.xsave still contains all zeroes after
this operation.
There are two ways to solve that:
1) Use XSAVE unconditionally, but that requires to reshuffle the buffer when
XSAVES is enabled because XSAVES uses compacted format.
2) Save the components which are known to have a non-zero init state by other
means.
Looking deeper, #2 is the right thing to do because all components the
kernel supports have all-zeroes init state except the legacy features (FP,
SSE). Those cannot be hard coded because the states are not identical on all
CPUs, but they can be saved with FXSAVE which avoids all conditionals.
Use FXSAVE to save the legacy FP/SSE components in init_fpstate along with
a BUILD_BUG_ON() which reminds developers to validate that a newly added
component has all zeroes init state. As a bonus remove the now unused
copy_xregs_to_kernel_booting() crutch.
The XSAVE and reshuffle method can still be implemented in the unlikely
case that components are added which have a non-zero init state and no
other means to save them. For now, FXSAVE is just simple and good enough.
[ bp: Fix a typo or two in the text. ]
Fixes: 6bad06b76892 ("x86, xsave: Use xsaveopt in context-switch path when supported")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20210618143444.587311343@linutronix.de
|
|
sanitize_restored_user_xstate() preserves the supervisor states only
when the fx_only argument is zero, which allows unprivileged user space
to put supervisor states back into init state.
Preserve them unconditionally.
[ bp: Fix a typo or two in the text. ]
Fixes: 5d6b6a6f9b5c ("x86/fpu/xstate: Update sanitize_restored_xstate() for supervisor xstates")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20210618143444.438635017@linutronix.de
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
"A first set of urgent fixes to the FPU/XSTATE handling mess^W code.
(There's a lot more in the pipe):
- Prevent corruption of the XSTATE buffer in signal handling by
validating what is being copied from userspace first.
- Invalidate other task's preserved FPU registers on XRSTOR failure
(#PF) because latter can still modify some of them.
- Restore the proper PKRU value in case userspace modified it
- Reset FPU state when signal restoring fails
Other:
- Map EFI boot services data memory as encrypted in a SEV guest so
that the guest can access it and actually boot properly
- Two SGX correctness fixes: proper resources freeing and a NUMA fix"
* tag 'x86_urgent_for_v5.13_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Avoid truncating memblocks for SGX memory
x86/sgx: Add missing xa_destroy() when virtual EPC is destroyed
x86/fpu: Reset state for all signal restore failures
x86/pkru: Write hardware init value to PKRU when xstate is init
x86/process: Check PF_KTHREAD and not current->mm for kernel threads
x86/fpu: Invalidate FPU state after a failed XRSTOR from a user buffer
x86/fpu: Prevent state corruption in __fpu__restore_sig()
x86/ioremap: Map EFI-reserved memory as encrypted for SEV
|
|
xa_destroy() needs to be called to destroy a virtual EPC's page array
before calling kfree() to free the virtual EPC. Currently it is not
called so add the missing xa_destroy().
Fixes: 540745ddbc70 ("x86/sgx: Introduce virtual EPC for use by KVM guests")
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Tested-by: Yang Zhong <yang.zhong@intel.com>
Link: https://lkml.kernel.org/r/20210615101639.291929-1-kai.huang@intel.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Ingo Molnar:
"Misc fixes:
- Fix the NMI watchdog on ancient Intel CPUs
- Remove a misguided, NMI-unsafe KASAN callback from the NMI-safe
irq_work path used by perf.
- Fix uncore events on Ice Lake servers.
- Someone booted maxcpus=1 on an SNB-EP, and the uncore driver
emitted warnings and was probably buggy. Fix it.
- KCSAN found a genuine data race in the core perf code. Somewhat
ironically the bug was introduced through a recent race fix. :-/
In our defense, the new race window was much more narrow. Fix it"
* tag 'perf-urgent-2021-06-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/nmi_watchdog: Fix old-style NMI watchdog regression on old Intel CPUs
irq_work: Make irq_work_queue() NMI-safe again
perf/x86/intel/uncore: Fix M2M event umask for Ice Lake server
perf/x86/intel/uncore: Fix a kernel WARNING triggered by maxcpus=1
perf: Fix data race between pin_count increment/decrement
|
|
The following commit:
3a4ac121c2ca ("x86/perf: Add hardware performance events support for Zhaoxin CPU.")
Got the old-style NMI watchdog logic wrong and broke it for basically every
Intel CPU where it was active. Which is only truly old CPUs, so few people noticed.
On CPUs with perf events support we turn off the old-style NMI watchdog, so it
was pretty pointless to add the logic for X86_VENDOR_ZHAOXIN to begin with ... :-/
Anyway, the fix is to restore the old logic and add a 'break'.
[ mingo: Wrote a new changelog. ]
Fixes: 3a4ac121c2ca ("x86/perf: Add hardware performance events support for Zhaoxin CPU.")
Signed-off-by: CodyYao-oc <CodyYao-oc@zhaoxin.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210607025335.9643-1-CodyYao-oc@zhaoxin.com
|
|
If access_ok() or fpregs_soft_set() fails in __fpu__restore_sig() then the
function just returns but does not clear the FPU state as it does for all
other fatal failures.
Clear the FPU state for these failures as well.
Fixes: 72a671ced66d ("x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/87mtryyhhz.ffs@nanos.tec.linutronix.de
|
|
Both Intel and AMD consider it to be architecturally valid for XRSTOR to
fail with #PF but nonetheless change the register state. The actual
conditions under which this might occur are unclear [1], but it seems
plausible that this might be triggered if one sibling thread unmaps a page
and invalidates the shared TLB while another sibling thread is executing
XRSTOR on the page in question.
__fpu__restore_sig() can execute XRSTOR while the hardware registers
are preserved on behalf of a different victim task (using the
fpu_fpregs_owner_ctx mechanism), and, in theory, XRSTOR could fail but
modify the registers.
If this happens, then there is a window in which __fpu__restore_sig()
could schedule out and the victim task could schedule back in without
reloading its own FPU registers. This would result in part of the FPU
state that __fpu__restore_sig() was attempting to load leaking into the
victim task's user-visible state.
Invalidate preserved FPU registers on XRSTOR failure to prevent this
situation from corrupting any state.
[1] Frequent readers of the errata lists might imagine "complex
microarchitectural conditions".
Fixes: 1d731e731c4c ("x86/fpu: Add a fastpath to __fpu__restore_sig()")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20210608144345.758116583@linutronix.de
|
|
The non-compacted slowpath uses __copy_from_user() and copies the entire
user buffer into the kernel buffer, verbatim. This means that the kernel
buffer may now contain entirely invalid state on which XRSTOR will #GP.
validate_user_xstate_header() can detect some of that corruption, but that
leaves the onus on callers to clear the buffer.
Prior to XSAVES support, it was possible just to reinitialize the buffer,
completely, but with supervisor states that is not longer possible as the
buffer clearing code split got it backwards. Fixing that is possible but
not corrupting the state in the first place is more robust.
Avoid corruption of the kernel XSAVE buffer by using copy_user_to_xstate()
which validates the XSAVE header contents before copying the actual states
to the kernel. copy_user_to_xstate() was previously only called for
compacted-format kernel buffers, but it works for both compacted and
non-compacted forms.
Using it for the non-compacted form is slower because of multiple
__copy_from_user() operations, but that cost is less important than robust
code in an already slow path.
[ Changelog polished by Dave Hansen ]
Fixes: b860eb8dce59 ("x86/fpu/xstate: Define new functions for clearing fpregs and xstates")
Reported-by: syzbot+2067e764dbcd10721e2e@syzkaller.appspotmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20210608144345.611833074@linutronix.de
|
|
There are BIOSes that are known to corrupt the memory under 1M, or more
precisely under 640K because the memory above 640K is anyway reserved
for the EGA/VGA frame buffer and BIOS.
To prevent usage of the memory that will be potentially clobbered by the
kernel, the beginning of the memory is always reserved. The exact size
of the reserved area is determined by CONFIG_X86_RESERVE_LOW build time
and the "reservelow=" command line option. The reserved range may be
from 4K to 640K with the default of 64K. There are also configurations
that reserve the entire 1M range, like machines with SandyBridge graphic
devices or systems that enable crash kernel.
In addition to the potentially clobbered memory, EBDA of unknown size may
be as low as 128K and the memory above that EBDA start is also reserved
early.
It would have been possible to reserve the entire range under 1M unless for
the real mode trampoline that must reside in that area.
To accommodate placement of the real mode trampoline and keep the memory
safe from being clobbered by BIOS, reserve the first 64K of RAM before
memory allocations are possible and then, after the real mode trampoline
is allocated, reserve the entire range from 0 to 1M.
Update trim_snb_memory() and reserve_real_mode() to avoid redundant
reservations of the same memory range.
Also make sure the memory under 1M is not getting freed by
efi_free_boot_services().
[ bp: Massage commit message and comments. ]
Fixes: a799c2bd29d1 ("x86/setup: Consolidate early memory reservations")
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Hugh Dickins <hughd@google.com>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=213177
Link: https://lkml.kernel.org/r/20210601075354.5149-2-rppt@kernel.org
|
|
Up until now the assumption was that an alternative patching site would
have some instructions at the beginning and trailing single-byte NOPs
(0x90) padding. Therefore, the patching machinery would go and optimize
those single-byte NOPs into longer ones.
However, this assumption is broken on 32-bit when code like
hv_do_hypercall() in hyperv_init() would use the ratpoline speculation
killer CALL_NOSPEC. The 32-bit version of that macro would align certain
insns to 16 bytes, leading to the compiler issuing a one or more
single-byte NOPs, depending on the holes it needs to fill for alignment.
That would lead to the warning in optimize_nops() to fire:
------------[ cut here ]------------
Not a NOP at 0xc27fb598
WARNING: CPU: 0 PID: 0 at arch/x86/kernel/alternative.c:211 optimize_nops.isra.13
due to that function verifying whether all of the following bytes really
are single-byte NOPs.
Therefore, carve out the NOP padding into a separate function and call
it for each NOP range beginning with a single-byte NOP.
Fixes: 23c1ad538f4f ("x86/alternatives: Optimize optimize_nops()")
Reported-by: Richard Narron <richard@aaazen.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=213301
Link: https://lkml.kernel.org/r/20210601212125.17145-1-bp@alien8.de
|
|
While digesting the XSAVE-related horrors which got introduced with
the supervisor/user split, the recent addition of ENQCMD-related
functionality got on the radar and turned out to be similarly broken.
update_pasid(), which is only required when X86_FEATURE_ENQCMD is
available, is invoked from two places:
1) From switch_to() for the incoming task
2) Via a SMP function call from the IOMMU/SMV code
#1 is half-ways correct as it hacks around the brokenness of get_xsave_addr()
by enforcing the state to be 'present', but all the conditionals in that
code are completely pointless for that.
Also the invocation is just useless overhead because at that point
it's guaranteed that TIF_NEED_FPU_LOAD is set on the incoming task
and all of this can be handled at return to user space.
#2 is broken beyond repair. The comment in the code claims that it is safe
to invoke this in an IPI, but that's just wishful thinking.
FPU state of a running task is protected by fregs_lock() which is
nothing else than a local_bh_disable(). As BH-disabled regions run
usually with interrupts enabled the IPI can hit a code section which
modifies FPU state and there is absolutely no guarantee that any of the
assumptions which are made for the IPI case is true.
Also the IPI is sent to all CPUs in mm_cpumask(mm), but the IPI is
invoked with a NULL pointer argument, so it can hit a completely
unrelated task and unconditionally force an update for nothing.
Worse, it can hit a kernel thread which operates on a user space
address space and set a random PASID for it.
The offending commit does not cleanly revert, but it's sufficient to
force disable X86_FEATURE_ENQCMD and to remove the broken update_pasid()
code to make this dysfunctional all over the place. Anything more
complex would require more surgery and none of the related functions
outside of the x86 core code are blatantly wrong, so removing those
would be overkill.
As nothing enables the PASID bit in the IA32_XSS MSR yet, which is
required to make this actually work, this cannot result in a regression
except for related out of tree train-wrecks, but they are broken already
today.
Fixes: 20f0afd1fb3d ("x86/mmu: Allocate/free a PASID")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/87mtsd6gr9.ffs@nanos.tec.linutronix.de
|
|
There are machines out there with added value crap^WBIOS which provide an
SMI handler for the local APIC thermal sensor interrupt. Out of reset,
the BSP on those machines has something like 0x200 in that APIC register
(timestamps left in because this whole issue is timing sensitive):
[ 0.033858] read lvtthmr: 0x330, val: 0x200
which means:
- bit 16 - the interrupt mask bit is clear and thus that interrupt is enabled
- bits [10:8] have 010b which means SMI delivery mode.
Now, later during boot, when the kernel programs the local APIC, it
soft-disables it temporarily through the spurious vector register:
setup_local_APIC:
...
/*
* If this comes from kexec/kcrash the APIC might be enabled in
* SPIV. Soft disable it before doing further initialization.
*/
value = apic_read(APIC_SPIV);
value &= ~APIC_SPIV_APIC_ENABLED;
apic_write(APIC_SPIV, value);
which means (from the SDM):
"10.4.7.2 Local APIC State After It Has Been Software Disabled
...
* The mask bits for all the LVT entries are set. Attempts to reset these
bits will be ignored."
And this happens too:
[ 0.124111] APIC: Switch to symmetric I/O mode setup
[ 0.124117] lvtthmr 0x200 before write 0xf to APIC 0xf0
[ 0.124118] lvtthmr 0x10200 after write 0xf to APIC 0xf0
This results in CPU 0 soft lockups depending on the placement in time
when the APIC soft-disable happens. Those soft lockups are not 100%
reproducible and the reason for that can only be speculated as no one
tells you what SMM does. Likely, it confuses the SMM code that the APIC
is disabled and the thermal interrupt doesn't doesn't fire at all,
leading to CPU 0 stuck in SMM forever...
Now, before
4f432e8bb15b ("x86/mce: Get rid of mcheck_intel_therm_init()")
due to how the APIC_LVTTHMR was read before APIC initialization in
mcheck_intel_therm_init(), it would read the value with the mask bit 16
clear and then intel_init_thermal() would replicate it onto the APs and
all would be peachy - the thermal interrupt would remain enabled.
But that commit moved that reading to a later moment in
intel_init_thermal(), resulting in reading APIC_LVTTHMR on the BSP too
late and with its interrupt mask bit set.
Thus, revert back to the old behavior of reading the thermal LVT
register before the APIC gets initialized.
Fixes: 4f432e8bb15b ("x86/mce: Get rid of mcheck_intel_therm_init()")
Reported-by: James Feeney <james@nurealm.net>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Cc: Zhang Rui <rui.zhang@intel.com>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Link: https://lkml.kernel.org/r/YKIqDdFNaXYd39wz@zn.tnic
|
|
PIC interrupts do not support affinity setting and they can end up on
any online CPU. Therefore, it's required to mark the associated vectors
as system-wide reserved. Otherwise, the corresponding irq descriptors
are copied to the secondary CPUs but the vectors are not marked as
assigned or reserved. This works correctly for the IO/APIC case.
When the IO/APIC is disabled via config, kernel command line or lack of
enumeration then all legacy interrupts are routed through the PIC, but
nothing marks them as system-wide reserved vectors.
As a consequence, a subsequent allocation on a secondary CPU can result in
allocating one of these vectors, which triggers the BUG() in
apic_update_vector() because the interrupt descriptor slot is not empty.
Imran tried to work around that by marking those interrupts as allocated
when a CPU comes online. But that's wrong in case that the IO/APIC is
available and one of the legacy interrupts, e.g. IRQ0, has been switched to
PIC mode because then marking them as allocated will fail as they are
already marked as system vectors.
Stay consistent and update the legacy vectors after attempting IO/APIC
initialization and mark them as system vectors in case that no IO/APIC is
available.
Fixes: 69cde0004a4b ("x86/vector: Use matrix allocator for vector assignment")
Reported-by: Imran Khan <imran.f.khan@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20210519233928.2157496-1-imran.f.khan@oracle.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- Fix how SEV handles MMIO accesses by forwarding potential page faults
instead of killing the machine and by using the accessors with the
exact functionality needed when accessing memory.
- Fix a confusion with Clang LTO compiler switches passed to the it
- Handle the case gracefully when VMGEXIT has been executed in
userspace
* tag 'x86_urgent_for_v5.13_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sev-es: Use __put_user()/__get_user() for data accesses
x86/sev-es: Forward page-faults which happen during emulation
x86/sev-es: Don't return NULL from sev_es_get_ghcb()
x86/build: Fix location of '-plugin-opt=' flags
x86/sev-es: Invalidate the GHCB after completing VMGEXIT
x86/sev-es: Move sev_es_put_ghcb() in prep for follow on patch
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull siginfo fix from Eric Biederman:
"During the merge window an issue with si_perf and the siginfo ABI came
up. The alpha and sparc siginfo structure layout had changed with the
addition of SIGTRAP TRAP_PERF and the new field si_perf.
The reason only alpha and sparc were affected is that they are the
only architectures that use si_trapno.
Looking deeper it was discovered that si_trapno is used for only a few
select signals on alpha and sparc, and that none of the other
_sigfault fields past si_addr are used at all. Which means technically
no regression on alpha and sparc.
While the alignment concerns might be dismissed the abuse of si_errno
by SIGTRAP TRAP_PERF does have the potential to cause regressions in
existing userspace.
While we still have time before userspace starts using and depending
on the new definition siginfo for SIGTRAP TRAP_PERF this set of
changes cleans up siginfo_t.
- The si_trapno field is demoted from magic alpha and sparc status
and made an ordinary union member of the _sigfault member of
siginfo_t. Without moving it of course.
- si_perf is replaced with si_perf_data and si_perf_type ending the
abuse of si_errno.
- Unnecessary additions to signalfd_siginfo are removed"
* 'for-v5.13-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
signalfd: Remove SIL_PERF_EVENT fields from signalfd_siginfo
signal: Deliver all of the siginfo perf data in _perf
signal: Factor force_sig_perf out of perf_sigtrap
signal: Implement SIL_FAULT_TRAPNO
siginfo: Move si_trapno inside the union inside _si_fault
|
|
The put_user() and get_user() functions do checks on the address which is
passed to them. They check whether the address is actually a user-space
address and whether its fine to access it. They also call might_fault()
to indicate that they could fault and possibly sleep.
All of these checks are neither wanted nor needed in the #VC exception
handler, which can be invoked from almost any context and also for MMIO
instructions from kernel space on kernel memory. All the #VC handler
wants to know is whether a fault happened when the access was tried.
This is provided by __put_user()/__get_user(), which just do the access
no matter what. Also add comments explaining why __get_user() and
__put_user() are the best choice here and why it is safe to use them
in this context. Also explain why copy_to/from_user can't be used.
In addition, also revert commit
7024f60d6552 ("x86/sev-es: Handle string port IO to kernel memory properly")
because using __get_user()/__put_user() fixes the same problem while
the above commit introduced several problems:
1) It uses access_ok() which is only allowed in task context.
2) It uses memcpy() which has no fault handling at all and is
thus unsafe to use here.
[ bp: Fix up commit ID of the reverted commit above. ]
Fixes: f980f9c31a92 ("x86/sev-es: Compile early handler code into kernel image")
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org # v5.10+
Link: https://lkml.kernel.org/r/20210519135251.30093-4-joro@8bytes.org
|
|
When emulating guest instructions for MMIO or IOIO accesses, the #VC
handler might get a page-fault and will not be able to complete. Forward
the page-fault in this case to the correct handler instead of killing
the machine.
Fixes: 0786138c78e7 ("x86/sev-es: Add a Runtime #VC Exception Handler")
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org # v5.10+
Link: https://lkml.kernel.org/r/20210519135251.30093-3-joro@8bytes.org
|
|
sev_es_get_ghcb() is called from several places but only one of them
checks the return value. The reaction to returning NULL is always the
same: calling panic() and kill the machine.
Instead of adding checks to all call sites, move the panic() into the
function itself so that it will no longer return NULL.
Fixes: 0786138c78e7 ("x86/sev-es: Add a Runtime #VC Exception Handler")
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org # v5.10+
Link: https://lkml.kernel.org/r/20210519135251.30093-2-joro@8bytes.org
|
|
Don't abuse si_errno and deliver all of the perf data in _perf member
of siginfo_t.
Note: The data field in the perf data structures in a u64 to allow a
pointer to be encoded without needed to implement a 32bit and 64bit
version of the same structure. There already exists a 32bit and 64bit
versions siginfo_t, and the 32bit version can not include a 64bit
member as it only has 32bit alignment. So unsigned long is used in
siginfo_t instead of a u64 as unsigned long can encode a pointer on
all architectures linux supports.
v1: https://lkml.kernel.org/r/m11rarqqx2.fsf_-_@fess.ebiederm.org
v2: https://lkml.kernel.org/r/20210503203814.25487-10-ebiederm@xmission.com
v3: https://lkml.kernel.org/r/20210505141101.11519-11-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20210517195748.8880-4-ebiederm@xmission.com
Reviewed-by: Marco Elver <elver@google.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
It turns out that linux uses si_trapno very sparingly, and as such it
can be considered extra information for a very narrow selection of
signals, rather than information that is present with every fault
reported in siginfo.
As such move si_trapno inside the union inside of _si_fault. This
results in no change in placement, and makes it eaiser
to extend _si_fault in the future as this reduces the number of
special cases. In particular with si_trapno included in the union it
is no longer a concern that the union must be pointer aligned on most
architectures because the union follows immediately after si_addr
which is a pointer.
This change results in a difference in siginfo field placement on
sparc and alpha for the fields si_addr_lsb, si_lower, si_upper,
si_pkey, and si_perf. These architectures do not implement the
signals that would use si_addr_lsb, si_lower, si_upper, si_pkey, and
si_perf. Further these architecture have not yet implemented the
userspace that would use si_perf.
The point of this change is in fact to correct these placement issues
before sparc or alpha grow userspace that cares. This change was
discussed[1] and the agreement is that this change is currently safe.
[1]: https://lkml.kernel.org/r/CAK8P3a0+uKYwL1NhY6Hvtieghba2hKYGD6hcKx5n8=4Gtt+pHA@mail.gmail.com
Acked-by: Marco Elver <elver@google.com>
v1: https://lkml.kernel.org/r/m1tunns7yf.fsf_-_@fess.ebiederm.org
v2: https://lkml.kernel.org/r/20210505141101.11519-5-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20210517195748.8880-1-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
Since the VMGEXIT instruction can be issued from userspace, invalidate
the GHCB after performing VMGEXIT processing in the kernel.
Invalidation is only required after userspace is available, so call
vc_ghcb_invalidate() from sev_es_put_ghcb(). Update vc_ghcb_invalidate()
to additionally clear the GHCB exit code so that it is always presented
as 0 when VMGEXIT has been issued by anything else besides the kernel.
Fixes: 0786138c78e79 ("x86/sev-es: Add a Runtime #VC Exception Handler")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/5a8130462e4f0057ee1184509cd056eedd78742b.1621273353.git.thomas.lendacky@amd.com
|
|
Move the location of sev_es_put_ghcb() in preparation for an update to it
in a follow-on patch. This will better highlight the changes being made
to the function.
No functional change.
Fixes: 0786138c78e79 ("x86/sev-es: Add a Runtime #VC Exception Handler")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/8c07662ec17d3d82e5c53841a1d9e766d3bdbab6.1621273353.git.thomas.lendacky@amd.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
"The three SEV commits are not really urgent material. But we figured
since getting them in now will avoid a huge amount of conflicts
between future SEV changes touching tip, the kvm and probably other
trees, sending them to you now would be best.
The idea is that the tip, kvm etc branches for 5.14 will all base
ontop of -rc2 and thus everything will be peachy. What is more, those
changes are purely mechanical and defines movement so they should be
fine to go now (famous last words).
Summary:
- Enable -Wundef for the compressed kernel build stage
- Reorganize SEV code to streamline and simplify future development"
* tag 'x86_urgent_for_v5.13_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot/compressed: Enable -Wundef
x86/msr: Rename MSR_K8_SYSCFG to MSR_AMD64_SYSCFG
x86/sev: Move GHCB MSR protocol and NAE definitions in a common header
x86/sev-es: Rename sev-es.{ch} to sev.{ch}
|
|
generations
Some AMD Ryzen generations has different calculation method on maximum
performance. 255 is not for all ASICs, some specific generations should use 166
as the maximum performance. Otherwise, it will report incorrect frequency value
like below:
~ → lscpu | grep MHz
CPU MHz: 3400.000
CPU max MHz: 7228.3198
CPU min MHz: 2200.0000
[ mingo: Tidied up whitespace use. ]
[ Alexander Monakov <amonakov@ispras.ru>: fix 225 -> 255 typo. ]
Fixes: 41ea667227ba ("x86, sched: Calculate frequency invariance for AMD systems")
Fixes: 3c55e94c0ade ("cpufreq: ACPI: Extend frequency tables to cover boost frequencies")
Reported-by: Jason Bagavatsingham <jason.bagavatsingham@gmail.com>
Fixed-by: Alexander Monakov <amonakov@ispras.ru>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Huang Rui <ray.huang@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Jason Bagavatsingham <jason.bagavatsingham@gmail.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210425073451.2557394-1-ray.huang@amd.com
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=211791
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Pull kvm fixes from Paolo Bonzini:
- Lots of bug fixes.
- Fix virtualization of RDPID
- Virtualization of DR6_BUS_LOCK, which on bare metal is new to this
release
- More nested virtualization migration fixes (nSVM and eVMCS)
- Fix for KVM guest hibernation
- Fix for warning in SEV-ES SRCU usage
- Block KVM from loading on AMD machines with 5-level page tables, due
to the APM not mentioning how host CR4.LA57 exactly impacts the
guest.
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (48 commits)
KVM: SVM: Move GHCB unmapping to fix RCU warning
KVM: SVM: Invert user pointer casting in SEV {en,de}crypt helpers
kvm: Cap halt polling at kvm->max_halt_poll_ns
tools/kvm_stat: Fix documentation typo
KVM: x86: Prevent deadlock against tk_core.seq
KVM: x86: Cancel pvclock_gtod_work on module removal
KVM: x86: Prevent KVM SVM from loading on kernels with 5-level paging
KVM: X86: Expose bus lock debug exception to guest
KVM: X86: Add support for the emulation of DR6_BUS_LOCK bit
KVM: PPC: Book3S HV: Fix conversion to gfn-based MMU notifier callbacks
KVM: x86: Hide RDTSCP and RDPID if MSR_TSC_AUX probing failed
KVM: x86: Tie Intel and AMD behavior for MSR_TSC_AUX to guest CPU model
KVM: x86: Move uret MSR slot management to common x86
KVM: x86: Export the number of uret MSRs to vendor modules
KVM: VMX: Disable loading of TSX_CTRL MSR the more conventional way
KVM: VMX: Use common x86's uret MSR list as the one true list
KVM: VMX: Use flag to indicate "active" uret MSRs instead of sorting list
KVM: VMX: Configure list of user return MSRs at module init
KVM: x86: Add support for RDPID without RDTSCP
KVM: SVM: Probe and load MSR_TSC_AUX regardless of RDTSCP support in host
...
|
|
The SYSCFG MSR continued being updated beyond the K8 family; drop the K8
name from it.
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20210427111636.1207-4-brijesh.singh@amd.com
|
|
The guest and the hypervisor contain separate macros to get and set
the GHCB MSR protocol and NAE event fields. Consolidate the GHCB
protocol definitions and helper macros in one place.
Leave the supported protocol version define in separate files to keep
the guest and hypervisor flexibility to support different GHCB version
in the same release.
There is no functional change intended.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20210427111636.1207-3-brijesh.singh@amd.com
|
|
SEV-SNP builds upon the SEV-ES functionality while adding new hardware
protection. Version 2 of the GHCB specification adds new NAE events that
are SEV-SNP specific. Rename the sev-es.{ch} to sev.{ch} so that all
SEV* functionality can be consolidated in one place.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20210427111636.1207-2-brijesh.singh@amd.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
"A bunch of things accumulated for x86 in the last two weeks:
- Fix guest vtime accounting so that ticks happening while the guest
is running can also be accounted to it. Along with a consolidation
to the guest-specific context tracking helpers.
- Provide for the host NMI handler running after a VMX VMEXIT to be
able to run on the kernel stack correctly.
- Initialize MSR_TSC_AUX when RDPID is supported and not RDTSCP (virt
relevant - real hw supports both)
- A code generation improvement to TASK_SIZE_MAX through the use of
alternatives
- The usual misc and related cleanups and improvements"
* tag 'x86_urgent_for_v5.13_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
KVM: x86: Consolidate guest enter/exit logic to common helpers
context_tracking: KVM: Move guest enter/exit wrappers to KVM's domain
context_tracking: Consolidate guest enter/exit wrappers
sched/vtime: Move guest enter/exit vtime accounting to vtime.h
sched/vtime: Move vtime accounting external declarations above inlines
KVM: x86: Defer vtime accounting 'til after IRQ handling
context_tracking: Move guest exit vtime accounting to separate helpers
context_tracking: Move guest exit context tracking to separate helpers
KVM/VMX: Invoke NMI non-IST entry instead of IST entry
x86/cpu: Remove write_tsc() and write_rdtscp_aux() wrappers
x86/cpu: Initialize MSR_TSC_AUX if RDTSCP *or* RDPID is supported
x86/resctrl: Fix init const confusion
x86: Delete UD0, UD1 traces
x86/smpboot: Remove duplicate includes
x86/cpu: Use alternative to generate the TASK_SIZE_MAX constant
|
|
Pull io_uring fixes from Jens Axboe:
"Mostly fixes for merge window merged code. In detail:
- Error case memory leak fixes (Colin, Zqiang)
- Add the tools/io_uring/ to the list of maintained files (Lukas)
- Set of fixes for the modified buffer registration API (Pavel)
- Sanitize io thread setup on x86 (Stefan)
- Ensure we truncate transfer count for registered buffers (Thadeu)"
* tag 'io_uring-5.13-2021-05-07' of git://git.kernel.dk/linux-block:
x86/process: setup io_threads more like normal user space threads
MAINTAINERS: add io_uring tool to IO_URING
io_uring: truncate lengths larger than MAX_RW_COUNT on provide buffers
io_uring: Fix memory leak in io_sqe_buffers_register()
io_uring: Fix premature return from loop and memory leak
io_uring: fix unchecked error in switch_start()
io_uring: allow empty slots for reg buffers
io_uring: add more build check for uapi
io_uring: dont overlap internal and user req flags
io_uring: fix drain with rsrc CQEs
|
|
Simplify the code by making PV features shutdown happen in one place.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210414123544.1060604-6-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Crash shutdown handler only disables kvmclock and steal time, other PV
features remain active so we risk corrupting memory or getting some
side-effects in kdump kernel. Move crash handler to kvm.c and unify
with CPU offline.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210414123544.1060604-5-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Currenly, we disable kvmclock from machine_shutdown() hook and this
only happens for boot CPU. We need to disable it for all CPUs to
guard against memory corruption e.g. on restore from hibernate.
Note, writing '0' to kvmclock MSR doesn't clear memory location, it
just prevents hypervisor from updating the location so for the short
while after write and while CPU is still alive, the clock remains usable
and correct so we don't need to switch to some other clocksource.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210414123544.1060604-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Various PV features (Async PF, PV EOI, steal time) work through memory
shared with hypervisor and when we restore from hibernation we must
properly teardown all these features to make sure hypervisor doesn't
write to stale locations after we jump to the previously hibernated kernel
(which can try to place anything there). For secondary CPUs the job is
already done by kvm_cpu_down_prepare(), register syscore ops to do
the same for boot CPU.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210414123544.1060604-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
As io_threads are fully set up USER threads it's clearer to separate the
code path from the KTHREAD logic.
The only remaining difference to user space threads is that io_threads
never return to user space again. Instead they loop within the given
worker function.
The fact that they never return to user space means they don't have an
user space thread stack. In order to indicate that to tools like gdb we
reset the stack and instruction pointers to 0.
This allows gdb attach to user space processes using io-uring, which like
means that they have io_threads, without printing worrying message like
this:
warning: Selected architecture i386:x86-64 is not compatible with reported target architecture i386
warning: Architecture rejected target-supplied description
The output will be something like this:
(gdb) info threads
Id Target Id Frame
* 1 LWP 4863 "io_uring-cp-for" syscall () at ../sysdeps/unix/sysv/linux/x86_64/syscall.S:38
2 LWP 4864 "iou-mgr-4863" 0x0000000000000000 in ?? ()
3 LWP 4865 "iou-wrk-4863" 0x0000000000000000 in ?? ()
(gdb) thread 3
[Switching to thread 3 (LWP 4865)]
#0 0x0000000000000000 in ?? ()
(gdb) bt
#0 0x0000000000000000 in ?? ()
Backtrace stopped: Cannot access memory at address 0x0
Fixes: 4727dc20e042 ("arch: setup PF_IO_WORKER threads like PF_KTHREAD")
Link: https://lore.kernel.org/io-uring/044d0bad-6888-a211-e1d3-159a4aeed52d@polymtl.ca/T/#m1bbf5727e3d4e839603f6ec7ed79c7eebfba6267
Signed-off-by: Stefan Metzmacher <metze@samba.org>
cc: Linus Torvalds <torvalds@linux-foundation.org>
cc: Jens Axboe <axboe@kernel.dk>
cc: Andy Lutomirski <luto@kernel.org>
cc: linux-kernel@vger.kernel.org
cc: io-uring@vger.kernel.org
cc: x86@kernel.org
Link: https://lore.kernel.org/r/20210505110310.237537-1-metze@samba.org
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|