Age | Commit message (Collapse) | Author | Files | Lines |
|
Take a u32 for the index in has_emulated_msr() to match hardware, which
treats MSR indices as unsigned 32-bit values. Functionally, taking a
signed int doesn't cause problems with the current code base, but could
theoretically cause problems with 32-bit KVM, e.g. if the index were
checked via a less-than statement, which would evaluate incorrectly for
MSR indices with bit 31 set.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200218234012.7110-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
There is a generic, kernel wide configuration symbol for enabling the
IOMMU specific bits: CONFIG_IOMMU_API. Implementations (including
INTEL_IOMMU and AMD_IOMMU driver) select it so use it here as well.
This makes the conditional archdata.iommu field consistent with other
platforms and also fixes any compile test builds of other IOMMU drivers,
when INTEL_IOMMU or AMD_IOMMU are not selected).
For the case when INTEL_IOMMU/AMD_IOMMU and COMPILE_TEST are not
selected, this should create functionally equivalent code/choice. With
COMPILE_TEST this field could appear if other IOMMU drivers are chosen
but neither INTEL_IOMMU nor AMD_IOMMU are not.
Reported-by: kbuild test robot <lkp@intel.com>
Fixes: e93a1695d7fb ("iommu: Enable compile testing for some of drivers")
Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
Acked-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20200518120855.27822-2-krzk@kernel.org
Signed-off-by: Joerg Roedel <jroedel@suse.de>
|
|
Drop an extern declaration that has never been used and a no longer
needed macro.
Signed-off-by: Johan Hovold <johan@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200513100944.9171-2-johan@kernel.org
|
|
Drop the APB-timer TSC calibration, which hasn't been used since the
removal of Moorestown support by commit
1a8359e411eb ("x86/mid: Remove Intel Moorestown").
Signed-off-by: Johan Hovold <johan@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20200513100944.9171-1-johan@kernel.org
|
|
Revert
45e29d119e99 ("x86/syscalls: Make __X32_SYSCALL_BIT be unsigned long")
and add a comment to discourage someone else from making the same
mistake again.
It turns out that some user code fails to compile if __X32_SYSCALL_BIT
is unsigned long. See, for example [1] below.
[ bp: Massage and do the same thing in the respective tools/ header. ]
Fixes: 45e29d119e99 ("x86/syscalls: Make __X32_SYSCALL_BIT be unsigned long")
Reported-by: Thorsten Glaser <t.glaser@tarent.de>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@kernel.org
Link: [1] https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=954294
Link: https://lkml.kernel.org/r/92e55442b744a5951fdc9cfee10badd0a5f7f828.1588983892.git.luto@kernel.org
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into efi/core
More EFI changes for v5.8:
- Rename pr_efi/pr_efi_err to efi_info/efi_err, and use them consistently
- Simplify and unify initrd loading
- Parse the builtin command line on x86 (if provided)
- Implement printk() support, including support for wide character strings
- Some fixes for issues introduced by the first batch of v5.8 changes
- Fix a missing prototypes warning
- Simplify GDT handling in early mixed mode thunking code
- Some other minor fixes and cleanups
Conflicts:
drivers/firmware/efi/libstub/efistub.h
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
This is easily reproducible via CC=clang + CONFIG_STAGING=y +
CONFIG_VT6656=m.
It turns out that if your config tickles __builtin_constant_p via
differences in choices to inline or not, these statements produce
invalid assembly:
$ cat foo.c
long a(long b, long c) {
asm("orb %1, %0" : "+q"(c): "r"(b));
return c;
}
$ gcc foo.c
foo.c: Assembler messages:
foo.c:2: Error: `%rax' not allowed with `orb'
Use the `%b` "x86 Operand Modifier" to instead force register allocation
to select a lower-8-bit GPR operand.
The "q" constraint only has meaning on -m32 otherwise is treated as
"r". Not all GPRs have low-8-bit aliases for -m32.
Fixes: 1651e700664b4 ("x86: Fix bitops.h warning with a moved cast")
Reported-by: kernelci.org bot <bot@kernelci.org>
Suggested-by: Andy Shevchenko <andriy.shevchenko@intel.com>
Suggested-by: Brian Gerst <brgerst@gmail.com>
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Suggested-by: Ilie Halip <ilie.halip@gmail.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com> [build, clang-11]
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Reviewed-By: Brian Gerst <brgerst@gmail.com>
Reviewed-by: Jesse Brandeburg <jesse.brandeburg@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Marco Elver <elver@google.com>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Daniel Axtens <dja@axtens.net>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20200508183230.229464-1-ndesaulniers@google.com
Link: https://github.com/ClangBuiltLinux/linux/issues/961
Link: https://lore.kernel.org/lkml/20200504193524.GA221287@google.com/
Link: https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html#x86Operandmodifiers
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add the required typedefs etc for using con_in's simple text input
protocol, and for using the boottime event services.
Also add the prototype for the "stall" boot service.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://lore.kernel.org/r/20200518190716.751506-19-nivedita@alum.mit.edu
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
In preparation for adding ARM64 support, split hyperv-tlfs.h into
architecture dependent and architecture independent files, similar
to what has been done with mshyperv.h. Move architecture independent
definitions into include/asm-generic/hyperv-tlfs.h. The split will
avoid duplicating significant lines of code in the ARM64 version of
hyperv-tlfs.h. The split has no functional impact.
Some of the common definitions have "X64" in the symbol name. Change
these to remove the "X64" in the architecture independent version of
hyperv-tlfs.h, but add aliases with the "X64" in the x86 version so
that x86 code will continue to compile. A later patch set will
change all the references and allow removal of the aliases.
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/20200422195737.10223-4-mikelley@microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
|
|
The HV_PROCESSOR_POWER_STATE_C<n> #defines date back to year 2010,
but they are not in the TLFS v6.0 document and are not used anywhere
in Linux. Remove them.
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/20200422195737.10223-3-mikelley@microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
|
|
The Hyper-V Reference TSC Page structure is defined twice. struct
ms_hyperv_tsc_page has padding out to a full 4 Kbyte page size. But
the padding is not needed because the declaration includes a union
with HV_HYP_PAGE_SIZE. KVM uses the second definition, which is
struct _HV_REFERENCE_TSC_PAGE, because it does not have the padding.
Fix the duplication by removing the padding from ms_hyperv_tsc_page.
Fix up the KVM code to use it. Remove the no longer used struct
_HV_REFERENCE_TSC_PAGE.
There is no functional change.
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20200422195737.10223-2-mikelley@microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip into HEAD
|
|
Lift the prototype of ia32_classify_syscall() into its own header.
Signed-off-by: Benjamin Thiel <b.thiel@posteo.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200516123816.2680-1-b.thiel@posteo.de
|
|
While working on the entry consolidation I stumbled over the KVM async page
fault handler and kvm_async_pf_task_wait() in particular. It took me a
while to realize that the randomly sprinkled around rcu_irq_enter()/exit()
invocations are just cargo cult programming. Several patches "fixed" RCU
splats by curing the symptoms without noticing that the code is flawed
from a design perspective.
The main problem is that this async injection is not based on a proper
handshake mechanism and only respects the minimal requirement, i.e. the
guest is not in a state where it has interrupts disabled.
Aside of that the actual code is a convoluted one fits it all swiss army
knife. It is invoked from different places with different RCU constraints:
1) Host side:
vcpu_enter_guest()
kvm_x86_ops->handle_exit()
kvm_handle_page_fault()
kvm_async_pf_task_wait()
The invocation happens from fully preemptible context.
2) Guest side:
The async page fault interrupted:
a) user space
b) preemptible kernel code which is not in a RCU read side
critical section
c) non-preemtible kernel code or a RCU read side critical section
or kernel code with CONFIG_PREEMPTION=n which allows not to
differentiate between #2b and #2c.
RCU is watching for:
#1 The vCPU exited and current is definitely not the idle task
#2a The #PF entry code on the guest went through enter_from_user_mode()
which reactivates RCU
#2b There is no preemptible, interrupts enabled code in the kernel
which can run with RCU looking away. (The idle task is always
non preemptible).
I.e. all schedulable states (#1, #2a, #2b) do not need any of this RCU
voodoo at all.
In #2c RCU is eventually not watching, but as that state cannot schedule
anyway there is no point to worry about it so it has to invoke
rcu_irq_enter() before running that code. This can be optimized, but this
will be done as an extra step in course of the entry code consolidation
work.
So the proper solution for this is to:
- Split kvm_async_pf_task_wait() into schedule and halt based waiting
interfaces which share the enqueueing code.
- Add comments (condensed form of this changelog) to spare others the
time waste and pain of reverse engineering all of this with the help of
uncomprehensible changelogs and code history.
- Invoke kvm_async_pf_task_wait_schedule() from kvm_handle_page_fault(),
user mode and schedulable kernel side async page faults (#1, #2a, #2b)
- Invoke kvm_async_pf_task_wait_halt() for the non schedulable kernel
case (#2c).
For this case also remove the rcu_irq_exit()/enter() pair around the
halt as it is just a pointless exercise:
- vCPUs can VMEXIT at any random point and can be scheduled out for
an arbitrary amount of time by the host and this is not any
different except that it voluntary triggers the exit via halt.
- The interrupted context could have RCU watching already. So the
rcu_irq_exit() before the halt is not gaining anything aside of
confusing the reader. Claiming that this might prevent RCU stalls
is just an illusion.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134059.262701431@linutronix.de
|
|
KVM overloads #PF to indicate two types of not-actually-page-fault
events. Right now, the KVM guest code intercepts them by modifying
the IDT and hooking the #PF vector. This makes the already fragile
fault code even harder to understand, and it also pollutes call
traces with async_page_fault and do_async_page_fault for normal page
faults.
Clean it up by moving the logic into do_page_fault() using a static
branch. This gets rid of the platform trap_init override mechanism
completely.
[ tglx: Fixed up 32bit, removed error code from the async functions and
massaged coding style ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134059.169270470@linutronix.de
|
|
A few exceptions (like #DB and #BP) can happen at any location in the code,
this then means that tracers should treat events from these exceptions as
NMI-like. The interrupted context could be holding locks with interrupts
disabled for instance.
Similarly, #MC is an actual NMI-like exception.
All of them use ist_enter() which only concerns itself with RCU, but does
not do any of the other setup that NMIs need. This means things like:
printk()
raw_spin_lock_irq(&logbuf_lock);
<#DB/#BP/#MC>
printk()
raw_spin_lock_irq(&logbuf_lock);
are entirely possible (well, not really since printk tries hard to
play nice, but the concept stands).
So replace ist_enter() with nmi_enter(). Also observe that any nmi_enter()
caller must be both notrace and NOKPROBE, or in the noinstr text section.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Link: https://lkml.kernel.org/r/20200505134101.525508608@linutronix.de
|
|
This is completely overengineered and definitely not an interface which
should be made available to anything else than this particular MCE case.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134059.462640294@linutronix.de
|
|
Current minimum required version of binutils is 2.23,
which supports RDRAND and RDSEED instruction mnemonics.
Replace the byte-wise specification of RDRAND and
RDSEED with these proper mnemonics.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200508105817.207887-1-ubizjak@gmail.com
|
|
semantic conflict
Resolve structural conflict between:
59566b0b622e: ("x86/ftrace: Have ftrace trampolines turn read-only at the end of system boot up")
which introduced a new reference to 'ftrace_epilogue', and:
0298739b7983: ("x86,ftrace: Fix ftrace_regs_caller() unwind")
Which renamed it to 'ftrace_caller_end'. Rename the new usage site in the merge commit.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fix from Borislav Petkov:
"A single fix for early boot crashes of kernels built with gcc10 and
stack protector enabled"
* tag 'x86_urgent_for_v5.7-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Fix early boot crash on gcc-10, third try
|
|
Pull kvm fixes from Paolo Bonzini:
"A new testcase for guest debugging (gdbstub) that exposed a bunch of
bugs, mostly for AMD processors. And a few other x86 fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: Fix off-by-one error in kvm_vcpu_ioctl_x86_setup_mce
KVM: x86: Fix pkru save/restore when guest CR4.PKE=0, move it to x86.c
KVM: SVM: Disable AVIC before setting V_IRQ
KVM: Introduce kvm_make_all_cpus_request_except()
KVM: VMX: pass correct DR6 for GD userspace exit
KVM: x86, SVM: isolate vcpu->arch.dr6 from vmcb->save.dr6
KVM: SVM: keep DR6 synchronized with vcpu->arch.dr6
KVM: nSVM: trap #DB and #BP to userspace if guest debugging is on
KVM: selftests: Add KVM_SET_GUEST_DEBUG test
KVM: X86: Fix single-step with KVM_SET_GUEST_DEBUG
KVM: X86: Set RTM for DB_VECTOR too for KVM_EXIT_DEBUG
KVM: x86: fix DR6 delivery for various cases of #DB injection
KVM: X86: Declare KVM_CAP_SET_GUEST_DEBUG properly
|
|
The XSAVES instruction takes a mask and saves only the features specified
in that mask. The kernel normally specifies that all features be saved.
XSAVES also unconditionally uses the "compacted format" which means that
all specified features are saved next to each other in memory. If a
feature is removed from the mask, all the features after it will "move
up" into earlier locations in the buffer.
Introduce copy_supervisor_to_kernel(), which saves only supervisor states
and then moves those states into the standard location where they are
normally found.
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200512145444.15483-9-yu-cheng.yu@intel.com
|
|
Two new stats for exposing halt-polling cpu usage:
halt_poll_success_ns
halt_poll_fail_ns
Thus sum of these 2 stats is the total cpu time spent polling. "success"
means the VCPU polled until a virtual interrupt was delivered. "fail"
means the VCPU had to schedule out (either because the maximum poll time
was reached or it needed to yield the CPU).
To avoid touching every arch's kvm_vcpu_stat struct, only update and
export halt-polling cpu usage stats if we're on x86.
Exporting cpu usage as a u64 and in nanoseconds means we will overflow at
~500 years, which seems reasonably large.
Signed-off-by: David Matlack <dmatlack@google.com>
Signed-off-by: Jon Cargille <jcargill@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20200508182240.68440-1-jcargill@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The hrtimer used to emulate the VMX-preemption timer must be pinned to
the same logical processor as the vCPU thread to be interrupted if we
want to have any hope of adhering to the architectural specification
of the VMX-preemption timer. Even with this change, the emulated
VMX-preemption timer VM-exit occasionally arrives too late.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Message-Id: <20200508203643.85477-4-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Adds a fastpath_t typedef since enum lines are a bit long, and replace
EXIT_FASTPATH_SKIP_EMUL_INS with two new exit_fastpath_completion enum values.
- EXIT_FASTPATH_EXIT_HANDLED kvm will still go through it's full run loop,
but it would skip invoking the exit handler.
- EXIT_FASTPATH_REENTER_GUEST complete fastpath, guest can be re-entered
without invoking the exit handler or going
back to vcpu_run
Tested-by: Haiwei Li <lihaiwei@tencent.com>
Cc: Haiwei Li <lihaiwei@tencent.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1588055009-12677-4-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Use __print_flags() to display the names of VMX flags in VM-Exit traces
and strip the flags when printing the basic exit reason, e.g. so that a
failed VM-Entry due to invalid guest state gets recorded as
"INVALID_STATE FAILED_VMENTRY" instead of "0x80000021".
Opportunstically fix misaligned variables in the kvm_exit and
kvm_nested_vmexit_inject tracepoints.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200508235348.19427-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Forcing the ASYNC_PF_PER_VCPU to be power of two is much easier to be
used rather than calling roundup_pow_of_two() from time to time. Do
this by adding a BUILD_BUG_ON() inside the hash function.
Another point is that generally async pf does not allow concurrency
over ASYNC_PF_PER_VCPU after all (see kvm_setup_async_pf()), so it
does not make much sense either to have it not a power of two or some
of the entries will definitely be wasted.
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20200416155859.267366-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Replace KVM's PT_PAGE_TABLE_LEVEL, PT_DIRECTORY_LEVEL and PT_PDPE_LEVEL
with the kernel's PG_LEVEL_4K, PG_LEVEL_2M and PG_LEVEL_1G. KVM's
enums are borderline impossible to remember and result in code that is
visually difficult to audit, e.g.
if (!enable_ept)
ept_lpage_level = 0;
else if (cpu_has_vmx_ept_1g_page())
ept_lpage_level = PT_PDPE_LEVEL;
else if (cpu_has_vmx_ept_2m_page())
ept_lpage_level = PT_DIRECTORY_LEVEL;
else
ept_lpage_level = PT_PAGE_TABLE_LEVEL;
versus
if (!enable_ept)
ept_lpage_level = 0;
else if (cpu_has_vmx_ept_1g_page())
ept_lpage_level = PG_LEVEL_1G;
else if (cpu_has_vmx_ept_2m_page())
ept_lpage_level = PG_LEVEL_2M;
else
ept_lpage_level = PG_LEVEL_4K;
No functional change intended.
Suggested-by: Barret Rhoden <brho@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200428005422.4235-4-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Rename PT_MAX_HUGEPAGE_LEVEL to KVM_MAX_HUGEPAGE_LEVEL and make it a
separate define in anticipation of dropping KVM's PT_*_LEVEL enums in
favor of the kernel's PG_LEVEL_* enums.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200428005422.4235-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
vcpu->arch.guest_xstate_size lost its only user since commit df1daba7d1cb
("KVM: x86: support XSAVES usage in the host"), so clean it up.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20200429154312.1411-1-xiaoyao.li@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Use an enum for passing around the failure code for a failed VM-Enter
that results in VM-Exit to provide a level of indirection from the final
resting place of the failure code, vmcs.EXIT_QUALIFICATION. The exit
qualification field is an unsigned long, e.g. passing around
'u32 exit_qual' throws up red flags as it suggests KVM may be dropping
bits when reporting errors to L1. This is a red herring because the
only defined failure codes are 0, 2, 3, and 4, i.e. don't come remotely
close to overflowing a u32.
Setting vmcs.EXIT_QUALIFICATION on entry failure is further complicated
by the MSR load list, which returns the (1-based) entry that failed, and
the number of MSRs to load is a 32-bit VMCS field. At first blush, it
would appear that overflowing a u32 is possible, but the number of MSRs
that can be loaded is hardcapped at 4096 (limited by MSR_IA32_VMX_MISC).
In other words, there are two completely disparate types of data that
eventually get stuffed into vmcs.EXIT_QUALIFICATION, neither of which is
an 'unsigned long' in nature. This was presumably the reasoning for
switching to 'u32' when the related code was refactored in commit
ca0bde28f2ed6 ("kvm: nVMX: Split VMCS checks from nested_vmx_run()").
Using an enum for the failure code addresses the technically-possible-
but-will-never-happen scenario where Intel defines a failure code that
doesn't fit in a 32-bit integer. The enum variables and values will
either be automatically sized (gcc 5.4 behavior) or be subjected to some
combination of truncation. The former case will simply work, while the
latter will trigger a compile-time warning unless the compiler is being
particularly unhelpful.
Separating the failure code from the failed MSR entry allows for
disassociating both from vmcs.EXIT_QUALIFICATION, which avoids the
conundrum where KVM has to choose between 'u32 exit_qual' and tracking
values as 'unsigned long' that have no business being tracked as such.
To cement the split, set vmcs12->exit_qualification directly from the
entry error code or failed MSR index instead of bouncing through a local
variable.
Opportunistically rename the variables in load_vmcs12_host_state() and
vmx_set_nested_state() to call out that they're ignored, set exit_reason
on demand on nested VM-Enter failure, and add a comment in
nested_vmx_load_msr() to call out that returning 'i + 1' can't wrap.
No functional change intended.
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200511220529.11402-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
... or the odyssey of trying to disable the stack protector for the
function which generates the stack canary value.
The whole story started with Sergei reporting a boot crash with a kernel
built with gcc-10:
Kernel panic — not syncing: stack-protector: Kernel stack is corrupted in: start_secondary
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.6.0-rc5—00235—gfffb08b37df9 #139
Hardware name: Gigabyte Technology Co., Ltd. To be filled by O.E.M./H77M—D3H, BIOS F12 11/14/2013
Call Trace:
dump_stack
panic
? start_secondary
__stack_chk_fail
start_secondary
secondary_startup_64
-—-[ end Kernel panic — not syncing: stack—protector: Kernel stack is corrupted in: start_secondary
This happens because gcc-10 tail-call optimizes the last function call
in start_secondary() - cpu_startup_entry() - and thus emits a stack
canary check which fails because the canary value changes after the
boot_init_stack_canary() call.
To fix that, the initial attempt was to mark the one function which
generates the stack canary with:
__attribute__((optimize("-fno-stack-protector"))) ... start_secondary(void *unused)
however, using the optimize attribute doesn't work cumulatively
as the attribute does not add to but rather replaces previously
supplied optimization options - roughly all -fxxx options.
The key one among them being -fno-omit-frame-pointer and thus leading to
not present frame pointer - frame pointer which the kernel needs.
The next attempt to prevent compilers from tail-call optimizing
the last function call cpu_startup_entry(), shy of carving out
start_secondary() into a separate compilation unit and building it with
-fno-stack-protector, was to add an empty asm("").
This current solution was short and sweet, and reportedly, is supported
by both compilers but we didn't get very far this time: future (LTO?)
optimization passes could potentially eliminate this, which leads us
to the third attempt: having an actual memory barrier there which the
compiler cannot ignore or move around etc.
That should hold for a long time, but hey we said that about the other
two solutions too so...
Reported-by: Sergei Trofimovich <slyfox@gentoo.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Kalle Valo <kvalo@codeaurora.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200314164451.346497-1-slyfox@gentoo.org
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull more tracing fixes from Steven Rostedt:
"Various tracing fixes:
- Fix a crash when having function tracing and function stack tracing
on the command line.
The ftrace trampolines are created as executable and read only. But
the stack tracer tries to modify them with text_poke() which
expects all kernel text to still be writable at boot. Keep the
trampolines writable at boot, and convert them to read-only with
the rest of the kernel.
- A selftest was triggering in the ring buffer iterator code, that is
no longer valid with the update of keeping the ring buffer writable
while a iterator is reading.
Just bail after three failed attempts to get an event and remove
the warning and disabling of the ring buffer.
- While modifying the ring buffer code, decided to remove all the
unnecessary BUG() calls"
* tag 'trace-v5.7-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
ring-buffer: Remove all BUG() calls
ring-buffer: Don't deactivate the ring buffer on failed iterator reads
x86/ftrace: Have ftrace trampolines turn read-only at the end of system boot up
|
|
The function copy_kernel_to_xregs_err() uses XRSTOR which can work with
standard or compacted format without supervisor xstates. However, when
supervisor xstates are present, XRSTORS must be used. Fix it by using
XRSTORS when supervisor state handling is enabled.
I also considered if there were additional cases where XRSTOR might be
mistakenly called instead of XRSTORS. There are only three XRSTOR sites
in the kernel:
1. copy_kernel_to_xregs_booting(), already switches between XRSTOR and
XRSTORS based on X86_FEATURE_XSAVES.
2. copy_user_to_xregs(), which *needs* XRSTOR because it is copying from
userspace and must never copy supervisor state with XRSTORS.
3. copy_kernel_to_xregs_err() mistakenly used XRSTOR only. Fix it.
[ bp: Massage commit message. ]
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20200512145444.15483-8-yu-cheng.yu@intel.com
|
|
Snapshot the TDP level now that it's invariant (SVM) or dependent only
on host capabilities and guest CPUID (VMX). This avoids having to call
kvm_x86_ops.get_tdp_level() when initializing a TDP MMU and/or
calculating the page role, and thus avoids the associated retpoline.
Drop the WARN in vmx_get_tdp_level() as updating CPUID while L2 is
active is legal, if dodgy.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200502043234.12481-11-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move CR0 caching into the standard register caching mechanism in order
to take advantage of the availability checks provided by regs_avail.
This avoids multiple VMREADs in the (uncommon) case where kvm_read_cr0()
is called multiple times in a single VM-Exit, and more importantly
eliminates a kvm_x86_ops hook, saves a retpoline on SVM when reading
CR0, and squashes the confusing naming discrepancy of "cache_reg" vs.
"decache_cr0_guest_bits".
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200502043234.12481-8-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Move CR4 caching into the standard register caching mechanism in order
to take advantage of the availability checks provided by regs_avail.
This avoids multiple VMREADs and retpolines (when configured) during
nested VMX transitions as kvm_read_cr4_bits() is invoked multiple times
on each transition, e.g. when stuffing CR0 and CR3.
As an added bonus, this eliminates a kvm_x86_ops hook, saves a retpoline
on SVM when reading CR4, and squashes the confusing naming discrepancy
of "cache_reg" vs. "decache_cr4_guest_bits".
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200502043234.12481-7-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Save L1's TSC offset in 'struct kvm_vcpu_arch' and drop the kvm_x86_ops
hook read_l1_tsc_offset(). This avoids a retpoline (when configured)
when reading L1's effective TSC, which is done at least once on every
VM-Exit.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200502043234.12481-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add an argument to interrupt_allowed and nmi_allowed, to checking if
interrupt injection is blocked. Use the hook to handle the case where
an interrupt arrives between check_nested_events() and the injection
logic. Drop the retry of check_nested_events() that hack-a-fixed the
same condition.
Blocking injection is also a bit of a hack, e.g. KVM should do exiting
and non-exiting interrupt processing in a single pass, but it's a more
precise hack. The old comment is also misleading, e.g. KVM_REQ_EVENT is
purely an optimization, setting it on every run loop (which KVM doesn't
do) should not affect functionality, only performance.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200423022550.15113-13-sean.j.christopherson@intel.com>
[Extend to SVM, add SMI and NMI. Even though NMI and SMI cannot come
asynchronously right now, making the fix generic is easy and removes a
special case. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Return an actual bool for kvm_x86_ops' {interrupt_nmi}_allowed() hook to
better reflect the return semantics, and to avoid creating an even
bigger mess when the related VMX code is refactored in upcoming patches.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200423022550.15113-5-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a kvm_x86_ops hook to detect a nested pending "hypervisor timer" and
use it to effectively open a window for servicing the expired timer.
Like pending SMIs on VMX, opening a window simply means requesting an
immediate exit.
This fixes a bug where an expired VMX preemption timer (for L2) will be
delayed and/or lost if a pending exception is injected into L2. The
pending exception is rightly prioritized by vmx_check_nested_events()
and injected into L2, with the preemption timer left pending. Because
no window opened, L2 is free to run uninterrupted.
Fixes: f4124500c2c13 ("KVM: nVMX: Fully emulate preemption timer")
Reported-by: Jim Mattson <jmattson@google.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Peter Shier <pshier@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200423022550.15113-3-sean.j.christopherson@intel.com>
[Check it in kvm_vcpu_has_events too, to ensure that the preemption
timer is serviced promptly even if the vCPU is halted and L1 is not
intercepting HLT. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
Though rdpkru and wrpkru are contingent upon CR4.PKE, the PKRU
resource isn't. It can be read with XSAVE and written with XRSTOR.
So, if we don't set the guest PKRU value here(kvm_load_guest_xsave_state),
the guest can read the host value.
In case of kvm_load_host_xsave_state, guest with CR4.PKE clear could
potentially use XRSTOR to change the host PKRU value.
While at it, move pkru state save/restore to common code and the
host_pkru field to kvm_vcpu_arch. This will let SVM support protection keys.
Cc: stable@vger.kernel.org
Reported-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Babu Moger <babu.moger@amd.com>
Message-Id: <158932794619.44260.14508381096663848853.stgit@naples-babu.amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Currently, fpu__clear() clears all fpregs and xstates. Once XSAVES
supervisor states are introduced, supervisor settings (e.g. CET xstates)
must remain active for signals; It is necessary to have separate functions:
- Create fpu__clear_user_states(): clear only user settings for signals;
- Create fpu__clear_all(): clear both user and supervisor settings in
flush_thread().
Also modify copy_init_fpstate_to_fpregs() to take a mask from above two
functions.
Remove obvious side-comment in fpu__clear(), while at it.
[ bp: Make the second argument of fpu__clear() bool after requesting it
a bunch of times during review.
- Add a comment about copy_init_fpstate_to_fpregs() locking needs. ]
Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200512145444.15483-6-yu-cheng.yu@intel.com
|
|
Before the introduction of XSAVES supervisor states, 'xfeatures_mask' is
used at various places to determine XSAVE buffer components and XCR0 bits.
It contains only user xstates. To support supervisor xstates, it is
necessary to separate user and supervisor xstates:
- First, change 'xfeatures_mask' to 'xfeatures_mask_all', which represents
the full set of bits that should ever be set in a kernel XSAVE buffer.
- Introduce xfeatures_mask_supervisor() and xfeatures_mask_user() to
extract relevant xfeatures from xfeatures_mask_all.
Co-developed-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200512145444.15483-4-yu-cheng.yu@intel.com
|
|
Booting one of my machines, it triggered the following crash:
Kernel/User page tables isolation: enabled
ftrace: allocating 36577 entries in 143 pages
Starting tracer 'function'
BUG: unable to handle page fault for address: ffffffffa000005c
#PF: supervisor write access in kernel mode
#PF: error_code(0x0003) - permissions violation
PGD 2014067 P4D 2014067 PUD 2015063 PMD 7b253067 PTE 7b252061
Oops: 0003 [#1] PREEMPT SMP PTI
CPU: 0 PID: 0 Comm: swapper Not tainted 5.4.0-test+ #24
Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./To be filled by O.E.M., BIOS SDBLI944.86P 05/08/2007
RIP: 0010:text_poke_early+0x4a/0x58
Code: 34 24 48 89 54 24 08 e8 bf 72 0b 00 48 8b 34 24 48 8b 4c 24 08 84 c0 74 0b 48 89 df f3 a4 48 83 c4 10 5b c3 9c 58 fa 48 89 df <f3> a4 50 9d 48 83 c4 10 5b e9 d6 f9 ff ff
0 41 57 49
RSP: 0000:ffffffff82003d38 EFLAGS: 00010046
RAX: 0000000000000046 RBX: ffffffffa000005c RCX: 0000000000000005
RDX: 0000000000000005 RSI: ffffffff825b9a90 RDI: ffffffffa000005c
RBP: ffffffffa000005c R08: 0000000000000000 R09: ffffffff8206e6e0
R10: ffff88807b01f4c0 R11: ffffffff8176c106 R12: ffffffff8206e6e0
R13: ffffffff824f2440 R14: 0000000000000000 R15: ffffffff8206eac0
FS: 0000000000000000(0000) GS:ffff88807d400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffa000005c CR3: 0000000002012000 CR4: 00000000000006b0
Call Trace:
text_poke_bp+0x27/0x64
? mutex_lock+0x36/0x5d
arch_ftrace_update_trampoline+0x287/0x2d5
? ftrace_replace_code+0x14b/0x160
? ftrace_update_ftrace_func+0x65/0x6c
__register_ftrace_function+0x6d/0x81
ftrace_startup+0x23/0xc1
register_ftrace_function+0x20/0x37
func_set_flag+0x59/0x77
__set_tracer_option.isra.19+0x20/0x3e
trace_set_options+0xd6/0x13e
apply_trace_boot_options+0x44/0x6d
register_tracer+0x19e/0x1ac
early_trace_init+0x21b/0x2c9
start_kernel+0x241/0x518
? load_ucode_intel_bsp+0x21/0x52
secondary_startup_64+0xa4/0xb0
I was able to trigger it on other machines, when I added to the kernel
command line of both "ftrace=function" and "trace_options=func_stack_trace".
The cause is the "ftrace=function" would register the function tracer
and create a trampoline, and it will set it as executable and
read-only. Then the "trace_options=func_stack_trace" would then update
the same trampoline to include the stack tracer version of the function
tracer. But since the trampoline already exists, it updates it with
text_poke_bp(). The problem is that text_poke_bp() called while
system_state == SYSTEM_BOOTING, it will simply do a memcpy() and not
the page mapping, as it would think that the text is still read-write.
But in this case it is not, and we take a fault and crash.
Instead, lets keep the ftrace trampolines read-write during boot up,
and then when the kernel executable text is set to read-only, the
ftrace trampolines get set to read-only as well.
Link: https://lkml.kernel.org/r/20200430202147.4dc6e2de@oasis.local.home
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: stable@vger.kernel.org
Fixes: 768ae4406a5c ("x86/ftrace: Use text_poke()")
Acked-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
XCNTXT_MASK is 'all supported xfeatures' before introducing supervisor
xstates. Rename it to XFEATURE_MASK_USER_SUPPORTED to make clear that
these are user xstates.
Replace XFEATURE_MASK_SUPERVISOR with the following:
- XFEATURE_MASK_SUPERVISOR_SUPPORTED: Currently nothing. ENQCMD and
Control-flow Enforcement Technology (CET) will be introduced in separate
series.
- XFEATURE_MASK_SUPERVISOR_UNSUPPORTED: Currently only Processor Trace.
- XFEATURE_MASK_SUPERVISOR_ALL: the combination of above.
Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200512145444.15483-3-yu-cheng.yu@intel.com
|
|
The function validate_xstate_header() validates an xstate header coming
from userspace (PTRACE or sigreturn). To make it clear, rename it to
validate_user_xstate_header().
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200512145444.15483-2-yu-cheng.yu@intel.com
|
|
Now we can use FD_STATUS and FD_DATA instead of 4 or 5, let's do
this, and also use STATUS_DMA and STATUS_READY for the status bits.
Link: https://lore.kernel.org/r/20200331094054.24441-9-w@1wt.eu
Cc: x86@kernel.org
Signed-off-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Denis Efremov <efremov@linux.com>
|