summaryrefslogtreecommitdiff
path: root/arch/x86/include/asm
AgeCommit message (Collapse)AuthorFilesLines
2025-03-19x86/mm/pat: Replace Intel x86_model checks with VFM onesSohil Mehta1-0/+1
Introduce markers and names for some Family 6 and Family 15 models and replace x86_model checks with VFM ones. Since the VFM checks are closed ended and only applicable to Intel, get rid of the explicit Intel vendor check as well. Signed-off-by: Sohil Mehta <sohil.mehta@intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Link: https://lore.kernel.org/r/20250219184133.816753-13-sohil.mehta@intel.com
2025-03-19x86/acpi/cstate: Improve Intel Family model checksSohil Mehta1-0/+3
Update the Intel Family checks to consistently use Family 15 instead of Family 0xF. Also, get rid of one of last usages of x86_model by using the new VFM checks. Update the incorrect comment since the check has changed since the initial commit: ee1ca48fae7e ("ACPI: Disable ARB_DISABLE on platforms where it is not needed") The two changes were: - 3e2ada5867b7 ("ACPI: fix Compaq Evo N800c (Pentium 4m) boot hang regression") removed the P4 - Family 15. - 03a05ed11529 ("ACPI: Use the ARB_DISABLE for the CPU which model id is less than 0x0f.") got rid of CORE_YONAH - Family 6, model E. Signed-off-by: Sohil Mehta <sohil.mehta@intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lore.kernel.org/r/20250219184133.816753-9-sohil.mehta@intel.com
2025-03-19x86/cpu/intel: Replace Family 5 model checks with VFM onesSohil Mehta1-3/+6
Introduce names for some Family 5 models and convert some of the checks to be VFM based. Also, to keep the file sorted by family, move Family 5 to the top of the header file. Signed-off-by: Sohil Mehta <sohil.mehta@intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/r/20250219184133.816753-8-sohil.mehta@intel.com
2025-03-19x86/cpu/intel: Replace Family 15 checks with VFM onesSohil Mehta1-0/+4
Introduce names for some old pentium 4 models and replace the x86_model checks with VFM ones. Signed-off-by: Sohil Mehta <sohil.mehta@intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/r/20250219184133.816753-7-sohil.mehta@intel.com
2025-03-19x86/cpu/intel: Replace early Family 6 checks with VFM onesSohil Mehta1-0/+4
Introduce names for some old pentium models and replace the x86_model checks with VFM ones. Signed-off-by: Sohil Mehta <sohil.mehta@intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/r/20250219184133.816753-6-sohil.mehta@intel.com
2025-03-19x86/microcode: Update the Intel processor flag scan checkSohil Mehta1-0/+1
The Family model check to read the processor flag MSR is misleading and potentially incorrect. It doesn't consider Family while comparing the model number. The original check did have a Family number but it got lost/moved during refactoring. intel_collect_cpu_info() is called through multiple paths such as early initialization, CPU hotplug as well as IFS image load. Some of these flows would be error prone due to the ambiguous check. Correct the processor flag scan check to use a Family number and update it to a VFM based one to make it more readable. Signed-off-by: Sohil Mehta <sohil.mehta@intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/r/20250219184133.816753-4-sohil.mehta@intel.com
2025-03-19x86/cpuid: Use u32 in instead of uint32_t in <asm/cpuid/api.h>Ingo Molnar1-2/+2
Use u32 instead of uint32_t in hypervisor_cpuid_base(). Yes, uint32_t is used in Xen code et al, but this is a core x86 architecture header and we should standardize on the type that is being used overwhelmingly in related x86 architecture code. The two types are the same so there should be no build warnings. Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: John Ogness <john.ogness@linutronix.de> Cc: "Ahmed S. Darwish" <darwi@linutronix.de> Cc: x86-cpuid@lists.linux.dev Link: https://lore.kernel.org/r/20250317221824.3738853-6-mingo@kernel.org
2025-03-19x86/cpuid: Standardize on u32 in <asm/cpuid/api.h>Ingo Molnar1-20/+20
Convert all uses of 'unsigned int' to 'u32' in <asm/cpuid/api.h>. This is how a lot of the call sites are doing it, and the two types are equivalent in the C sense - but 'u32' better expresses that these are expressions of an immutable hardware ABI. Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Xin Li (Intel) <xin@zytor.com> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: John Ogness <john.ogness@linutronix.de> Cc: "Ahmed S. Darwish" <darwi@linutronix.de> Cc: x86-cpuid@lists.linux.dev Link: https://lore.kernel.org/r/20250317221824.3738853-5-mingo@kernel.org
2025-03-19x86/cpuid: Clean up <asm/cpuid/api.h>Ingo Molnar1-14/+16
- Include <asm/cpuid/types.h> first, as is customary. This also has the side effect of build-testing the header dependency assumptions in the types header. - No newline necessary after the SPDX line - Newline necessary after inline function definitions - Rename native_cpuid_reg() to NATIVE_CPUID_REG(): it's a CPP macro, whose name we capitalize in such cases. - Prettify the CONFIG_PARAVIRT_XXL inclusion block a bit - Standardize register references in comments to EAX/EBX/ECX/etc., from the hodgepodge of references. - s/cpus/CPUs because why add noise to common acronyms? Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: John Ogness <john.ogness@linutronix.de> Cc: "Ahmed S. Darwish" <darwi@linutronix.de> Cc: x86-cpuid@lists.linux.dev Link: https://lore.kernel.org/r/20250317221824.3738853-4-mingo@kernel.org
2025-03-19x86/cpuid: Clean up <asm/cpuid/types.h>Ingo Molnar1-4/+7
- We have 0x0d, 0x9 and 0x1d as literals for the CPUID_LEAF definitions, pick a single, consistent style of 0xZZ literals. - Likewise, harmonize the style of the 'struct cpuid_regs' list of registers with that of 'enum cpuid_regs_idx'. Because while computers don't care about unnecessary visual noise, humans do. Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: John Ogness <john.ogness@linutronix.de> Cc: "Ahmed S. Darwish" <darwi@linutronix.de> Cc: x86-cpuid@lists.linux.dev Link: https://lore.kernel.org/r/20250317221824.3738853-3-mingo@kernel.org
2025-03-19x86/cpuid: Refactor <asm/cpuid.h>Ahmed S. Darwish3-216/+238
In preparation for future commits where CPUID headers will be expanded, refactor the CPUID header <asm/cpuid.h> into: asm/cpuid/ ├── api.h └── types.h Move the CPUID data structures into <asm/cpuid/types.h> and the access APIs into <asm/cpuid/api.h>. Let <asm/cpuid.h> be just an include of <asm/cpuid/api.h> so that existing call sites do not break. Suggested-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: John Ogness <john.ogness@linutronix.de> Cc: "Ahmed S. Darwish" <darwi@linutronix.de> Cc: x86-cpuid@lists.linux.dev Link: https://lore.kernel.org/r/20250317221824.3738853-2-mingo@kernel.org
2025-03-19x86/amd_node: Add a smn_read_register() helperMario Limonciello1-0/+11
Some of the ACP drivers will poll registers through SMN using read_poll_timeout() which requires returning the result of the register read as the argument. Add a helper to do just that. Signed-off-by: Mario Limonciello <mario.limonciello@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250217231747.1656228-2-superm1@kernel.org
2025-03-19x86/amd_node, platform/x86/amd/hsmp: Have HSMP use SMN through AMD_NODEYazen Ghannam2-1/+13
The HSMP interface is just an SMN interface with different offsets. Define an HSMP wrapper in the SMN code and have the HSMP platform driver use that rather than a local solution. Also, remove the "root" member from AMD_NB, since there are no more users of it. Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Carlos Bilbao <carlos.bilbao@kernel.org> Acked-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com> Link: https://lore.kernel.org/r/20250130-wip-x86-amd-nb-cleanup-v4-1-b5cc997e471b@amd.com
2025-03-19x86/cpufeatures: Warn about unmet CPU feature dependenciesSohil Mehta1-0/+1
Currently, the cpuid_deps[] table is only exercised when a particular feature is explicitly disabled and clear_cpu_cap() is called. However, some of these listed dependencies might already be missing during boot. These types of errors shouldn't generally happen in production environments, but they could sometimes sneak through, especially when VMs and Kconfigs are in the mix. Also, the kernel might introduce artificial dependencies between unrelated features, such as making LAM depend on LASS. Unexpected failures can occur when the kernel tries to use such features. Add a simple boot-time scan of the cpuid_deps[] table to detect the missing dependencies. One option is to disable all of such features during boot, but that may cause regressions in existing systems. For now, just warn about the missing dependencies to create awareness. As a trade-off between spamming the kernel log and keeping track of all the features that have been warned about, only warn about the first missing dependency. Any subsequent unmet dependency will only be logged after the first one has been resolved. Features are typically represented through unsigned integers within the kernel, though some of them have user-friendly names if they are exposed via /proc/cpuinfo. Show the friendlier name if available, otherwise display the X86_FEATURE_* numerals to make it easier to identify the feature. Suggested-by: Tony Luck <tony.luck@intel.com> Suggested-by: Ingo Molnar <mingo@redhat.com> Signed-off-by: Sohil Mehta <sohil.mehta@intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Juergen Gross <jgross@suse.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lore.kernel.org/r/20250313201608.3304135-1-sohil.mehta@intel.com
2025-03-19x86/cpu: Add cpu_type to struct x86_cpu_idPawan Gupta1-9/+23
In addition to matching vendor/family/model/feature, for hybrid variants it is required to also match cpu-type. For example, some CPU vulnerabilities like RFDS only affect a specific cpu-type. To be able to also match CPUs based on their type, add a new field "type" to struct x86_cpu_id which is used by the CPU-matching tables. Introduce X86_CPU_TYPE_ANY for the cases that don't care about the cpu-type. [ bp: Massage commit message. ] Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/r/20250311-add-cpu-type-v8-3-e8514dcaaff2@linux.intel.com
2025-03-19x86/cpu: Shorten CPU matching macroPawan Gupta1-84/+26
To add cpu-type to the existing CPU matching infrastructure, the base macro X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE need to append _CPU_TYPE. This makes an already long name longer, and somewhat incomprehensible. To avoid this, rename the base macro to X86_MATCH_CPU. The macro name doesn't need to explicitly tell everything that it matches. The arguments to the macro already hint at that. For consistency, use this base macro to define X86_MATCH_VFM and friends. Remove unused X86_MATCH_VENDOR_FAM_MODEL_FEATURE while at it. [ bp: Massage commit message. ] Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/r/20250311-add-cpu-type-v8-2-e8514dcaaff2@linux.intel.com
2025-03-19x86/cpu: Fix the description of X86_MATCH_VFM_STEPS()Pawan Gupta1-2/+4
The comments needs to reflect an implementation change. No functional change. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250311-add-cpu-type-v8-1-e8514dcaaff2@linux.intel.com
2025-03-19x86/cpufeatures: Use AWK to generate {REQUIRED|DISABLED}_MASK_BIT_SET in ↵Xin Li (Intel)1-69/+0
<asm/cpufeaturemasks.h> Generate the {REQUIRED|DISABLED}_MASK_BIT_SET macros in the newly added AWK script that generates <asm/cpufeaturemasks.h>. Suggested-by: Brian Gerst <brgerst@gmail.com> Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Brian Gerst <brgerst@gmail.com> Reviewed-by: Nikolay Borisov <nik.borisov@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20250228082338.73859-6-xin@zytor.com
2025-03-19x86/cpufeatures: Remove {disabled,required}-features.hXin Li (Intel)2-272/+0
The functionalities of {disabled,required}-features.h have been replaced with the auto-generated generated/<asm/cpufeaturemasks.h> header. Thus they are no longer needed and can be removed. None of the macros defined in {disabled,required}-features.h is used in tools, delete them too. Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20250305184725.3341760-4-xin@zytor.com
2025-03-19x86/cpufeatures: Generate the <asm/cpufeaturemasks.h> header based on build ↵H. Peter Anvin (Intel)3-8/+2
config Introduce an AWK script to auto-generate the <asm/cpufeaturemasks.h> header with required and disabled feature masks based on <asm/cpufeatures.h> and the current build config. Thus for any CPU feature with a build config, e.g., X86_FRED, simply add: config X86_DISABLED_FEATURE_FRED def_bool y depends on !X86_FRED to arch/x86/Kconfig.cpufeatures, instead of adding a conditional CPU feature disable flag, e.g., DISABLE_FRED. Lastly, the generated required and disabled feature masks will be added to their corresponding feature masks for this particular compile-time configuration. [ Xin: build integration improvements ] [ mingo: Improved changelog and comments ] Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com> Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Nikolay Borisov <nik.borisov@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20250305184725.3341760-3-xin@zytor.com
2025-03-19x86/mm: Always set the ASID valid bit for the INVLPGB instructionTom Lendacky1-26/+32
When executing the INVLPGB instruction on a bare-metal host or hypervisor, if the ASID valid bit is not set, the instruction will flush the TLB entries that match the specified criteria for any ASID, not just the those of the host. If virtual machines are running on the system, this may result in inadvertent flushes of guest TLB entries. When executing the INVLPGB instruction in a guest and the INVLPGB instruction is not intercepted by the hypervisor, the hardware will replace the requested ASID with the guest ASID and set the ASID valid bit before doing the broadcast invalidation. Thus a guest is only able to flush its own TLB entries. So to limit the host TLB flushing reach, always set the ASID valid bit using an ASID value of 0 (which represents the host/hypervisor). This will will result in the desired effect in both host and guest. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250304120449.GHZ8bsYYyEBOKQIxBm@fat_crate.local
2025-03-19x86/mm: Enable AMD translation cache extensionsRik van Riel1-0/+2
With AMD TCE (translation cache extensions) only the intermediate mappings that cover the address range zapped by INVLPG / INVLPGB get invalidated, rather than all intermediate mappings getting zapped at every TLB invalidation. This can help reduce the TLB miss rate, by keeping more intermediate mappings in the cache. From the AMD manual: Translation Cache Extension (TCE) Bit. Bit 15, read/write. Setting this bit to 1 changes how the INVLPG, INVLPGB, and INVPCID instructions operate on TLB entries. When this bit is 0, these instructions remove the target PTE from the TLB as well as all upper-level table entries that are cached in the TLB, whether or not they are associated with the target PTE. When this bit is set, these instructions will remove the target PTE and only those upper-level entries that lead to the target PTE in the page table hierarchy, leaving unrelated upper-level entries intact. [ bp: use cpu_has()... I know, it is a mess. ] Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250226030129.530345-13-riel@surriel.com
2025-03-19x86/mm: Enable broadcast TLB invalidation for multi-threaded processesRik van Riel1-0/+6
There is not enough room in the 12-bit ASID address space to hand out broadcast ASIDs to every process. Only hand out broadcast ASIDs to processes when they are observed to be simultaneously running on 4 or more CPUs. This also allows single threaded process to continue using the cheaper, local TLB invalidation instructions like INVLPGB. Due to the structure of flush_tlb_mm_range(), the INVLPGB flushing is done in a generically named broadcast_tlb_flush() function which can later also be used for Intel RAR. Combined with the removal of unnecessary lru_add_drain calls() (see https://lore.kernel.org/r/20241219153253.3da9e8aa@fangorn) this results in a nice performance boost for the will-it-scale tlb_flush2_threads test on an AMD Milan system with 36 cores: - vanilla kernel: 527k loops/second - lru_add_drain removal: 731k loops/second - only INVLPGB: 527k loops/second - lru_add_drain + INVLPGB: 1157k loops/second Profiling with only the INVLPGB changes showed while TLB invalidation went down from 40% of the total CPU time to only around 4% of CPU time, the contention simply moved to the LRU lock. Fixing both at the same time about doubles the number of iterations per second from this case. Comparing will-it-scale tlb_flush2_threads with several different numbers of threads on a 72 CPU AMD Milan shows similar results. The number represents the total number of loops per second across all the threads: threads tip INVLPGB 1 315k 304k 2 423k 424k 4 644k 1032k 8 652k 1267k 16 737k 1368k 32 759k 1199k 64 636k 1094k 72 609k 993k 1 and 2 thread performance is similar with and without INVLPGB, because INVLPGB is only used on processes using 4 or more CPUs simultaneously. The number is the median across 5 runs. Some numbers closer to real world performance can be found at Phoronix, thanks to Michael: https://www.phoronix.com/news/AMD-INVLPGB-Linux-Benefits [ bp: - Massage - :%s/\<static_cpu_has\>/cpu_feature_enabled/cgi - :%s/\<clear_asid_transition\>/mm_clear_asid_transition/cgi - Fold in a 0day bot fix: https://lore.kernel.org/oe-kbuild-all/202503040000.GtiWUsBm-lkp@intel.com ] Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Nadav Amit <nadav.amit@gmail.com> Link: https://lore.kernel.org/r/20250226030129.530345-11-riel@surriel.com
2025-03-19x86/mm: Add global ASID process exit helpersRik van Riel2-1/+16
A global ASID is allocated for the lifetime of a process. Free the global ASID at process exit time. [ bp: Massage, create helpers, hide details inside them. ] Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250226030129.530345-10-riel@surriel.com
2025-03-19x86/mm: Handle global ASID context switch and TLB flushRik van Riel1-0/+14
Do context switch and TLB flush support for processes that use a global ASID and PCID across all CPUs. At both context switch time and TLB flush time, it needs to be checked whether a task is switching to a global ASID, and, if so, reload the TLB with the new ASID as appropriate. In both code paths, the TLB flush is avoided if a global ASID is used, because the global ASIDs are always kept up to date across CPUs, even when the process is not running on a CPU. [ bp: - Massage - :%s/\<static_cpu_has\>/cpu_feature_enabled/cgi ] Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250226030129.530345-9-riel@surriel.com
2025-03-19x86/mm: Add global ASID allocation helper functionsRik van Riel3-0/+51
Add functions to manage global ASID space. Multithreaded processes that are simultaneously active on 4 or more CPUs can get a global ASID, resulting in the same PCID being used for that process on every CPU. This in turn will allow the kernel to use hardware-assisted TLB flushing through AMD INVLPGB or Intel RAR for these processes. [ bp: - Extend use_global_asid() comment - s/X86_BROADCAST_TLB_FLUSH/BROADCAST_TLB_FLUSH/g - other touchups ] Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250226030129.530345-8-riel@surriel.com
2025-03-19x86/mm: Add INVLPGB support codeRik van Riel1-0/+132
Add helper functions and definitions needed to use broadcast TLB invalidation on AMD CPUs. [ bp: - Cleanup commit message - Improve and expand comments - push the preemption guards inside the invlpgb* helpers - merge improvements from dhansen - add !CONFIG_BROADCAST_TLB_FLUSH function stubs because Clang can't do DCE properly yet and looks at the inline asm and complains about it getting a u64 argument on 32-bit code ] Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250226030129.530345-4-riel@surriel.com
2025-03-19x86/mm: Add INVLPGB feature and Kconfig entryRik van Riel3-1/+11
In addition, the CPU advertises the maximum number of pages that can be shot down with one INVLPGB instruction in CPUID. Save that information for later use. [ bp: use cpu_has(), typos, massage. ] Signed-off-by: Rik van Riel <riel@surriel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250226030129.530345-3-riel@surriel.com
2025-03-19Merge tag 'v6.14-rc7' into x86/core, to pick up fixesIngo Molnar3-7/+8
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-03-18arch, mm: streamline HIGHMEM freeingMike Rapoport (Microsoft)3-20/+0
All architectures that support HIGHMEM have their code that frees high memory pages to the buddy allocator while __free_memory_core() is limited to freeing only low memory. There is no actual reason for that. The memory map is completely ready by the time memblock_free_all() is called and high pages can be released to the buddy allocator along with low memory. Remove low memory limit from __free_memory_core() and drop per-architecture code that frees high memory pages. Link: https://lkml.kernel.org/r/20250313135003.836600-12-rppt@kernel.org Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> [x86] Tested-by: Mark Brown <broonie@kernel.org> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andreas Larsson <andreas@gaisler.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Betkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David S. Miller <davem@davemloft.net> Cc: Dinh Nguyen <dinguyen@kernel.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Guo Ren (csky) <guoren@kernel.org> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiaxun Yang <jiaxun.yang@flygoat.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Richard Weinberger <richard@nod.at> Cc: Russel King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleinxer <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vineet Gupta <vgupta@kernel.org> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17Revert "x86/xen: allow nesting of same lazy mode"Ryan Roberts1-13/+2
Commit 49147beb0ccb ("x86/xen: allow nesting of same lazy mode") was added as a solution for a core-mm code change where arch_[enter|leave]_lazy_mmu_mode() started to be called in a nested manner; see commit bcc6cc832573 ("mm: add default definition of set_ptes()"). However, now that we have fixed the API to avoid nesting, we no longer need this capability in the x86 implementation. Additionally, from code review, I don't believe the fix was ever robust in the case of preemption occurring while in the nested lazy mode. The implementation usually deals with preemption by calling arch_leave_lazy_mmu_mode() from xen_start_context_switch() for the outgoing task if we are in the lazy mmu mode. Then in xen_end_context_switch(), it restarts the lazy mode by calling arch_enter_lazy_mmu_mode() for an incoming task that was in the lazy mode when it was switched out. But arch_leave_lazy_mmu_mode() will only unwind a single level of nesting. If we are in the double nest, then it's not fully unwound and per-cpu variables are left in a bad state. So the correct solution is to remove the possibility of nesting from the higher level (which has now been done) and remove this x86-specific solution. Link: https://lkml.kernel.org/r/20250303141542.3371656-6-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Juergen Gross <jgross@suse.com> Cc: Andreas Larsson <andreas@gaisler.com> Cc: Borislav Betkov <bp@alien8.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Juegren Gross <jgross@suse.com> Cc: Matthew Wilcow (Oracle) <willy@infradead.org> Cc: Thomas Gleinxer <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/ioremap: pass pgprot_t to ioremap_prot() instead of unsigned longRyan Roberts1-1/+1
ioremap_prot() currently accepts pgprot_val parameter as an unsigned long, thus implicitly assuming that pgprot_val and pgprot_t could never be bigger than unsigned long. But this assumption soon will not be true on arm64 when using D128 pgtables. In 128 bit page table configuration, unsigned long is 64 bit, but pgprot_t is 128 bit. Passing platform abstracted pgprot_t argument is better as compared to size based data types. Let's change the parameter to directly pass pgprot_t like another similar helper generic_ioremap_prot(). Without this change in place, D128 configuration does not work on arm64 as the top 64 bits gets silently stripped when passing the protection value to this function. Link: https://lkml.kernel.org/r/20250218101954.415331-1-anshuman.khandual@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Co-developed-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64] Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm: support tlbbatch flush for a range of PTEsBarry Song1-2/+1
This patch lays the groundwork for supporting batch PTE unmapping in try_to_unmap_one(). It introduces range handling for TLB batch flushing, with the range currently set to the size of PAGE_SIZE. The function __flush_tlb_range_nosync() is architecture-specific and is only used within arch/arm64. This function requires the mm structure instead of the vma structure. To allow its reuse by arch_tlbbatch_add_pending(), which operates with mm but not vma, this patch modifies the argument of __flush_tlb_range_nosync() to take mm as its parameter. Link: https://lkml.kernel.org/r/20250214093015.51024-3-21cnbao@gmail.com Signed-off-by: Barry Song <v-songbaohua@oppo.com> Acked-by: Will Deacon <will@kernel.org> Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shaoqin Huang <shahuang@redhat.com> Cc: Gavin Shan <gshan@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Lance Yang <ioworker0@gmail.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Yicong Yang <yangyicong@hisilicon.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Chis Li <chrisl@kernel.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Kairui Song <kasong@tencent.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Mauricio Faria de Oliveira <mfo@canonical.com> Cc: Tangquan Zheng <zhengtangquan@oppo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17percpu/x86: enable strict percpu checks via named AS qualifiersUros Bizjak1-3/+12
This patch declares percpu variables in __seg_gs/__seg_fs named AS and keeps them named AS qualified until they are dereferenced with percpu accessor. This approach enables various compiler check for cross-namespace variable assignments. Link: https://lkml.kernel.org/r/20250127160709.80604-7-ubizjak@gmail.com Signed-off-by: Uros Bizjak <ubizjak@gmail.com> Acked-by: Nadav Amit <nadav.amit@gmail.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Jakub Kicinski <kuba@kernel.org> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Paolo Abeni <pabeni@redhat.com> Cc: Waiman Long <longman@redhat.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17percpu: use TYPEOF_UNQUAL() in *_cpu_ptr() accessorsUros Bizjak1-2/+6
Use TYPEOF_UNQUAL() macro to declare the return type of *_cpu_ptr() accessors in the generic named address space to avoid access to data from pointer to non-enclosed address space type of errors. Link: https://lkml.kernel.org/r/20250127160709.80604-5-ubizjak@gmail.com Signed-off-by: Uros Bizjak <ubizjak@gmail.com> Acked-by: Nadav Amit <nadav.amit@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Jakub Kicinski <kuba@kernel.org> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Paolo Abeni <pabeni@redhat.com> Cc: Waiman Long <longman@redhat.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17percpu: use TYPEOF_UNQUAL() in variable declarationsUros Bizjak1-5/+5
Use TYPEOF_UNQUAL() to declare variables as a corresponding type without named address space qualifier to avoid "`__seg_gs' specified for auto variable `var'" errors. Link: https://lkml.kernel.org/r/20250127160709.80604-4-ubizjak@gmail.com Signed-off-by: Uros Bizjak <ubizjak@gmail.com> Acked-by: Nadav Amit <nadav.amit@gmail.com> Acked-by: Christoph Lameter <cl@linux.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Tejun Heo <tj@kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Arnd Bergmann <arnd@arndb.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Jakub Kicinski <kuba@kernel.org> Cc: Paolo Abeni <pabeni@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Will Deacon <will@kernel.org> Cc: Waiman Long <longman@redhat.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-14KVM: x86: Introduce Intel specific quirk KVM_X86_QUIRK_IGNORE_GUEST_PATYan Zhao1-2/+4
Introduce an Intel specific quirk KVM_X86_QUIRK_IGNORE_GUEST_PAT to have KVM ignore guest PAT when this quirk is enabled. On AMD platforms, KVM always honors guest PAT. On Intel however there are two issues. First, KVM *cannot* honor guest PAT if CPU feature self-snoop is not supported. Second, UC access on certain Intel platforms can be very slow[1] and honoring guest PAT on those platforms may break some old guests that accidentally specify video RAM as UC. Those old guests may never expect the slowness since KVM always forces WB previously. See [2]. So, introduce a quirk that KVM can enable by default on all Intel platforms to avoid breaking old unmodifiable guests. Newer userspace can disable this quirk if it wishes KVM to honor guest PAT; disabling the quirk will fail if self-snoop is not supported, i.e. if KVM cannot obey the wish. The quirk is a no-op on AMD and also if any assigned devices have non-coherent DMA. This is not an issue, as KVM_X86_QUIRK_CD_NW_CLEARED is another example of a quirk that is sometimes automatically disabled. Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Suggested-by: Sean Christopherson <seanjc@google.com> Cc: Kevin Tian <kevin.tian@intel.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Link: https://lore.kernel.org/all/Ztl9NWCOupNfVaCA@yzhao56-desk.sh.intel.com # [1] Link: https://lore.kernel.org/all/87jzfutmfc.fsf@redhat.com # [2] Message-ID: <20250224070946.31482-1-yan.y.zhao@intel.com> [Use supported_quirks/inapplicable_quirks to support both AMD and no-self-snoop cases, as well as to remove the shadow_memtype_mask check from kvm_mmu_may_ignore_guest_pat(). - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14KVM: x86: Allow vendor code to disable quirksPaolo Bonzini1-0/+3
In some cases, the handling of quirks is split between platform-specific code and generic code, or it is done entirely in generic code, but the relevant bug does not trigger on some platforms; for example, this will be the case for "ignore guest PAT". Allow unaffected vendor modules to disable handling of a quirk for all VMs via a new entry in kvm_caps. Such quirks remain available in KVM_CAP_DISABLE_QUIRKS2, because that API tells userspace that KVM *knows* that some of its past behavior was bogus or just undesirable. In other words, it's plausible for userspace to refuse to run if a quirk is not listed by KVM_CAP_DISABLE_QUIRKS2, so preserve that and make it part of the API. As an example, mark KVM_X86_QUIRK_CD_NW_CLEARED as auto-disabled on Intel systems. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14KVM: TDX: Handle TDG.VP.VMCALL<GetTdVmCallInfo> hypercallIsaku Yamahata1-0/+1
Implement TDG.VP.VMCALL<GetTdVmCallInfo> hypercall. If the input value is zero, return success code and zero in output registers. TDG.VP.VMCALL<GetTdVmCallInfo> hypercall is a subleaf of TDG.VP.VMCALL to enumerate which TDG.VP.VMCALL sub leaves are supported. This hypercall is for future enhancement of the Guest-Host-Communication Interface (GHCI) specification. The GHCI version of 344426-001US defines it to require input R12 to be zero and to return zero in output registers, R11, R12, R13, and R14 so that guest TD enumerates no enhancement. Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com> Message-ID: <20250227012021.1778144-12-binbin.wu@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14KVM: TDX: Detect unexpected SEPT violations due to pending SPTEsYan Zhao1-0/+2
Detect SEPT violations that occur when an SEPT entry is in PENDING state while the TD is configured not to receive #VE on SEPT violations. A TD guest can be configured not to receive #VE by setting SEPT_VE_DISABLE to 1 in tdh_mng_init() or modifying pending_ve_disable to 1 in TDCS when flexible_pending_ve is permitted. In such cases, the TDX module will not inject #VE into the TD upon encountering an EPT violation caused by an SEPT entry in the PENDING state. Instead, TDX module will exit to VMM and set extended exit qualification type to PENDING_EPT_VIOLATION and exit qualification bit 6:3 to 0. Since #VE will not be injected to such TDs, they are not able to be notified to accept a GPA. TD accessing before accepting a private GPA is regarded as an error within the guest. Detect such guest error by inspecting the (extended) exit qualification bits and make such VM dead. Cc: Xiaoyao Li <xiaoyao.li@intel.com> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com> Message-ID: <20250227012021.1778144-3-binbin.wu@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14KVM: TDX: Wait lapic expire when timer IRQ was injectedIsaku Yamahata1-0/+5
Call kvm_wait_lapic_expire() when POSTED_INTR_ON is set and the vector for LVTT is set in PIR before TD entry. KVM always assumes a timer IRQ was injected if APIC state is protected. For TDX guest, APIC state is protected and KVM injects timer IRQ via posted interrupt. To avoid unnecessary wait calls, only call kvm_wait_lapic_expire() when a timer IRQ was injected, i.e., POSTED_INTR_ON is set and the vector for LVTT is set in PIR. Add a helper to test PIR. Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com> Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com> Message-ID: <20250222014757.897978-7-binbin.wu@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14KVM: TDX: Add support for find pending IRQ in a protected local APICSean Christopherson2-0/+2
Add flag and hook to KVM's local APIC management to support determining whether or not a TDX guest has a pending IRQ. For TDX vCPUs, the virtual APIC page is owned by the TDX module and cannot be accessed by KVM. As a result, registers that are virtualized by the CPU, e.g. PPR, cannot be read or written by KVM. To deliver interrupts for TDX guests, KVM must send an IRQ to the CPU on the posted interrupt notification vector. And to determine if TDX vCPU has a pending interrupt, KVM must check if there is an outstanding notification. Return "no interrupt" in kvm_apic_has_interrupt() if the guest APIC is protected to short-circuit the various other flows that try to pull an IRQ out of the vAPIC, the only valid operation is querying _if_ an IRQ is pending, KVM can't do anything based on _which_ IRQ is pending. Intentionally omit sanity checks from other flows, e.g. PPR update, so as not to degrade non-TDX guests with unnecessary checks. A well-behaved KVM and userspace will never reach those flows for TDX guests, but reaching them is not fatal if something does go awry. For the TD exits not due to HLT TDCALL, skip checking RVI pending in tdx_protected_apic_has_interrupt(). Except for the guest being stupid (e.g., non-HLT TDCALL in an interrupt shadow), it's not even possible to have an interrupt in RVI that is fully unmasked. There is no any CPU flows that modify RVI in the middle of instruction execution. I.e. if RVI is non-zero, then either the interrupt has been pending since before the TD exit, or the instruction caused the TD exit is in an STI/SS shadow. KVM doesn't care about STI/SS shadows outside of the HALTED case. And if the interrupt was pending before TD exit, then it _must_ be blocked, otherwise the interrupt would have been serviced at the instruction boundary. For the HLT TDCALL case, it will be handled in a future patch when HLT TDCALL is supported. Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com> Message-ID: <20250222014757.897978-2-binbin.wu@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14KVM: TDX: Handle TDG.VP.VMCALL<MapGPA>Binbin Wu1-0/+1
Convert TDG.VP.VMCALL<MapGPA> to KVM_EXIT_HYPERCALL with KVM_HC_MAP_GPA_RANGE and forward it to userspace for handling. MapGPA is used by TDX guest to request to map a GPA range as private or shared memory. It needs to exit to userspace for handling. KVM has already implemented a similar hypercall KVM_HC_MAP_GPA_RANGE, which will exit to userspace with exit reason KVM_EXIT_HYPERCALL. Do sanity checks, convert TDVMCALL_MAP_GPA to KVM_HC_MAP_GPA_RANGE and forward the request to userspace. To prevent a TDG.VP.VMCALL<MapGPA> call from taking too long, the MapGPA range is split into 2MB chunks and check interrupt pending between chunks. This allows for timely injection of interrupts and prevents issues with guest lockup detection. TDX guest should retry the operation for the GPA starting at the address specified in R11 when the TDVMCALL return TDVMCALL_RETRY as status code. Note userspace needs to enable KVM_CAP_EXIT_HYPERCALL with KVM_HC_MAP_GPA_RANGE bit set for TD VM. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com> Message-ID: <20250222014225.897298-7-binbin.wu@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14KVM: TDX: Add a place holder to handle TDX VM exitIsaku Yamahata1-0/+1
Introduce the wiring for handling TDX VM exits by implementing the callbacks .get_exit_info(), .get_entry_info(), and .handle_exit(). Additionally, add error handling during the TDX VM exit flow, and add a place holder to handle various exit reasons. Store VMX exit reason and exit qualification in struct vcpu_vt for TDX, so that TDX/VMX can use the same helpers to get exit reason and exit qualification. Store extended exit qualification and exit GPA info in struct vcpu_tdx because they are used by TDX code only. Contention Handling: The TDH.VP.ENTER operation may contend with TDH.MEM.* operations due to secure EPT or TD EPOCH. If the contention occurs, the return value will have TDX_OPERAND_BUSY set, prompting the vCPU to attempt re-entry into the guest with EXIT_FASTPATH_EXIT_HANDLED, not EXIT_FASTPATH_REENTER_GUEST, so that the interrupts pending during IN_GUEST_MODE can be delivered for sure. Otherwise, the requester of KVM_REQ_OUTSIDE_GUEST_MODE may be blocked endlessly. Error Handling: - TDX_SW_ERROR: This includes #UD caused by SEAMCALL instruction if the CPU isn't in VMX operation, #GP caused by SEAMCALL instruction when TDX isn't enabled by the BIOS, and TDX_SEAMCALL_VMFAILINVALID when SEAM firmware is not loaded or disabled. - TDX_ERROR: This indicates some check failed in the TDX module, preventing the vCPU from running. - Failed VM Entry: Exit to userspace with KVM_EXIT_FAIL_ENTRY. Handle it separately before handling TDX_NON_RECOVERABLE because when off-TD debug is not enabled, TDX_NON_RECOVERABLE is set. - TDX_NON_RECOVERABLE: Set by the TDX module when the error is non-recoverable, indicating that the TDX guest is dead or the vCPU is disabled. A special case is triple fault, which also sets TDX_NON_RECOVERABLE but exits to userspace with KVM_EXIT_SHUTDOWN, aligning with the VMX case. - Any unhandled VM exit reason will also return to userspace with KVM_EXIT_INTERNAL_ERROR. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com> Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Chao Gao <chao.gao@intel.com> Message-ID: <20250222014225.897298-4-binbin.wu@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14KVM: x86: Add a switch_db_regs flag to handle TDX's auto-switched behaviorIsaku Yamahata1-2/+9
Add a flag KVM_DEBUGREG_AUTO_SWITCH to skip saving/restoring guest DRs. TDX-SEAM unconditionally saves/restores guest DRs on TD exit/enter, and resets DRs to architectural INIT state on TD exit. Use the new flag KVM_DEBUGREG_AUTO_SWITCH to indicate that KVM doesn't need to save/restore guest DRs. KVM still needs to restore host DRs after TD exit if there are active breakpoints in the host, which is covered by the existing code. MOV-DR exiting is always cleared for TDX guests, so the handler for DR access is never called, and KVM_DEBUGREG_WONT_EXIT is never set. Add a warning if both KVM_DEBUGREG_WONT_EXIT and KVM_DEBUGREG_AUTO_SWITCH are set. Opportunistically convert the KVM_DEBUGREG_* definitions to use BIT(). Reported-by: Xiaoyao Li <xiaoyao.li@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Co-developed-by: Chao Gao <chao.gao@intel.com> Signed-off-by: Chao Gao <chao.gao@intel.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> [binbin: rework changelog] Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com> Message-ID: <20241210004946.3718496-2-binbin.wu@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-ID: <20250129095902.16391-13-adrian.hunter@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14KVM: x86: Allow to update cached values in kvm_user_return_msrs w/o wrmsrChao Gao1-0/+1
Several MSRs are constant and only used in userspace(ring 3). But VMs may have different values. KVM uses kvm_set_user_return_msr() to switch to guest's values and leverages user return notifier to restore them when the kernel is to return to userspace. To eliminate unnecessary wrmsr, KVM also caches the value it wrote to an MSR last time. TDX module unconditionally resets some of these MSRs to architectural INIT state on TD exit. It makes the cached values in kvm_user_return_msrs are inconsistent with values in hardware. This inconsistency needs to be fixed. Otherwise, it may mislead kvm_on_user_return() to skip restoring some MSRs to the host's values. kvm_set_user_return_msr() can help correct this case, but it is not optimal as it always does a wrmsr. So, introduce a variation of kvm_set_user_return_msr() to update cached values and skip that wrmsr. Signed-off-by: Chao Gao <chao.gao@intel.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-ID: <20250129095902.16391-9-adrian.hunter@intel.com> Reviewed-by: Xiayao Li <xiaoyao.li@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14x86/virt/tdx: Add SEAMCALL wrapper to enter/exit TDX guestKai Huang1-0/+1
Intel TDX protects guest VM's from malicious host and certain physical attacks. TDX introduces a new operation mode, Secure Arbitration Mode (SEAM) to isolate and protect guest VM's. A TDX guest VM runs in SEAM and, unlike VMX, direct control and interaction with the guest by the host VMM is not possible. Instead, Intel TDX Module, which also runs in SEAM, provides a SEAMCALL API. The SEAMCALL that provides the ability to enter a guest is TDH.VP.ENTER. The TDX Module processes TDH.VP.ENTER, and enters the guest via VMX VMLAUNCH/VMRESUME instructions. When a guest VM-exit requires host VMM interaction, the TDH.VP.ENTER SEAMCALL returns to the host VMM (KVM). Add tdh_vp_enter() to wrap the SEAMCALL invocation of TDH.VP.ENTER; tdh_vp_enter() needs to be noinstr because VM entry in KVM is noinstr as well, which is for two reasons: * marking the area as CT_STATE_GUEST via guest_state_enter_irqoff() and guest_state_exit_irqoff() * IRET must be avoided between VM-exit and NMI handling, in order to avoid prematurely releasing the NMI inhibit. TDH.VP.ENTER is different from other SEAMCALLs in several ways: it uses more arguments, and after it returns some host state may need to be restored. Therefore tdh_vp_enter() uses __seamcall_saved_ret() instead of __seamcall_ret(); since it is the only caller of __seamcall_saved_ret(), it can be made noinstr also. TDH.VP.ENTER arguments are passed through General Purpose Registers (GPRs). For the special case of the TD guest invoking TDG.VP.VMCALL, nearly any GPR can be used, as well as XMM0 to XMM15. Notably, RBP is not used, and Linux mandates the TDX Module feature NO_RBP_MOD, which is enforced elsewhere. Additionally, XMM registers are not required for the existing Guest Hypervisor Communication Interface and are handled by existing KVM code should they be modified by the guest. There are 2 input formats and 5 output formats for TDH.VP.ENTER arguments. Input #1 : Initial entry or following a previous async. TD Exit Input #2 : Following a previous TDCALL(TDG.VP.VMCALL) Output #1 : On Error (No TD Entry) Output #2 : Async. Exits with a VMX Architectural Exit Reason Output #3 : Async. Exits with a non-VMX TD Exit Status Output #4 : Async. Exits with Cross-TD Exit Details Output #5 : On TDCALL(TDG.VP.VMCALL) Currently, to keep things simple, the wrapper function does not attempt to support different formats, and just passes all the GPRs that could be used. The GPR values are held by KVM in the area set aside for guest GPRs. KVM code uses the guest GPR area (vcpu->arch.regs[]) to set up for or process results of tdh_vp_enter(). Therefore changing tdh_vp_enter() to use more complex argument formats would also alter the way KVM code interacts with tdh_vp_enter(). Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Message-ID: <20241121201448.36170-2-adrian.hunter@intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14KVM: x86: Make cpu_dirty_log_size a per-VM valueYan Zhao1-5/+7
Make cpu_dirty_log_size (CPU's dirty log buffer size) a per-VM value and set the per-VM cpu_dirty_log_size only for normal VMs when PML is enabled. Do not set it for TDs. Until now, cpu_dirty_log_size was a system-wide value that is used for all VMs and is set to the PML buffer size when PML was enabled in VMX. However, PML is not currently supported for TDs, though PML remains available for normal VMs as long as the feature is supported by hardware and enabled in VMX. Making cpu_dirty_log_size a per-VM value allows it to be ther PML buffer size for normal VMs and 0 for TDs. This allows functions like kvm_arch_sync_dirty_log() and kvm_mmu_update_cpu_dirty_logging() to determine if PML is supported, in order to kick off vCPUs or request them to update CPU dirty logging status (turn on/off PML in VMCS). This fixes an issue first reported in [1], where QEMU attaches an emulated VGA device to a TD; note that KVM_MEM_LOG_DIRTY_PAGES still works if the corresponding has no flag KVM_MEM_GUEST_MEMFD. KVM then invokes kvm_mmu_update_cpu_dirty_logging() and from there vmx_update_cpu_dirty_logging(), which incorrectly accesses a kvm_vmx struct for a TDX VM. Reported-by: ANAND NARSHINHA PATIL <Anand.N.Patil@ibm.com> Reported-by: Pedro Principeza <pedro.principeza@canonical.com> Reported-by: Farrah Chen <farrah.chen@intel.com> Closes: https://github.com/canonical/tdx/issues/202 Link: https://github.com/canonical/tdx/issues/202 [1] Suggested-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14KVM: TDX: Add load_mmu_pgd method for TDXSean Christopherson1-0/+1
TDX uses two EPT pointers, one for the private half of the GPA space and one for the shared half. The private half uses the normal EPT_POINTER vmcs field, which is managed in a special way by the TDX module. For TDX, KVM is not allowed to operate on it directly. The shared half uses a new SHARED_EPT_POINTER field and will be managed by the conventional MMU management operations that operate directly on the EPT root. This means for TDX the .load_mmu_pgd() operation will need to know to use the SHARED_EPT_POINTER field instead of the normal one. Add a new wrapper in x86 ops for load_mmu_pgd() that either directs the write to the existing vmx implementation or a TDX one. tdx_load_mmu_pgd() is so much simpler than vmx_load_mmu_pgd() since for the TDX mode of operation, EPT will always be used and KVM does not need to be involved in virtualization of CR3 behavior. So tdx_load_mmu_pgd() can simply write to SHARED_EPT_POINTER. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Co-developed-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Co-developed-by: Yan Zhao <yan.y.zhao@intel.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-ID: <20241112073601.22084-1-yan.y.zhao@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14x86/virt/tdx: Add SEAMCALL wrappers for TD measurement of initial contentsIsaku Yamahata1-0/+2
The TDX module measures the TD during the build process and saves the measurement in TDCS.MRTD to facilitate TD attestation of the initial contents of the TD. Wrap the SEAMCALL TDH.MR.EXTEND with tdh_mr_extend() and TDH.MR.FINALIZE with tdh_mr_finalize() to enable the host kernel to assist the TDX module in performing the measurement. The measurement in TDCS.MRTD is a SHA-384 digest of the build process. SEAMCALLs TDH.MNG.INIT and TDH.MEM.PAGE.ADD initialize and contribute to the MRTD digest calculation. The caller of tdh_mr_extend() should break the TD private page into chunks of size TDX_EXTENDMR_CHUNKSIZE and invoke tdh_mr_extend() to add the page content into the digest calculation. Failures are possible with TDH.MR.EXTEND (e.g., due to SEPT walking). The caller of tdh_mr_extend() can check the function return value and retrieve extended error information from the function output parameters. Calling tdh_mr_finalize() completes the measurement. The TDX module then turns the TD into the runnable state. Further TDH.MEM.PAGE.ADD and TDH.MR.EXTEND calls will fail. TDH.MR.FINALIZE may fail due to errors such as the TD having no vCPUs or contentions. Check function return value when calling tdh_mr_finalize() to determine the exact reason for failure. Take proper locks on the caller's side to avoid contention failures, or handle the BUSY error in specific ways (e.g., retry). Return the SEAMCALL error code directly to the caller. Do not attempt to handle it in the core kernel. [Kai: Switched from generic seamcall export] [Yan: Re-wrote the changelog] Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Message-ID: <20241112073709.22171-1-yan.y.zhao@intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>