summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/cpu
AgeCommit message (Collapse)AuthorFilesLines
2022-06-16x86/speculation/mmio: Print SMT warningJosh Poimboeuf1-0/+11
commit 1dc6ff02c8bf77d71b9b5d11cbc9df77cfb28626 upstream Similar to MDS and TAA, print a warning if SMT is enabled for the MMIO Stale Data vulnerability. Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-16x86/speculation/mmio: Reuse SRBDS mitigation for SBDSPawan Gupta1-7/+14
commit a992b8a4682f119ae035a01b40d4d0665c4a2875 upstream The Shared Buffers Data Sampling (SBDS) variant of Processor MMIO Stale Data vulnerabilities may expose RDRAND, RDSEED and SGX EGETKEY data. Mitigation for this is added by a microcode update. As some of the implications of SBDS are similar to SRBDS, SRBDS mitigation infrastructure can be leveraged by SBDS. Set X86_BUG_SRBDS and use SRBDS mitigation. Mitigation is enabled by default; use srbds=off to opt-out. Mitigation status can be checked from below file: /sys/devices/system/cpu/vulnerabilities/srbds Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-16x86/speculation/srbds: Update SRBDS mitigation selectionPawan Gupta1-3/+5
commit 22cac9c677c95f3ac5c9244f8ca0afdc7c8afb19 upstream Currently, Linux disables SRBDS mitigation on CPUs not affected by MDS and have the TSX feature disabled. On such CPUs, secrets cannot be extracted from CPU fill buffers using MDS or TAA. Without SRBDS mitigation, Processor MMIO Stale Data vulnerabilities can be used to extract RDRAND, RDSEED, and EGETKEY data. Do not disable SRBDS mitigation by default when CPU is also affected by Processor MMIO Stale Data vulnerabilities. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-16x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale DataPawan Gupta1-0/+22
commit 8d50cdf8b8341770bc6367bce40c0c1bb0e1d5b3 upstream Add the sysfs reporting file for Processor MMIO Stale Data vulnerability. It exposes the vulnerability and mitigation state similar to the existing files for the other hardware vulnerabilities. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-16x86/speculation/mmio: Enable CPU Fill buffer clearing on idlePawan Gupta1-2/+14
commit 99a83db5a605137424e1efe29dc0573d6a5b6316 upstream When the CPU is affected by Processor MMIO Stale Data vulnerabilities, Fill Buffer Stale Data Propagator (FBSDP) can propagate stale data out of Fill buffer to uncore buffer when CPU goes idle. Stale data can then be exploited with other variants using MMIO operations. Mitigate it by clearing the Fill buffer before entering idle state. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Co-developed-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-16x86/bugs: Group MDS, TAA & Processor MMIO Stale Data mitigationsPawan Gupta1-10/+16
commit e5925fb867290ee924fcf2fe3ca887b792714366 upstream MDS, TAA and Processor MMIO Stale Data mitigations rely on clearing CPU buffers. Moreover, status of these mitigations affects each other. During boot, it is important to maintain the order in which these mitigations are selected. This is especially true for md_clear_update_mitigation() that needs to be called after MDS, TAA and Processor MMIO Stale Data mitigation selection is done. Introduce md_clear_select_mitigation(), and select all these mitigations from there. This reflects relationships between these mitigations and ensures proper ordering. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-16x86/speculation/mmio: Add mitigation for Processor MMIO Stale DataPawan Gupta1-4/+107
commit 8cb861e9e3c9a55099ad3d08e1a3b653d29c33ca upstream Processor MMIO Stale Data is a class of vulnerabilities that may expose data after an MMIO operation. For details please refer to Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst. These vulnerabilities are broadly categorized as: Device Register Partial Write (DRPW): Some endpoint MMIO registers incorrectly handle writes that are smaller than the register size. Instead of aborting the write or only copying the correct subset of bytes (for example, 2 bytes for a 2-byte write), more bytes than specified by the write transaction may be written to the register. On some processors, this may expose stale data from the fill buffers of the core that created the write transaction. Shared Buffers Data Sampling (SBDS): After propagators may have moved data around the uncore and copied stale data into client core fill buffers, processors affected by MFBDS can leak data from the fill buffer. Shared Buffers Data Read (SBDR): It is similar to Shared Buffer Data Sampling (SBDS) except that the data is directly read into the architectural software-visible state. An attacker can use these vulnerabilities to extract data from CPU fill buffers using MDS and TAA methods. Mitigate it by clearing the CPU fill buffers using the VERW instruction before returning to a user or a guest. On CPUs not affected by MDS and TAA, user application cannot sample data from CPU fill buffers using MDS or TAA. A guest with MMIO access can still use DRPW or SBDR to extract data architecturally. Mitigate it with VERW instruction to clear fill buffers before VMENTER for MMIO capable guests. Add a kernel parameter mmio_stale_data={off|full|full,nosmt} to control the mitigation. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-16x86/speculation: Add a common function for MD_CLEAR mitigation updatePawan Gupta1-26/+33
commit f52ea6c26953fed339aa4eae717ee5c2133c7ff2 upstream Processor MMIO Stale Data mitigation uses similar mitigation as MDS and TAA. In preparation for adding its mitigation, add a common function to update all mitigations that depend on MD_CLEAR. [ bp: Add a newline in md_clear_update_mitigation() to separate statements better. ] Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-16x86/speculation/mmio: Enumerate Processor MMIO Stale Data bugPawan Gupta1-2/+41
commit 51802186158c74a0304f51ab963e7c2b3a2b046f upstream Processor MMIO Stale Data is a class of vulnerabilities that may expose data after an MMIO operation. For more details please refer to Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst Add the Processor MMIO Stale Data bug enumeration. A microcode update adds new bits to the MSR IA32_ARCH_CAPABILITIES, define them. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-09mce: fix set_mce_nospec to always unmap the whole pageJane Chu1-3/+3
[ Upstream commit 5898b43af954b83c4a4ee4ab85c4dbafa395822a ] The set_memory_uc() approach doesn't work well in all cases. As Dan pointed out when "The VMM unmapped the bad page from guest physical space and passed the machine check to the guest." "The guest gets virtual #MC on an access to that page. When the guest tries to do set_memory_uc() and instructs cpa_flush() to do clean caches that results in taking another fault / exception perhaps because the VMM unmapped the page from the guest." Since the driver has special knowledge to handle NP or UC, mark the poisoned page with NP and let driver handle it when it comes down to repair. Please refer to discussions here for more details. https://lore.kernel.org/all/CAPcyv4hrXPb1tASBZUg-GgdVs0OOFKXMXLiHmktg_kFi7YBMyQ@mail.gmail.com/ Now since poisoned page is marked as not-present, in order to avoid writing to a not-present page and trigger kernel Oops, also fix pmem_do_write(). Fixes: 284ce4011ba6 ("x86/memory_failure: Introduce {set, clear}_mce_nospec()") Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jane Chu <jane.chu@oracle.com> Acked-by: Tony Luck <tony.luck@intel.com> Link: https://lore.kernel.org/r/165272615484.103830.2563950688772226611.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09x86: Fix return value of __setup handlersRandy Dunlap1-1/+1
[ Upstream commit 12441ccdf5e2f5a01a46e344976cbbd3d46845c9 ] __setup() handlers should return 1 to obsolete_checksetup() in init/main.c to indicate that the boot option has been handled. A return of 0 causes the boot option/value to be listed as an Unknown kernel parameter and added to init's (limited) argument (no '=') or environment (with '=') strings. So return 1 from these x86 __setup handlers. Examples: Unknown kernel command line parameters "apicpmtimer BOOT_IMAGE=/boot/bzImage-517rc8 vdso=1 ring3mwait=disable", will be passed to user space. Run /sbin/init as init process with arguments: /sbin/init apicpmtimer with environment: HOME=/ TERM=linux BOOT_IMAGE=/boot/bzImage-517rc8 vdso=1 ring3mwait=disable Fixes: 2aae950b21e4 ("x86_64: Add vDSO for x86-64 with gettimeofday/clock_gettime/getcpu") Fixes: 77b52b4c5c66 ("x86: add "debugpat" boot option") Fixes: e16fd002afe2 ("x86/cpufeature: Enable RING3MWAIT for Knights Landing") Fixes: b8ce33590687 ("x86_64: convert to clock events") Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru> Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru Link: https://lore.kernel.org/r/20220314012725.26661-1-rdunlap@infradead.org Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09x86/sgx: Set active memcg prior to shmem allocationKristen Carlson Accardi3-6/+115
commit 0c9782e204d3cc5625b9e8bf4e8625d38dfe0139 upstream. When the system runs out of enclave memory, SGX can reclaim EPC pages by swapping to normal RAM. These backing pages are allocated via a per-enclave shared memory area. Since SGX allows unlimited over commit on EPC memory, the reclaimer thread can allocate a large number of backing RAM pages in response to EPC memory pressure. When the shared memory backing RAM allocation occurs during the reclaimer thread context, the shared memory is charged to the root memory control group, and the shmem usage of the enclave is not properly accounted for, making cgroups ineffective at limiting the amount of RAM an enclave can consume. For example, when using a cgroup to launch a set of test enclaves, the kernel does not properly account for 50% - 75% of shmem page allocations on average. In the worst case, when nearly all allocations occur during the reclaimer thread, the kernel accounts less than a percent of the amount of shmem used by the enclave's cgroup to the correct cgroup. SGX stores a list of mm_structs that are associated with an enclave. Pick one of them during reclaim and charge that mm's memcg with the shmem allocation. The one that gets picked is arbitrary, but this list almost always only has one mm. The cases where there is more than one mm with different memcg's are not worth considering. Create a new function - sgx_encl_alloc_backing(). This function is used whenever a new backing storage page needs to be allocated. Previously the same function was used for page allocation as well as retrieving a previously allocated page. Prior to backing page allocation, if there is a mm_struct associated with the enclave that is requesting the allocation, it is set as the active memory control group. [ dhansen: - fix merge conflict with ELDU fixes - check against actual ksgxd_tsk, not ->mm ] Cc: stable@vger.kernel.org Signed-off-by: Kristen Carlson Accardi <kristen@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Link: https://lkml.kernel.org/r/20220520174248.4918-1-kristen@linux.intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-09x86/MCE/AMD: Fix memory leak when threshold_create_bank() failsAmmar Faizi1-13/+19
commit e5f28623ceb103e13fc3d7bd45edf9818b227fd0 upstream. In mce_threshold_create_device(), if threshold_create_bank() fails, the previously allocated threshold banks array @bp will be leaked because the call to mce_threshold_remove_device() will not free it. This happens because mce_threshold_remove_device() fetches the pointer through the threshold_banks per-CPU variable but bp is written there only after the bank creation is successful, and not before, when threshold_create_bank() fails. Add a helper which unwinds all the bank creation work previously done and pass into it the previously allocated threshold banks array for freeing. [ bp: Massage. ] Fixes: 6458de97fc15 ("x86/mce/amd: Straighten CPU hotplug path") Co-developed-by: Alviro Iskandar Setiawan <alviro.iskandar@gnuweeb.org> Signed-off-by: Alviro Iskandar Setiawan <alviro.iskandar@gnuweeb.org> Co-developed-by: Yazen Ghannam <yazen.ghannam@amd.com> Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com> Signed-off-by: Ammar Faizi <ammarfaizi2@gnuweeb.org> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Link: https://lore.kernel.org/r/20220329104705.65256-3-ammarfaizi2@gnuweeb.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-06x86/sgx: Ensure no data in PCMD page after truncateReinette Chatre1-1/+9
commit e3a3bbe3e99de73043a1d32d36cf4d211dc58c7e upstream. A PCMD (Paging Crypto MetaData) page contains the PCMD structures of enclave pages that have been encrypted and moved to the shmem backing store. When all enclave pages sharing a PCMD page are loaded in the enclave, there is no need for the PCMD page and it can be truncated from the backing store. A few issues appeared around the truncation of PCMD pages. The known issues have been addressed but the PCMD handling code could be made more robust by loudly complaining if any new issue appears in this area. Add a check that will complain with a warning if the PCMD page is not actually empty after it has been truncated. There should never be data in the PCMD page at this point since it is was just checked to be empty and truncated with enclave mutex held and is updated with the enclave mutex held. Suggested-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Tested-by: Haitao Huang <haitao.huang@intel.com> Link: https://lkml.kernel.org/r/6495120fed43fafc1496d09dd23df922b9a32709.1652389823.git.reinette.chatre@intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-06x86/sgx: Fix race between reclaimer and page fault handlerReinette Chatre1-1/+93
commit af117837ceb9a78e995804ade4726ad2c2c8981f upstream. Haitao reported encountering a WARN triggered by the ENCLS[ELDU] instruction faulting with a #GP. The WARN is encountered when the reclaimer evicts a range of pages from the enclave when the same pages are faulted back right away. Consider two enclave pages (ENCLAVE_A and ENCLAVE_B) sharing a PCMD page (PCMD_AB). ENCLAVE_A is in the enclave memory and ENCLAVE_B is in the backing store. PCMD_AB contains just one entry, that of ENCLAVE_B. Scenario proceeds where ENCLAVE_A is being evicted from the enclave while ENCLAVE_B is faulted in. sgx_reclaim_pages() { ... /* * Reclaim ENCLAVE_A */ mutex_lock(&encl->lock); /* * Get a reference to ENCLAVE_A's * shmem page where enclave page * encrypted data will be stored * as well as a reference to the * enclave page's PCMD data page, * PCMD_AB. * Release mutex before writing * any data to the shmem pages. */ sgx_encl_get_backing(...); encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED; mutex_unlock(&encl->lock); /* * Fault ENCLAVE_B */ sgx_vma_fault() { mutex_lock(&encl->lock); /* * Get reference to * ENCLAVE_B's shmem page * as well as PCMD_AB. */ sgx_encl_get_backing(...) /* * Load page back into * enclave via ELDU. */ /* * Release reference to * ENCLAVE_B' shmem page and * PCMD_AB. */ sgx_encl_put_backing(...); /* * PCMD_AB is found empty so * it and ENCLAVE_B's shmem page * are truncated. */ /* Truncate ENCLAVE_B backing page */ sgx_encl_truncate_backing_page(); /* Truncate PCMD_AB */ sgx_encl_truncate_backing_page(); mutex_unlock(&encl->lock); ... } mutex_lock(&encl->lock); encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED; /* * Write encrypted contents of * ENCLAVE_A to ENCLAVE_A shmem * page and its PCMD data to * PCMD_AB. */ sgx_encl_put_backing(...) /* * Reference to PCMD_AB is * dropped and it is truncated. * ENCLAVE_A's PCMD data is lost. */ mutex_unlock(&encl->lock); } What happens next depends on whether it is ENCLAVE_A being faulted in or ENCLAVE_B being evicted - but both end up with ENCLS[ELDU] faulting with a #GP. If ENCLAVE_A is faulted then at the time sgx_encl_get_backing() is called a new PCMD page is allocated and providing the empty PCMD data for ENCLAVE_A would cause ENCLS[ELDU] to #GP If ENCLAVE_B is evicted first then a new PCMD_AB would be allocated by the reclaimer but later when ENCLAVE_A is faulted the ENCLS[ELDU] instruction would #GP during its checks of the PCMD value and the WARN would be encountered. Noting that the reclaimer sets SGX_ENCL_PAGE_BEING_RECLAIMED at the time it obtains a reference to the backing store pages of an enclave page it is in the process of reclaiming, fix the race by only truncating the PCMD page after ensuring that no page sharing the PCMD page is in the process of being reclaimed. Cc: stable@vger.kernel.org Fixes: 08999b2489b4 ("x86/sgx: Free backing memory after faulting the enclave page") Reported-by: Haitao Huang <haitao.huang@intel.com> Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Tested-by: Haitao Huang <haitao.huang@intel.com> Link: https://lkml.kernel.org/r/ed20a5db516aa813873268e125680041ae11dfcf.1652389823.git.reinette.chatre@intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-06x86/sgx: Obtain backing storage page with enclave mutex heldReinette Chatre1-3/+6
commit 0e4e729a830c1e7f31d3b3fbf8feb355a402b117 upstream. Haitao reported encountering a WARN triggered by the ENCLS[ELDU] instruction faulting with a #GP. The WARN is encountered when the reclaimer evicts a range of pages from the enclave when the same pages are faulted back right away. The SGX backing storage is accessed on two paths: when there are insufficient free pages in the EPC the reclaimer works to move enclave pages to the backing storage and as enclaves access pages that have been moved to the backing storage they are retrieved from there as part of page fault handling. An oversubscribed SGX system will often run the reclaimer and page fault handler concurrently and needs to ensure that the backing store is accessed safely between the reclaimer and the page fault handler. This is not the case because the reclaimer accesses the backing store without the enclave mutex while the page fault handler accesses the backing store with the enclave mutex. Consider the scenario where a page is faulted while a page sharing a PCMD page with the faulted page is being reclaimed. The consequence is a race between the reclaimer and page fault handler, the reclaimer attempting to access a PCMD at the same time it is truncated by the page fault handler. This could result in lost PCMD data. Data may still be lost if the reclaimer wins the race, this is addressed in the following patch. The reclaimer accesses pages from the backing storage without holding the enclave mutex and runs the risk of concurrently accessing the backing storage with the page fault handler that does access the backing storage with the enclave mutex held. In the scenario below a PCMD page is truncated from the backing store after all its pages have been loaded in to the enclave at the same time the PCMD page is loaded from the backing store when one of its pages are reclaimed: sgx_reclaim_pages() { sgx_vma_fault() { ... mutex_lock(&encl->lock); ... __sgx_encl_eldu() { ... if (pcmd_page_empty) { /* * EPC page being reclaimed /* * shares a PCMD page with an * PCMD page truncated * enclave page that is being * while requested from * faulted in. * reclaimer. */ */ sgx_encl_get_backing() <----------> sgx_encl_truncate_backing_page() } mutex_unlock(&encl->lock); } } In this scenario there is a race between the reclaimer and the page fault handler when the reclaimer attempts to get access to the same PCMD page that is being truncated. This could result in the reclaimer writing to the PCMD page that is then truncated, causing the PCMD data to be lost, or in a new PCMD page being allocated. The lost PCMD data may still occur after protecting the backing store access with the mutex - this is fixed in the next patch. By ensuring the backing store is accessed with the mutex held the enclave page state can be made accurate with the SGX_ENCL_PAGE_BEING_RECLAIMED flag accurately reflecting that a page is in the process of being reclaimed. Consistently protect the reclaimer's backing store access with the enclave's mutex to ensure that it can safely run concurrently with the page fault handler. Cc: stable@vger.kernel.org Fixes: 1728ab54b4be ("x86/sgx: Add a page reclaimer") Reported-by: Haitao Huang <haitao.huang@intel.com> Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Tested-by: Jarkko Sakkinen <jarkko@kernel.org> Tested-by: Haitao Huang <haitao.huang@intel.com> Link: https://lkml.kernel.org/r/fa2e04c561a8555bfe1f4e7adc37d60efc77387b.1652389823.git.reinette.chatre@intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-06x86/sgx: Mark PCMD page as dirty when modifying contentsReinette Chatre1-0/+1
commit 2154e1c11b7080aa19f47160bd26b6f39bbd7824 upstream. Recent commit 08999b2489b4 ("x86/sgx: Free backing memory after faulting the enclave page") expanded __sgx_encl_eldu() to clear an enclave page's PCMD (Paging Crypto MetaData) from the PCMD page in the backing store after the enclave page is restored to the enclave. Since the PCMD page in the backing store is modified the page should be marked as dirty to ensure the modified data is retained. Cc: stable@vger.kernel.org Fixes: 08999b2489b4 ("x86/sgx: Free backing memory after faulting the enclave page") Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Tested-by: Haitao Huang <haitao.huang@intel.com> Link: https://lkml.kernel.org/r/00cd2ac480db01058d112e347b32599c1a806bc4.1652389823.git.reinette.chatre@intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-06x86/sgx: Disconnect backing page references from dirty statusReinette Chatre3-11/+7
commit 6bd429643cc265e94a9d19839c771bcc5d008fa8 upstream. SGX uses shmem backing storage to store encrypted enclave pages and their crypto metadata when enclave pages are moved out of enclave memory. Two shmem backing storage pages are associated with each enclave page - one backing page to contain the encrypted enclave page data and one backing page (shared by a few enclave pages) to contain the crypto metadata used by the processor to verify the enclave page when it is loaded back into the enclave. sgx_encl_put_backing() is used to release references to the backing storage and, optionally, mark both backing store pages as dirty. Managing references and dirty status together in this way results in both backing store pages marked as dirty, even if only one of the backing store pages are changed. Additionally, waiting until the page reference is dropped to set the page dirty risks a race with the page fault handler that may load outdated data into the enclave when a page is faulted right after it is reclaimed. Consider what happens if the reclaimer writes a page to the backing store and the page is immediately faulted back, before the reclaimer is able to set the dirty bit of the page: sgx_reclaim_pages() { sgx_vma_fault() { ... sgx_encl_get_backing(); ... ... sgx_reclaimer_write() { mutex_lock(&encl->lock); /* Write data to backing store */ mutex_unlock(&encl->lock); } mutex_lock(&encl->lock); __sgx_encl_eldu() { ... /* * Enclave backing store * page not released * nor marked dirty - * contents may not be * up to date. */ sgx_encl_get_backing(); ... /* * Enclave data restored * from backing store * and PCMD pages that * are not up to date. * ENCLS[ELDU] faults * because of MAC or PCMD * checking failure. */ sgx_encl_put_backing(); } ... /* set page dirty */ sgx_encl_put_backing(); ... mutex_unlock(&encl->lock); } } Remove the option to sgx_encl_put_backing() to set the backing pages as dirty and set the needed pages as dirty right after receiving important data while enclave mutex is held. This ensures that the page fault handler can get up to date data from a page and prepares the code for a following change where only one of the backing pages need to be marked as dirty. Cc: stable@vger.kernel.org Fixes: 1728ab54b4be ("x86/sgx: Add a page reclaimer") Suggested-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Tested-by: Haitao Huang <haitao.huang@intel.com> Link: https://lore.kernel.org/linux-sgx/8922e48f-6646-c7cc-6393-7c78dcf23d23@intel.com/ Link: https://lkml.kernel.org/r/fa9f98986923f43e72ef4c6702a50b2a0b3c42e3.1652389823.git.reinette.chatre@intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-04-19x86/cpu: Load microcode during restore_processor_state()Borislav Petkov1-3/+3
When resuming from system sleep state, restore_processor_state() restores the boot CPU MSRs. These MSRs could be emulated by microcode. If microcode is not loaded yet, writing to emulated MSRs leads to unchecked MSR access error: ... PM: Calling lapic_suspend+0x0/0x210 unchecked MSR access error: WRMSR to 0x10f (tried to write 0x0...0) at rIP: ... (native_write_msr) Call Trace: <TASK> ? restore_processor_state x86_acpi_suspend_lowlevel acpi_suspend_enter suspend_devices_and_enter pm_suspend.cold state_store kobj_attr_store sysfs_kf_write kernfs_fop_write_iter new_sync_write vfs_write ksys_write __x64_sys_write do_syscall_64 entry_SYSCALL_64_after_hwframe RIP: 0033:0x7fda13c260a7 To ensure microcode emulated MSRs are available for restoration, load the microcode on the boot CPU before restoring these MSRs. [ Pawan: write commit message and productize it. ] Fixes: e2a1256b17b1 ("x86/speculation: Restore speculation related MSRs during S3 resume") Reported-by: Kyle D. Pelton <kyle.d.pelton@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Tested-by: Kyle D. Pelton <kyle.d.pelton@intel.com> Cc: stable@vger.kernel.org Link: https://bugzilla.kernel.org/show_bug.cgi?id=215841 Link: https://lore.kernel.org/r/4350dfbf785cd482d3fafa72b2b49c83102df3ce.1650386317.git.pawan.kumar.gupta@linux.intel.com
2022-04-11x86/tsx: Disable TSX development mode at bootPawan Gupta4-14/+51
A microcode update on some Intel processors causes all TSX transactions to always abort by default[*]. Microcode also added functionality to re-enable TSX for development purposes. With this microcode loaded, if tsx=on was passed on the cmdline, and TSX development mode was already enabled before the kernel boot, it may make the system vulnerable to TSX Asynchronous Abort (TAA). To be on safer side, unconditionally disable TSX development mode during boot. If a viable use case appears, this can be revisited later. [*]: Intel TSX Disable Update for Selected Processors, doc ID: 643557 [ bp: Drop unstable web link, massage heavily. ] Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com> Suggested-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Tested-by: Neelima Krishnan <neelima.krishnan@intel.com> Cc: <stable@vger.kernel.org> Link: https://lore.kernel.org/r/347bd844da3a333a9793c6687d4e4eb3b2419a3e.1646943780.git.pawan.kumar.gupta@linux.intel.com
2022-04-11x86/tsx: Use MSR_TSX_CTRL to clear CPUID bitsPawan Gupta2-7/+48
tsx_clear_cpuid() uses MSR_TSX_FORCE_ABORT to clear CPUID.RTM and CPUID.HLE. Not all CPUs support MSR_TSX_FORCE_ABORT, alternatively use MSR_IA32_TSX_CTRL when supported. [ bp: Document how and why TSX gets disabled. ] Fixes: 293649307ef9 ("x86/tsx: Clear CPUID bits when TSX always force aborts") Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Tested-by: Neelima Krishnan <neelima.krishnan@intel.com> Cc: <stable@vger.kernel.org> Link: https://lore.kernel.org/r/5b323e77e251a9c8bcdda498c5cc0095be1e1d3c.1646943780.git.pawan.kumar.gupta@linux.intel.com
2022-03-28Merge tag 'driver-core-5.18-rc1' of ↵Linus Torvalds1-2/+2
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core Pull driver core updates from Greg KH: "Here is the set of driver core changes for 5.18-rc1. Not much here, primarily it was a bunch of cleanups and small updates: - kobj_type cleanups for default_groups - documentation updates - firmware loader minor changes - component common helper added and take advantage of it in many drivers (the largest part of this pull request). All of these have been in linux-next for a while with no reported problems" * tag 'driver-core-5.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (54 commits) Documentation: update stable review cycle documentation drivers/base/dd.c : Remove the initial value of the global variable Documentation: update stable tree link Documentation: add link to stable release candidate tree devres: fix typos in comments Documentation: add note block surrounding security patch note samples/kobject: Use sysfs_emit instead of sprintf base: soc: Make soc_device_match() simpler and easier to read driver core: dd: fix return value of __setup handler driver core: Refactor sysfs and drv/bus remove hooks driver core: Refactor multiple copies of device cleanup scripts: get_abi.pl: Fix typo in help message kernfs: fix typos in comments kernfs: remove unneeded #if 0 guard ALSA: hda/realtek: Make use of the helper component_compare_dev_name video: omapfb: dss: Make use of the helper component_compare_dev power: supply: ab8500: Make use of the helper component_compare_dev ASoC: codecs: wcd938x: Make use of the helper component_compare/release_of iommu/mediatek: Make use of the helper component_compare/release_of drm: of: Make use of the helper component_release_of ...
2022-03-27Merge tag 'x86_core_for_5.18_rc1' of ↵Linus Torvalds1-1/+58
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 CET-IBT (Control-Flow-Integrity) support from Peter Zijlstra: "Add support for Intel CET-IBT, available since Tigerlake (11th gen), which is a coarse grained, hardware based, forward edge Control-Flow-Integrity mechanism where any indirect CALL/JMP must target an ENDBR instruction or suffer #CP. Additionally, since Alderlake (12th gen)/Sapphire-Rapids, speculation is limited to 2 instructions (and typically fewer) on branch targets not starting with ENDBR. CET-IBT also limits speculation of the next sequential instruction after the indirect CALL/JMP [1]. CET-IBT is fundamentally incompatible with retpolines, but provides, as described above, speculation limits itself" [1] https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html * tag 'x86_core_for_5.18_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits) kvm/emulate: Fix SETcc emulation for ENDBR x86/Kconfig: Only allow CONFIG_X86_KERNEL_IBT with ld.lld >= 14.0.0 x86/Kconfig: Only enable CONFIG_CC_HAS_IBT for clang >= 14.0.0 kbuild: Fixup the IBT kbuild changes x86/Kconfig: Do not allow CONFIG_X86_X32_ABI=y with llvm-objcopy x86: Remove toolchain check for X32 ABI capability x86/alternative: Use .ibt_endbr_seal to seal indirect calls objtool: Find unused ENDBR instructions objtool: Validate IBT assumptions objtool: Add IBT/ENDBR decoding objtool: Read the NOENDBR annotation x86: Annotate idtentry_df() x86,objtool: Move the ASM_REACHABLE annotation to objtool.h x86: Annotate call_on_stack() objtool: Rework ASM_REACHABLE x86: Mark __invalid_creds() __noreturn exit: Mark do_group_exit() __noreturn x86: Mark stop_this_cpu() __noreturn objtool: Ignore extra-symbol code objtool: Rename --duplicate to --lto ...
2022-03-25Merge tag 'ras_core_for_v5.18_rc1' of ↵Linus Torvalds3-90/+139
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull RAS updates from Borislav Petkov: - More noinstr fixes - Add an erratum workaround for Intel CPUs which, in certain circumstances, end up consuming an unrelated uncorrectable memory error when using fast string copy insns - Remove the MCE tolerance level control as it is not really needed or used anymore * tag 'ras_core_for_v5.18_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mce: Remove the tolerance level control x86/mce: Work around an erratum on fast string copy instructions x86/mce: Use arch atomic and bit helpers
2022-03-24Merge tag 'hyperv-next-signed-20220322' of ↵Linus Torvalds1-4/+4
git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux Pull hyperv updates from Wei Liu: "Minor patches from various people" * tag 'hyperv-next-signed-20220322' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux: x86/hyperv: Output host build info as normal Windows version number hv_balloon: rate-limit "Unhandled message" warning drivers: hv: log when enabling crash_kexec_post_notifiers hv_utils: Add comment about max VMbus packet size in VSS driver Drivers: hv: Compare cpumasks and not their weights in init_vp_index() Drivers: hv: Rename 'alloced' to 'allocated' Drivers: hv: vmbus: Use struct_size() helper in kmalloc()
2022-03-23Merge branch 'akpm' (patches from Andrew)Linus Torvalds1-3/+5
Merge updates from Andrew Morton: - A few misc subsystems: kthread, scripts, ntfs, ocfs2, block, and vfs - Most the MM patches which precede the patches in Willy's tree: kasan, pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap, sparsemem, vmalloc, pagealloc, memory-failure, mlock, hugetlb, userfaultfd, vmscan, compaction, mempolicy, oom-kill, migration, thp, cma, autonuma, psi, ksm, page-poison, madvise, memory-hotplug, rmap, zswap, uaccess, ioremap, highmem, cleanups, kfence, hmm, and damon. * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (227 commits) mm/damon/sysfs: remove repeat container_of() in damon_sysfs_kdamond_release() Docs/ABI/testing: add DAMON sysfs interface ABI document Docs/admin-guide/mm/damon/usage: document DAMON sysfs interface selftests/damon: add a test for DAMON sysfs interface mm/damon/sysfs: support DAMOS stats mm/damon/sysfs: support DAMOS watermarks mm/damon/sysfs: support schemes prioritization mm/damon/sysfs: support DAMOS quotas mm/damon/sysfs: support DAMON-based Operation Schemes mm/damon/sysfs: support the physical address space monitoring mm/damon/sysfs: link DAMON for virtual address spaces monitoring mm/damon: implement a minimal stub for sysfs-based DAMON interface mm/damon/core: add number of each enum type values mm/damon/core: allow non-exclusive DAMON start/stop Docs/damon: update outdated term 'regions update interval' Docs/vm/damon/design: update DAMON-Idle Page Tracking interference handling Docs/vm/damon: call low level monitoring primitives the operations mm/damon: remove unnecessary CONFIG_DAMON option mm/damon/paddr,vaddr: remove damon_{p,v}a_{target_valid,set_operations}() mm/damon/dbgfs-test: fix is_target_id() change ...
2022-03-23mm/hwpoison: avoid the impact of hwpoison_filter() return value on mce handlerluofei1-3/+5
When the hwpoison page meets the filter conditions, it should not be regarded as successful memory_failure() processing for mce handler, but should return a distinct value, otherwise mce handler regards the error page has been identified and isolated, which may lead to calling set_mce_nospec() to change page attribute, etc. Here memory_failure() return -EOPNOTSUPP to indicate that the error event is filtered, mce handler should not take any action for this situation and hwpoison injector should treat as correct. Link: https://lkml.kernel.org/r/20220223082135.2769649-1-luofei@unicloud.com Signed-off-by: luofei <luofei@unicloud.com> Acked-by: Borislav Petkov <bp@suse.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-23Merge tag 'sched-core-2022-03-22' of ↵Linus Torvalds1-3/+3
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: - Cleanups for SCHED_DEADLINE - Tracing updates/fixes - CPU Accounting fixes - First wave of changes to optimize the overhead of the scheduler build, from the fast-headers tree - including placeholder *_api.h headers for later header split-ups. - Preempt-dynamic using static_branch() for ARM64 - Isolation housekeeping mask rework; preperatory for further changes - NUMA-balancing: deal with CPU-less nodes - NUMA-balancing: tune systems that have multiple LLC cache domains per node (eg. AMD) - Updates to RSEQ UAPI in preparation for glibc usage - Lots of RSEQ/selftests, for same - Add Suren as PSI co-maintainer * tag 'sched-core-2022-03-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (81 commits) sched/headers: ARM needs asm/paravirt_api_clock.h too sched/numa: Fix boot crash on arm64 systems headers/prep: Fix header to build standalone: <linux/psi.h> sched/headers: Only include <linux/entry-common.h> when CONFIG_GENERIC_ENTRY=y cgroup: Fix suspicious rcu_dereference_check() usage warning sched/preempt: Tell about PREEMPT_DYNAMIC on kernel headers sched/topology: Remove redundant variable and fix incorrect type in build_sched_domains sched/deadline,rt: Remove unused parameter from pick_next_[rt|dl]_entity() sched/deadline,rt: Remove unused functions for !CONFIG_SMP sched/deadline: Use __node_2_[pdl|dle]() and rb_first_cached() consistently sched/deadline: Merge dl_task_can_attach() and dl_cpu_busy() sched/deadline: Move bandwidth mgmt and reclaim functions into sched class source file sched/deadline: Remove unused def_dl_bandwidth sched/tracing: Report TASK_RTLOCK_WAIT tasks as TASK_UNINTERRUPTIBLE sched/tracing: Don't re-read p->state when emitting sched_switch event sched/rt: Plug rt_mutex_setprio() vs push_rt_task() race sched/cpuacct: Remove redundant RCU read lock sched/cpuacct: Optimize away RCU read lock sched/cpuacct: Fix charge percpu cpuusage sched/headers: Reorganize, clean up and optimize kernel/sched/sched.h dependencies ...
2022-03-21Merge tag 'x86_cc_for_v5.18_rc1' of ↵Linus Torvalds1-0/+6
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 confidential computing updates from Borislav Petkov: - Add shared confidential computing code which will be used by both vendors instead of proliferating home-grown solutions for technologies (SEV/SNP and TDX) which are pretty similar * tag 'x86_cc_for_v5.18_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mm/cpa: Generalize __set_memory_enc_pgtable() x86/coco: Add API to handle encryption mask x86/coco: Explicitly declare type of confidential computing platform x86/cc: Move arch/x86/{kernel/cc_platform.c => coco/core.c}
2022-03-21Merge tag 'x86_cpu_for_v5.18_rc1' of ↵Linus Torvalds6-81/+90
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 cpu feature updates from Borislav Petkov: - Merge the AMD and Intel PPIN code into a shared one by both vendors. Add the PPIN number to sysfs so that sockets can be identified when replacement is needed - Minor fixes and cleanups * tag 'x86_cpu_for_v5.18_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/cpu: Clear SME feature flag when not in use x86/cpufeatures: Put the AMX macros in the word 18 block topology/sysfs: Add PPIN in sysfs under cpu topology topology/sysfs: Add format parameter to macro defining "show" functions for proc x86/cpu: Read/save PPIN MSR during initialization x86/cpu: X86_FEATURE_INTEL_PPIN finally has a CPUID bit x86/cpu: Merge Intel and AMD ppin_init() functions x86/CPU/AMD: Use default_groups in kobj_type
2022-03-15Merge branch 'x86/cpu' into x86/core, to resolve conflictsIngo Molnar6-81/+90
Conflicts: arch/x86/include/asm/cpufeatures.h Signed-off-by: Ingo Molnar <mingo@kernel.org>
2022-03-15x86/ibt: Disable IBT around firmwarePeter Zijlstra1-0/+28
Assume firmware isn't IBT clean and disable it across calls. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lore.kernel.org/r/20220308154318.759989383@infradead.org
2022-03-15x86/ibt,kexec: Disable CET on kexecPeter Zijlstra1-0/+6
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lore.kernel.org/r/20220308154318.641454603@infradead.org
2022-03-15x86/ibt: Add IBT feature, MSR and #CP handlingPeter Zijlstra1-1/+24
The bits required to make the hardware go.. Of note is that, provided the syscall entry points are covered with ENDBR, #CP doesn't need to be an IST because we'll never hit the syscall gap. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lore.kernel.org/r/20220308154318.582331711@infradead.org
2022-03-15Merge tag 'v5.17-rc8' into sched/core, to pick up fixesIngo Molnar2-57/+204
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2022-03-13Merge tag 'x86_urgent_for_v5.17_rc8' of ↵Linus Torvalds1-9/+48
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Borislav Petkov: - Free shmem backing storage for SGX enclave pages when those are swapped back into EPC memory - Prevent do_int3() from being kprobed, to avoid recursion - Remap setup_data and setup_indirect structures properly when accessing their members - Correct the alternatives patching order for modules too * tag 'x86_urgent_for_v5.17_rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/sgx: Free backing memory after faulting the enclave page x86/traps: Mark do_int3() NOKPROBE_SYMBOL x86/boot: Add setup_indirect support in early_memremap_is_setup_data() x86/boot: Fix memremap of setup_indirect structures x86/module: Fix the paravirt vs alternative order
2022-03-11x86/sgx: Free backing memory after faulting the enclave pageJarkko Sakkinen1-9/+48
There is a limited amount of SGX memory (EPC) on each system. When that memory is used up, SGX has its own swapping mechanism which is similar in concept but totally separate from the core mm/* code. Instead of swapping to disk, SGX swaps from EPC to normal RAM. That normal RAM comes from a shared memory pseudo-file and can itself be swapped by the core mm code. There is a hierarchy like this: EPC <-> shmem <-> disk After data is swapped back in from shmem to EPC, the shmem backing storage needs to be freed. Currently, the backing shmem is not freed. This effectively wastes the shmem while the enclave is running. The memory is recovered when the enclave is destroyed and the backing storage freed. Sort this out by freeing memory with shmem_truncate_range(), as soon as a page is faulted back to the EPC. In addition, free the memory for PCMD pages as soon as all PCMD's in a page have been marked as unused by zeroing its contents. Cc: stable@vger.kernel.org Fixes: 1728ab54b4be ("x86/sgx: Add a page reclaimer") Reported-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20220303223859.273187-1-jarkko@kernel.org
2022-03-08x86/hyperv: Output host build info as normal Windows version numberMichael Kelley1-4/+4
Hyper-V provides host version number information that is output in text form by a Linux guest when it boots. For whatever reason, the formatting has historically been non-standard. Change it to output in normal Windows version format for better readability. Similar code for ARM64 guests already outputs in normal Windows version format. Signed-off-by: Michael Kelley <mikelley@microsoft.com> Link: https://lore.kernel.org/r/1646767364-2234-1-git-send-email-mikelley@microsoft.com Signed-off-by: Wei Liu <wei.liu@kernel.org>
2022-03-05x86/speculation: Warn about eIBRS + LFENCE + Unprivileged eBPF + SMTJosh Poimboeuf1-2/+25
The commit 44a3918c8245 ("x86/speculation: Include unprivileged eBPF status in Spectre v2 mitigation reporting") added a warning for the "eIBRS + unprivileged eBPF" combination, which has been shown to be vulnerable against Spectre v2 BHB-based attacks. However, there's no warning about the "eIBRS + LFENCE retpoline + unprivileged eBPF" combo. The LFENCE adds more protection by shortening the speculation window after a mispredicted branch. That makes an attack significantly more difficult, even with unprivileged eBPF. So at least for now the logic doesn't warn about that combination. But if you then add SMT into the mix, the SMT attack angle weakens the effectiveness of the LFENCE considerably. So extend the "eIBRS + unprivileged eBPF" warning to also include the "eIBRS + LFENCE + unprivileged eBPF + SMT" case. [ bp: Massage commit message. ] Suggested-by: Alyssa Milburn <alyssa.milburn@linux.intel.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Borislav Petkov <bp@suse.de>
2022-03-05x86/speculation: Warn about Spectre v2 LFENCE mitigationJosh Poimboeuf1-0/+5
With: f8a66d608a3e ("x86,bugs: Unconditionally allow spectre_v2=retpoline,amd") it became possible to enable the LFENCE "retpoline" on Intel. However, Intel doesn't recommend it, as it has some weaknesses compared to retpoline. Now AMD doesn't recommend it either. It can still be left available as a cmdline option. It's faster than retpoline but is weaker in certain scenarios -- particularly SMT, but even non-SMT may be vulnerable in some cases. So just unconditionally warn if the user requests it on the cmdline. [ bp: Massage commit message. ] Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Borislav Petkov <bp@suse.de>
2022-02-28x86/speculation: Use generic retpoline by default on AMDKim Phillips1-9/+0
AMD retpoline may be susceptible to speculation. The speculation execution window for an incorrect indirect branch prediction using LFENCE/JMP sequence may potentially be large enough to allow exploitation using Spectre V2. By default, don't use retpoline,lfence on AMD. Instead, use the generic retpoline. Signed-off-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de>
2022-02-28Merge 5.17-rc6 into driver-core-nextGreg Kroah-Hartman4-10/+5
We need the driver core fix in here as well for future changes. Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-02-23x86/coco: Explicitly declare type of confidential computing platformKirill A. Shutemov1-0/+6
The kernel derives the confidential computing platform type it is running as from sme_me_mask on AMD or by using hv_is_isolation_supported() on HyperV isolation VMs. This detection process will be more complicated as more platforms get added. Declare a confidential computing vendor variable explicitly and set it via cc_set_vendor() on the respective platform. [ bp: Massage commit message, fixup HyperV check. ] Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lore.kernel.org/r/20220222185740.26228-4-kirill.shutemov@linux.intel.com
2022-02-23kernfs: move struct kernfs_root out of the public view.Greg Kroah-Hartman1-2/+2
There is no need to have struct kernfs_root be part of kernfs.h for the whole kernel to see and poke around it. Move it internal to kernfs code and provide a helper function, kernfs_root_to_node(), to handle the one field that kernfs users were directly accessing from the structure. Cc: Imran Khan <imran.f.khan@oracle.com> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lore.kernel.org/r/20220222070713.3517679-1-gregkh@linuxfoundation.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-02-23x86/mce: Remove the tolerance level controlBorislav Petkov3-47/+30
This is pretty much unused and not really useful. What is more, all relevant MCA hardware has recoverable machine checks support so there's no real need to tweak MCA tolerance levels in order to *maybe* extend machine lifetime. So rip it out. Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/YcDq8PxvKtTENl/e@zn.tnic
2022-02-21Merge tag 'v5.17-rc5' into sched/core, to resolve conflictsIngo Molnar4-10/+5
New conflicts in sched/core due to the following upstream fixes: 44585f7bc0cb ("psi: fix "defined but not used" warnings when CONFIG_PROC_FS=n") a06247c6804f ("psi: Fix uaf issue when psi trigger is destroyed while being polled") Conflicts: include/linux/psi_types.h kernel/sched/psi.c Signed-off-by: Ingo Molnar <mingo@kernel.org>
2022-02-21x86/speculation: Include unprivileged eBPF status in Spectre v2 mitigation ↵Josh Poimboeuf1-6/+29
reporting With unprivileged eBPF enabled, eIBRS (without retpoline) is vulnerable to Spectre v2 BHB-based attacks. When both are enabled, print a warning message and report it in the 'spectre_v2' sysfs vulnerabilities file. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2022-02-21x86/speculation: Add eIBRS + Retpoline optionsPeter Zijlstra1-37/+96
Thanks to the chaps at VUsec it is now clear that eIBRS is not sufficient, therefore allow enabling of retpolines along with eIBRS. Add spectre_v2=eibrs, spectre_v2=eibrs,lfence and spectre_v2=eibrs,retpoline options to explicitly pick your preferred means of mitigation. Since there's new mitigations there's also user visible changes in /sys/devices/system/cpu/vulnerabilities/spectre_v2 to reflect these new mitigations. [ bp: Massage commit message, trim error messages, do more precise eIBRS mode checking. ] Co-developed-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Patrick Colp <patrick.colp@oracle.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2022-02-21x86/speculation: Rename RETPOLINE_AMD to RETPOLINE_LFENCEPeter Zijlstra (Intel)1-11/+18
The RETPOLINE_AMD name is unfortunate since it isn't necessarily AMD only, in fact Hygon also uses it. Furthermore it will likely be sufficient for some Intel processors. Therefore rename the thing to RETPOLINE_LFENCE to better describe what it is. Add the spectre_v2=retpoline,lfence option as an alias to spectre_v2=retpoline,amd to preserve existing setups. However, the output of /sys/devices/system/cpu/vulnerabilities/spectre_v2 will be changed. [ bp: Fix typos, massage. ] Co-developed-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
2022-02-19x86/mce: Work around an erratum on fast string copy instructionsJue Wang2-1/+68
A rare kernel panic scenario can happen when the following conditions are met due to an erratum on fast string copy instructions: 1) An uncorrected error. 2) That error must be in first cache line of a page. 3) Kernel must execute page_copy from the page immediately before that page. The fast string copy instructions ("REP; MOVS*") could consume an uncorrectable memory error in the cache line _right after_ the desired region to copy and raise an MCE. Bit 0 of MSR_IA32_MISC_ENABLE can be cleared to disable fast string copy and will avoid such spurious machine checks. However, that is less preferable due to the permanent performance impact. Considering memory poison is rare, it's desirable to keep fast string copy enabled until an MCE is seen. Intel has confirmed the following: 1. The CPU erratum of fast string copy only applies to Skylake, Cascade Lake and Cooper Lake generations. Directly return from the MCE handler: 2. Will result in complete execution of the "REP; MOVS*" with no data loss or corruption. 3. Will not result in another MCE firing on the next poisoned cache line due to "REP; MOVS*". 4. Will resume execution from a correct point in code. 5. Will result in the same instruction that triggered the MCE firing a second MCE immediately for any other software recoverable data fetch errors. 6. Is not safe without disabling the fast string copy, as the next fast string copy of the same buffer on the same CPU would result in a PANIC MCE. This should mitigate the erratum completely with the only caveat that the fast string copy is disabled on the affected hyper thread thus performance degradation. This is still better than the OS crashing on MCEs raised on an irrelevant process due to "REP; MOVS*' accesses in a kernel context, e.g., copy_page. Tested: Injected errors on 1st cache line of 8 anonymous pages of process 'proc1' and observed MCE consumption from 'proc2' with no panic (directly returned). Without the fix, the host panicked within a few minutes on a random 'proc2' process due to kernel access from copy_page. [ bp: Fix comment style + touch ups, zap an unlikely(), improve the quirk function's readability. ] Signed-off-by: Jue Wang <juew@google.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Tony Luck <tony.luck@intel.com> Link: https://lore.kernel.org/r/20220218013209.2436006-1-juew@google.com