Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cache control updates from Borislav Petkov:
- The generalization of the RDT code to accommodate the addition of
AMD's very similar implementation of the cache monitoring feature.
This entails a subsystem move into a separate and generic
arch/x86/kernel/cpu/resctrl/ directory along with adding
vendor-specific initialization and feature detection helpers.
Ontop of that is the unification of user-visible strings, both in the
resctrl filesystem error handling and Kconfig.
Provided by Babu Moger and Sherry Hurwitz.
- Code simplifications and error handling improvements by Reinette
Chatre.
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Fix rdt_find_domain() return value and checks
x86/resctrl: Remove unnecessary check for cbm_validate()
x86/resctrl: Use rdt_last_cmd_puts() where possible
MAINTAINERS: Update resctrl filename patterns
Documentation: Rename and update intel_rdt_ui.txt to resctrl_ui.txt
x86/resctrl: Introduce AMD QOS feature
x86/resctrl: Fixup the user-visible strings
x86/resctrl: Add AMD's X86_FEATURE_MBA to the scattered CPUID features
x86/resctrl: Rename the config option INTEL_RDT to RESCTRL
x86/resctrl: Add vendor check for the MBA software controller
x86/resctrl: Bring cbm_validate() into the resource structure
x86/resctrl: Initialize the vendor-specific resource functions
x86/resctrl: Move all the macros to resctrl/internal.h
x86/resctrl: Re-arrange the RDT init code
x86/resctrl: Rename the RDT functions and definitions
x86/resctrl: Rename and move rdt files to a separate directory
|
|
Pull KVM updates from Paolo Bonzini:
"ARM:
- selftests improvements
- large PUD support for HugeTLB
- single-stepping fixes
- improved tracing
- various timer and vGIC fixes
x86:
- Processor Tracing virtualization
- STIBP support
- some correctness fixes
- refactorings and splitting of vmx.c
- use the Hyper-V range TLB flush hypercall
- reduce order of vcpu struct
- WBNOINVD support
- do not use -ftrace for __noclone functions
- nested guest support for PAUSE filtering on AMD
- more Hyper-V enlightenments (direct mode for synthetic timers)
PPC:
- nested VFIO
s390:
- bugfixes only this time"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits)
KVM: x86: Add CPUID support for new instruction WBNOINVD
kvm: selftests: ucall: fix exit mmio address guessing
Revert "compiler-gcc: disable -ftracer for __noclone functions"
KVM: VMX: Move VM-Enter + VM-Exit handling to non-inline sub-routines
KVM: VMX: Explicitly reference RCX as the vmx_vcpu pointer in asm blobs
KVM: x86: Use jmp to invoke kvm_spurious_fault() from .fixup
MAINTAINERS: Add arch/x86/kvm sub-directories to existing KVM/x86 entry
KVM/x86: Use SVM assembly instruction mnemonics instead of .byte streams
KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()
KVM/MMU: Flush tlb directly in kvm_set_pte_rmapp()
KVM/MMU: Move tlb flush in kvm_set_pte_rmapp() to kvm_mmu_notifier_change_pte()
KVM: Make kvm_set_spte_hva() return int
KVM: Replace old tlb flush function with new one to flush a specified range.
KVM/MMU: Add tlb flush with range helper function
KVM/VMX: Add hv tlb range flush support
x86/hyper-v: Add HvFlushGuestAddressList hypercall support
KVM: Add tlb_remote_flush_with_range callback in kvm_x86_ops
KVM: x86: Disable Intel PT when VMXON in L1 guest
KVM: x86: Set intercept for Intel PT MSRs read/write
KVM: x86: Implement Intel PT MSRs read/write emulation
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 festive updates from Will Deacon:
"In the end, we ended up with quite a lot more than I expected:
- Support for ARMv8.3 Pointer Authentication in userspace (CRIU and
kernel-side support to come later)
- Support for per-thread stack canaries, pending an update to GCC
that is currently undergoing review
- Support for kexec_file_load(), which permits secure boot of a kexec
payload but also happens to improve the performance of kexec
dramatically because we can avoid the sucky purgatory code from
userspace. Kdump will come later (requires updates to libfdt).
- Optimisation of our dynamic CPU feature framework, so that all
detected features are enabled via a single stop_machine()
invocation
- KPTI whitelisting of Cortex-A CPUs unaffected by Meltdown, so that
they can benefit from global TLB entries when KASLR is not in use
- 52-bit virtual addressing for userspace (kernel remains 48-bit)
- Patch in LSE atomics for per-cpu atomic operations
- Custom preempt.h implementation to avoid unconditional calls to
preempt_schedule() from preempt_enable()
- Support for the new 'SB' Speculation Barrier instruction
- Vectorised implementation of XOR checksumming and CRC32
optimisations
- Workaround for Cortex-A76 erratum #1165522
- Improved compatibility with Clang/LLD
- Support for TX2 system PMUS for profiling the L3 cache and DMC
- Reflect read-only permissions in the linear map by default
- Ensure MMIO reads are ordered with subsequent calls to Xdelay()
- Initial support for memory hotplug
- Tweak the threshold when we invalidate the TLB by-ASID, so that
mremap() performance is improved for ranges spanning multiple PMDs.
- Minor refactoring and cleanups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (125 commits)
arm64: kaslr: print PHYS_OFFSET in dump_kernel_offset()
arm64: sysreg: Use _BITUL() when defining register bits
arm64: cpufeature: Rework ptr auth hwcaps using multi_entry_cap_matches
arm64: cpufeature: Reduce number of pointer auth CPU caps from 6 to 4
arm64: docs: document pointer authentication
arm64: ptr auth: Move per-thread keys from thread_info to thread_struct
arm64: enable pointer authentication
arm64: add prctl control for resetting ptrauth keys
arm64: perf: strip PAC when unwinding userspace
arm64: expose user PAC bit positions via ptrace
arm64: add basic pointer authentication support
arm64/cpufeature: detect pointer authentication
arm64: Don't trap host pointer auth use to EL2
arm64/kvm: hide ptrauth from guests
arm64/kvm: consistently handle host HCR_EL2 flags
arm64: add pointer authentication register bits
arm64: add comments about EC exception levels
arm64: perf: Treat EXCLUDE_EL* bit definitions as unsigned
arm64: kpti: Whitelist Cortex-A CPUs that don't implement the CSV3 field
arm64: enable per-task stack canaries
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 pti updates from Thomas Gleixner:
"No point in speculating what's in this parcel:
- Drop the swap storage limit when L1TF is disabled so the full space
is available
- Add support for the new AMD STIBP always on mitigation mode
- Fix a bunch of STIPB typos"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Add support for STIBP always-on preferred mode
x86/speculation/l1tf: Drop the swap storage limit restriction when l1tf=off
x86/speculation: Change misspelled STIPB to STIBP
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI updates from Rafael Wysocki:
"These update the ACPICA code in the kernel to the 20181213 upstream
revision, make it possible to build the ACPI subsystem without PCI
support, and a new OEM _OSI string, add a new device support to the
ACPI driver for AMD SoCs and fix PM handling in the ACPI driver for
Intel SoCs, fix the SPCR table handling and do some assorted fixes and
cleanups.
Specifics:
- Update the ACPICA code in the kernel to the 20181213 upstream
revision including:
* New Windows _OSI strings (Bob Moore, Jung-uk Kim).
* Buffers-to-string conversions update (Bob Moore).
* Removal of support for expressions in package elements (Bob
Moore).
* New option to display method/object evaluation in debug output
(Bob Moore).
* Compiler improvements (Bob Moore, Erik Schmauss).
* Minor debugger fix (Erik Schmauss).
* Disassembler improvement (Erik Schmauss).
* Assorted cleanups (Bob Moore, Colin Ian King, Erik Schmauss).
- Add support for a new OEM _OSI string to indicate special handling
of secondary graphics adapters on some systems (Alex Hung).
- Make it possible to build the ACPI subystem without PCI support
(Sinan Kaya).
- Make the SPCR table handling regard baud rate 0 in accordance with
the specification of it and make the DSDT override code support
DSDT code names generated by recent ACPICA (Andy Shevchenko, Wang
Dongsheng, Nathan Chancellor).
- Add clock frequency for Hisilicon Hip08 SPI controller to the ACPI
driver for AMD SoCs (APD) (Jay Fang).
- Fix the PM handling during device init in the ACPI driver for Intel
SoCs (LPSS) (Hans de Goede).
- Avoid double panic()s by clearing the APEI GHES block_status before
panic() (Lenny Szubowicz).
- Clean up a function invocation in the ACPI core and get rid of some
code duplication by using the DEFINE_SHOW_ATTRIBUTE macro in the
APEI support code (Alexey Dobriyan, Yangtao Li)"
* tag 'acpi-4.21-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (31 commits)
ACPI / tables: Add an ifdef around amlcode and dsdt_amlcode
ACPI/APEI: Clear GHES block_status before panic()
ACPI: Make PCI slot detection driver depend on PCI
ACPI/IORT: Stub out ACS functions when CONFIG_PCI is not set
arm64: select ACPI PCI code only when both features are enabled
PCI/ACPI: Allow ACPI to be built without CONFIG_PCI set
ACPICA: Remove PCI bits from ACPICA when CONFIG_PCI is unset
ACPI: Allow CONFIG_PCI to be unset for reboot
ACPI: Move PCI reset to a separate function
ACPI / OSI: Add OEM _OSI string to enable dGPU direct output
ACPI / tables: add DSDT AmlCode new declaration name support
ACPICA: Update version to 20181213
ACPICA: change coding style to match ACPICA, no functional change
ACPICA: Debug output: Add option to display method/object evaluation
ACPICA: disassembler: disassemble OEMx tables as AML
ACPICA: Add "Windows 2018.2" string in the _OSI support
ACPICA: Expressions in package elements are not supported
ACPICA: Update buffer-to-string conversions
ACPICA: add comments, no functional change
ACPICA: Remove defines that use deprecated flag
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
"The biggest part is a series of reverts for the macro based GCC
inlining workarounds. It caused regressions in distro build and other
kernel tooling environments, and the GCC project was very receptive to
fixing the underlying inliner weaknesses - so as time ran out we
decided to do a reasonably straightforward revert of the patches. The
plan is to rely on the 'asm inline' GCC 9 feature, which might be
backported to GCC 8 and could thus become reasonably widely available
on modern distros.
Other than those reverts, there's misc fixes from all around the
place.
I wish our final x86 pull request for v4.20 was smaller..."
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Revert "kbuild/Makefile: Prepare for using macros in inline assembly code to work around asm() related GCC inlining bugs"
Revert "x86/objtool: Use asm macros to work around GCC inlining bugs"
Revert "x86/refcount: Work around GCC inlining bug"
Revert "x86/alternatives: Macrofy lock prefixes to work around GCC inlining bugs"
Revert "x86/bug: Macrofy the BUG table section handling, to work around GCC inlining bugs"
Revert "x86/paravirt: Work around GCC inlining bugs when compiling paravirt ops"
Revert "x86/extable: Macrofy inline assembly code to work around GCC inlining bugs"
Revert "x86/cpufeature: Macrofy inline assembly code to work around GCC inlining bugs"
Revert "x86/jump-labels: Macrofy inline assembly code to work around GCC inlining bugs"
x86/mtrr: Don't copy uninitialized gentry fields back to userspace
x86/fsgsbase/64: Fix the base write helper functions
x86/mm/cpa: Fix cpa_flush_array() TLB invalidation
x86/vdso: Pass --eh-frame-hdr to the linker
x86/mm: Fix decoy address handling vs 32-bit builds
x86/intel_rdt: Ensure a CPU remains online for the region's pseudo-locking sequence
x86/dump_pagetables: Fix LDT remap address marker
x86/mm: Fix guard hole handling
|
|
Signed-off-by: Robert Hoo <robert.hu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
____kvm_handle_fault_on_reboot() provides a generic exception fixup
handler that is used to cleanly handle faults on VMX/SVM instructions
during reboot (or at least try to). If there isn't a reboot in
progress, ____kvm_handle_fault_on_reboot() treats any exception as
fatal to KVM and invokes kvm_spurious_fault(), which in turn generates
a BUG() to get a stack trace and die.
When it was originally added by commit 4ecac3fd6dc2 ("KVM: Handle
virtualization instruction #UD faults during reboot"), the "call" to
kvm_spurious_fault() was handcoded as PUSH+JMP, where the PUSH'd value
is the RIP of the faulting instructing.
The PUSH+JMP trickery is necessary because the exception fixup handler
code lies outside of its associated function, e.g. right after the
function. An actual CALL from the .fixup code would show a slightly
bogus stack trace, e.g. an extra "random" function would be inserted
into the trace, as the return RIP on the stack would point to no known
function (and the unwinder will likely try to guess who owns the RIP).
Unfortunately, the JMP was replaced with a CALL when the macro was
reworked to not spin indefinitely during reboot (commit b7c4145ba2eb
"KVM: Don't spin on virt instruction faults during reboot"). This
causes the aforementioned behavior where a bogus function is inserted
into the stack trace, e.g. my builds like to blame free_kvm_area().
Revert the CALL back to a JMP. The changelog for commit b7c4145ba2eb
("KVM: Don't spin on virt instruction faults during reboot") contains
nothing that indicates the switch to CALL was deliberate. This is
backed up by the fact that the PUSH <insn RIP> was left intact.
Note that an alternative to the PUSH+JMP magic would be to JMP back
to the "real" code and CALL from there, but that would require adding
a JMP in the non-faulting path to avoid calling kvm_spurious_fault()
and would add no value, i.e. the stack trace would be the same.
Using CALL:
------------[ cut here ]------------
kernel BUG at /home/sean/go/src/kernel.org/linux/arch/x86/kvm/x86.c:356!
invalid opcode: 0000 [#1] SMP
CPU: 4 PID: 1057 Comm: qemu-system-x86 Not tainted 4.20.0-rc6+ #75
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:kvm_spurious_fault+0x5/0x10 [kvm]
Code: <0f> 0b 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 41 55 49 89 fd 41
RSP: 0018:ffffc900004bbcc8 EFLAGS: 00010046
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffffffffffff
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffff888273fd8000 R08: 00000000000003e8 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000784 R12: ffffc90000371fb0
R13: 0000000000000000 R14: 000000026d763cf4 R15: ffff888273fd8000
FS: 00007f3d69691700(0000) GS:ffff888277800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055f89bc56fe0 CR3: 0000000271a5a001 CR4: 0000000000362ee0
Call Trace:
free_kvm_area+0x1044/0x43ea [kvm_intel]
? vmx_vcpu_run+0x156/0x630 [kvm_intel]
? kvm_arch_vcpu_ioctl_run+0x447/0x1a40 [kvm]
? kvm_vcpu_ioctl+0x368/0x5c0 [kvm]
? kvm_vcpu_ioctl+0x368/0x5c0 [kvm]
? __set_task_blocked+0x38/0x90
? __set_current_blocked+0x50/0x60
? __fpu__restore_sig+0x97/0x490
? do_vfs_ioctl+0xa1/0x620
? __x64_sys_futex+0x89/0x180
? ksys_ioctl+0x66/0x70
? __x64_sys_ioctl+0x16/0x20
? do_syscall_64+0x4f/0x100
? entry_SYSCALL_64_after_hwframe+0x44/0xa9
Modules linked in: vhost_net vhost tap kvm_intel kvm irqbypass bridge stp llc
---[ end trace 9775b14b123b1713 ]---
Using JMP:
------------[ cut here ]------------
kernel BUG at /home/sean/go/src/kernel.org/linux/arch/x86/kvm/x86.c:356!
invalid opcode: 0000 [#1] SMP
CPU: 6 PID: 1067 Comm: qemu-system-x86 Not tainted 4.20.0-rc6+ #75
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:kvm_spurious_fault+0x5/0x10 [kvm]
Code: <0f> 0b 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 41 55 49 89 fd 41
RSP: 0018:ffffc90000497cd0 EFLAGS: 00010046
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffffffffffff
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffff88827058bd40 R08: 00000000000003e8 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000784 R12: ffffc90000369fb0
R13: 0000000000000000 R14: 00000003c8fc6642 R15: ffff88827058bd40
FS: 00007f3d7219e700(0000) GS:ffff888277900000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f3d64001000 CR3: 0000000271c6b004 CR4: 0000000000362ee0
Call Trace:
vmx_vcpu_run+0x156/0x630 [kvm_intel]
? kvm_arch_vcpu_ioctl_run+0x447/0x1a40 [kvm]
? kvm_vcpu_ioctl+0x368/0x5c0 [kvm]
? kvm_vcpu_ioctl+0x368/0x5c0 [kvm]
? __set_task_blocked+0x38/0x90
? __set_current_blocked+0x50/0x60
? __fpu__restore_sig+0x97/0x490
? do_vfs_ioctl+0xa1/0x620
? __x64_sys_futex+0x89/0x180
? ksys_ioctl+0x66/0x70
? __x64_sys_ioctl+0x16/0x20
? do_syscall_64+0x4f/0x100
? entry_SYSCALL_64_after_hwframe+0x44/0xa9
Modules linked in: vhost_net vhost tap kvm_intel kvm irqbypass bridge stp llc
---[ end trace f9daedb85ab3ddba ]---
Fixes: b7c4145ba2eb ("KVM: Don't spin on virt instruction faults during reboot")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Recently the minimum required version of binutils was changed to 2.20,
which supports all SVM instruction mnemonics. The patch removes
all .byte #defines and uses real instruction mnemonics instead.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The patch is to make kvm_set_spte_hva() return int and caller can
check return value to determine flush tlb or not.
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Hyper-V provides HvFlushGuestAddressList() hypercall to flush EPT tlb
with specified ranges. This patch is to add the hypercall support.
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add flush range call back in the kvm_x86_ops and platform can use it
to register its associated function. The parameter "kvm_tlb_range"
accepts a single range and flush list which contains a list of ranges.
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Expose Intel Processor Trace to guest only when
the PT works in Host-Guest mode.
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Intel Processor Trace virtualization can be work in one
of 2 possible modes:
a. System-Wide mode (default):
When the host configures Intel PT to collect trace packets
of the entire system, it can leave the relevant VMX controls
clear to allow VMX-specific packets to provide information
across VMX transitions.
KVM guest will not aware this feature in this mode and both
host and KVM guest trace will output to host buffer.
b. Host-Guest mode:
Host can configure trace-packet generation while in
VMX non-root operation for guests and root operation
for native executing normally.
Intel PT will be exposed to KVM guest in this mode, and
the trace output to respective buffer of host and guest.
In this mode, tht status of PT will be saved and disabled
before VM-entry and restored after VM-exit if trace
a virtual machine.
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
This adds support for "output to Trace Transport subsystem"
capability of Intel PT. It means that PT can output its
trace to an MMIO address range rather than system memory buffer.
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add bit definitions for Intel PT MSRs to support trace output
directed to the memeory subsystem and holds a count if packet
bytes that have been sent out.
These are required by the upcoming PT support in KVM guests
for MSRs read/write emulation.
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
intel_pt_validate_hw_cap() validates whether a given PT capability is
supported by the hardware. It checks the PT capability array which
reflects the capabilities of the hardware on which the code is executed.
For setting up PT for KVM guests this is not correct as the capability
array for the guest can be different from the host array.
Provide a new function to check against a given capability array.
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
pt_cap_get() is required by the upcoming PT support in KVM guests.
Export it and move the capabilites enum to a global header.
As a global functions, "pt_*" is already used for ptrace and
other things, so it makes sense to use "intel_pt_*" as a prefix.
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The Intel Processor Trace (PT) MSR bit defines are in a private
header. The upcoming support for PT virtualization requires these defines
to be accessible from KVM code.
Move them to the global MSR header file.
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
We are compiling PCI code today for systems with ACPI and no PCI
device present. Remove the useless code and reduce the tight
dependency.
Signed-off-by: Sinan Kaya <okaya@kernel.org>
Acked-by: Bjorn Helgaas <bhelgaas@google.com> # PCI parts
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
This reverts commit 9e1725b410594911cc5981b6c7b4cea4ec054ca8.
See this commit for details about the revert:
e769742d3584 ("Revert "x86/jump-labels: Macrofy inline assembly code to work around GCC inlining bugs"")
The conflict resolution for interaction with:
288e4521f0f6: ("x86/asm: 'Simplify' GEN_*_RMWcc() macros")
was provided by Masahiro Yamada.
Conflicts:
arch/x86/include/asm/refcount.h
Reported-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Borislav Petkov <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: Richard Biener <rguenther@suse.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
bugs"
This reverts commit 77f48ec28e4ccff94d2e5f4260a83ac27a7f3099.
See this commit for details about the revert:
e769742d3584 ("Revert "x86/jump-labels: Macrofy inline assembly code to work around GCC inlining bugs"")
Reported-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Borislav Petkov <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: Richard Biener <rguenther@suse.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
inlining bugs"
This reverts commit f81f8ad56fd1c7b99b2ed1c314527f7d9ac447c6.
See this commit for details about the revert:
e769742d3584 ("Revert "x86/jump-labels: Macrofy inline assembly code to work around GCC inlining bugs"")
Reported-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Borislav Petkov <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: Richard Biener <rguenther@suse.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
This reverts commit 494b5168f2de009eb80f198f668da374295098dd.
See this commit for details about the revert:
e769742d3584 ("Revert "x86/jump-labels: Macrofy inline assembly code to work around GCC inlining bugs"")
Reported-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Borislav Petkov <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: Richard Biener <rguenther@suse.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
inlining bugs"
This reverts commit 0474d5d9d2f7f3b11262f7bf87d0e7314ead9200.
See this commit for details about the revert:
e769742d3584 ("Revert "x86/jump-labels: Macrofy inline assembly code to work around GCC inlining bugs"")
Reported-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Borislav Petkov <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: Richard Biener <rguenther@suse.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
inlining bugs"
This reverts commit d5a581d84ae6b8a4a740464b80d8d9cf1e7947b2.
See this commit for details about the revert:
e769742d3584 ("Revert "x86/jump-labels: Macrofy inline assembly code to work around GCC inlining bugs"")
Reported-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Borislav Petkov <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: Richard Biener <rguenther@suse.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
inlining bugs"
This reverts commit 5bdcd510c2ac9efaf55c4cbd8d46421d8e2320cd.
The macro based workarounds for GCC's inlining bugs caused regressions: distcc
and other distro build setups broke, and the fixes are not easy nor will they
solve regressions on already existing installations.
So we are reverting this patch and the 8 followup patches.
What makes this revert easier is that GCC9 will likely include the new 'asm inline'
syntax that makes inlining of assembly blocks a lot more robust.
This is a superior method to any macro based hackeries - and might even be
backported to GCC8, which would make all modern distros get the inlining
fixes as well.
Many thanks to Masahiro Yamada and others for helping sort out these problems.
Reported-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Borislav Petkov <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Juergen Gross <jgross@suse.com>
Cc: Richard Biener <rguenther@suse.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Some guests OSes (including Windows 10) write to MSR 0xc001102c
on some cases (possibly while trying to apply a CPU errata).
Make KVM ignore reads and writes to that MSR, so the guest won't
crash.
The MSR is documented as "Execution Unit Configuration (EX_CFG)",
at AMD's "BIOS and Kernel Developer's Guide (BKDG) for AMD Family
15h Models 00h-0Fh Processors".
Cc: stable@vger.kernel.org
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Andy spotted a regression in the fs/gs base helpers after the patch series
was committed. The helper functions which write fs/gs base are not just
writing the base, they are also changing the index. That's wrong and needs
to be separated because writing the base has not to modify the index.
While the regression is not causing any harm right now because the only
caller depends on that behaviour, it's a guarantee for subtle breakage down
the road.
Make the index explicitly changed from the caller, instead of including
the code in the helpers.
Subsequently, the task write helpers do not handle for the current task
anymore. The range check for a base value is also factored out, to minimize
code redundancy from the caller.
Fixes: b1378a561fd1 ("x86/fsgsbase/64: Introduce FS/GS base helper functions")
Suggested-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20181126195524.32179-1-chang.seok.bae@intel.com
|
|
Different AMD processors may have different implementations of STIBP.
When STIBP is conditionally enabled, some implementations would benefit
from having STIBP always on instead of toggling the STIBP bit through MSR
writes. This preference is advertised through a CPUID feature bit.
When conditional STIBP support is requested at boot and the CPU advertises
STIBP always-on mode as preferred, switch to STIBP "on" support. To show
that this transition has occurred, create a new spectre_v2_user_mitigation
value and a new spectre_v2_user_strings message. The new mitigation value
is used in spectre_v2_user_select_mitigation() to print the new mitigation
message as well as to return a new string from stibp_state().
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/20181213230352.6937.74943.stgit@tlendack-t1.amdoffice.net
|
|
Previously, the guest_fpu field was embedded in the kvm_vcpu_arch
struct. Unfortunately, the field is quite large, (e.g., 4352 bytes on my
current setup). This bloats the kvm_vcpu_arch struct for x86 into an
order 3 memory allocation, which can become a problem on overcommitted
machines. Thus, this patch moves the fpu state outside of the
kvm_vcpu_arch struct.
With this patch applied, the kvm_vcpu_arch struct is reduced to 15168
bytes for vmx on my setup when building the kernel with kvmconfig.
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Marc Orr <marcorr@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Previously, x86's instantiation of 'struct kvm_vcpu_arch' added an fpu
field to save/restore fpu-related architectural state, which will differ
from kvm's fpu state. However, this is redundant to the 'struct fpu'
field, called fpu, embedded in the task struct, via the thread field.
Thus, this patch removes the user_fpu field from the kvm_vcpu_arch
struct and replaces it with the task struct's fpu field.
This change is significant because the fpu struct is actually quite
large. For example, on the system used to develop this patch, this
change reduces the size of the vcpu_vmx struct from 23680 bytes down to
19520 bytes, when building the kernel with kvmconfig. This reduction in
the size of the vcpu_vmx struct moves us closer to being able to
allocate the struct at order 2, rather than order 3.
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Marc Orr <marcorr@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
As a preparation to implementing Direct Mode for Hyper-V synthetic
timers switch to using stimer config definition from hyperv-tlfs.h.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
We implement Hyper-V SynIC and synthetic timers in KVM too so there's some
room for code sharing.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The upcoming KVM_GET_SUPPORTED_HV_CPUID ioctl will need to return
Enlightened VMCS version in HYPERV_CPUID_NESTED_FEATURES.EAX when
it was enabled.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
BIT(13) in HYPERV_CPUID_FEATURES.EBX is described as "ConfigureProfiler" in
TLFS v4.0 but starting 5.0 it is replaced with 'Reserved'. As we don't
currently us it in kernel it can just be dropped.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
hyperv-tlfs.h is a bit messy: CPUID feature bits are not always sorted,
it's hard to get which CPUID they belong to, some items are duplicated
(e.g. HV_X64_MSR_CRASH_CTL_NOTIFY/HV_CRASH_CTL_CRASH_NOTIFY).
Do some housekeeping work. While on it, replace all (1 << X) with BIT(X)
macro.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The TLFS structures are used for hypervisor-guest communication and must
exactly meet the specification.
Compilers can add alignment padding to structures or reorder struct members
for randomization and optimization, which would break the hypervisor ABI.
Mark the structures as packed to prevent this. 'struct hv_vp_assist_page'
and 'struct hv_enlightened_vmcs' need to be properly padded to support the
change.
Suggested-by: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Nadav Amit <nadav.amit@gmail.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest into HEAD
Merge topic branch from Shuah.
|
|
There is a guard hole at the beginning of the kernel address space, also
used by hypervisors. It occupies 16 PGD entries.
This reserved range is not defined explicitely, it is calculated relative
to other entities: direct mapping and user space ranges.
The calculation got broken by recent changes of the kernel memory layout:
LDT remap range is now mapped before direct mapping and makes the
calculation invalid.
The breakage leads to crash on Xen dom0 boot[1].
Define the reserved range explicitely. It's part of kernel ABI (hypervisors
expect it to be stable) and must not depend on changes in the rest of
kernel memory layout.
[1] https://lists.xenproject.org/archives/html/xen-devel/2018-11/msg03313.html
Fixes: d52888aa2753 ("x86/mm: Move LDT remap out of KASLR region on 5-level paging")
Reported-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: dave.hansen@linux.intel.com
Cc: luto@kernel.org
Cc: peterz@infradead.org
Cc: boris.ostrovsky@oracle.com
Cc: bhe@redhat.com
Cc: linux-mm@kvack.org
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20181130202328.65359-2-kirill.shutemov@linux.intel.com
|
|
PREEMPT_NEED_RESCHED is never used directly, so move it into the arch
code where it can potentially be implemented using either a different
bit in the preempt count or as an entirely separate entity.
Cc: Robert Love <rml@tech9.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Gunnar Krueger reported a systemd-boot failure and bisected it down to:
e6e094e053af75 ("x86/acpi, x86/boot: Take RSDP address from boot params if available")
In case a broken boot loader doesn't clear its 'struct boot_params', clear
rsdp_addr in sanitize_boot_params().
Reported-by: Gunnar Krueger <taijian@posteo.de>
Tested-by: Gunnar Krueger <taijian@posteo.de>
Signed-off-by: Juergen Gross <jgross@suse.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: sstabellini@kernel.org
Fixes: e6e094e053af75 ("x86/acpi, x86/boot: Take RSDP address from boot params if available")
Link: http://lkml.kernel.org/r/20181203103811.17056-1-jgross@suse.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull STIBP fallout fixes from Thomas Gleixner:
"The performance destruction department finally got it's act together
and came up with a cure for the STIPB regression:
- Provide a command line option to control the spectre v2 user space
mitigations. Default is either seccomp or prctl (if seccomp is
disabled in Kconfig). prctl allows mitigation opt-in, seccomp
enables the migitation for sandboxed processes.
- Rework the code to handle the conditional STIBP/IBPB control and
remove the now unused ptrace_may_access_sched() optimization
attempt
- Disable STIBP automatically when SMT is disabled
- Optimize the switch_to() logic to avoid MSR writes and invocations
of __switch_to_xtra().
- Make the asynchronous speculation TIF updates synchronous to
prevent stale mitigation state.
As a general cleanup this also makes retpoline directly depend on
compiler support and removes the 'minimal retpoline' option which just
pretended to provide some form of security while providing none"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (31 commits)
x86/speculation: Provide IBPB always command line options
x86/speculation: Add seccomp Spectre v2 user space protection mode
x86/speculation: Enable prctl mode for spectre_v2_user
x86/speculation: Add prctl() control for indirect branch speculation
x86/speculation: Prepare arch_smt_update() for PRCTL mode
x86/speculation: Prevent stale SPEC_CTRL msr content
x86/speculation: Split out TIF update
ptrace: Remove unused ptrace_may_access_sched() and MODE_IBRS
x86/speculation: Prepare for conditional IBPB in switch_mm()
x86/speculation: Avoid __switch_to_xtra() calls
x86/process: Consolidate and simplify switch_to_xtra() code
x86/speculation: Prepare for per task indirect branch speculation control
x86/speculation: Add command line control for indirect branch speculation
x86/speculation: Unify conditional spectre v2 print functions
x86/speculataion: Mark command line parser data __initdata
x86/speculation: Mark string arrays const correctly
x86/speculation: Reorder the spec_v2 code
x86/l1tf: Show actual SMT state
x86/speculation: Rework SMT state change
sched/smt: Expose sched_smt_present static key
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
"Misc fixes:
- MCE related boot crash fix on certain AMD systems
- FPU exception handling fix
- FPU handling race fix
- revert+rewrite of the RSDP boot protocol extension, use boot_params
instead
- documentation fix"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/MCE/AMD: Fix the thresholding machinery initialization order
x86/fpu: Use the correct exception table macro in the XSTATE_OP wrapper
x86/fpu: Disable bottom halves while loading FPU registers
x86/acpi, x86/boot: Take RSDP address from boot params if available
x86/boot: Mostly revert commit ae7e1238e68f2a ("Add ACPI RSDP address to setup_header")
x86/ptrace: Fix documentation for tracehook_report_syscall_entry()
|
|
If 'prctl' mode of user space protection from spectre v2 is selected
on the kernel command-line, STIBP and IBPB are applied on tasks which
restrict their indirect branch speculation via prctl.
SECCOMP enables the SSBD mitigation for sandboxed tasks already, so it
makes sense to prevent spectre v2 user space to user space attacks as
well.
The Intel mitigation guide documents how STIPB works:
Setting bit 1 (STIBP) of the IA32_SPEC_CTRL MSR on a logical processor
prevents the predicted targets of indirect branches on any logical
processor of that core from being controlled by software that executes
(or executed previously) on another logical processor of the same core.
Ergo setting STIBP protects the task itself from being attacked from a task
running on a different hyper-thread and protects the tasks running on
different hyper-threads from being attacked.
While the document suggests that the branch predictors are shielded between
the logical processors, the observed performance regressions suggest that
STIBP simply disables the branch predictor more or less completely. Of
course the document wording is vague, but the fact that there is also no
requirement for issuing IBPB when STIBP is used points clearly in that
direction. The kernel still issues IBPB even when STIBP is used until Intel
clarifies the whole mechanism.
IBPB is issued when the task switches out, so malicious sandbox code cannot
mistrain the branch predictor for the next user space task on the same
logical processor.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181125185006.051663132@linutronix.de
|
|
Add the PR_SPEC_INDIRECT_BRANCH option for the PR_GET_SPECULATION_CTRL and
PR_SET_SPECULATION_CTRL prctls to allow fine grained per task control of
indirect branch speculation via STIBP and IBPB.
Invocations:
Check indirect branch speculation status with
- prctl(PR_GET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, 0, 0, 0);
Enable indirect branch speculation with
- prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_ENABLE, 0, 0);
Disable indirect branch speculation with
- prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_DISABLE, 0, 0);
Force disable indirect branch speculation with
- prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_FORCE_DISABLE, 0, 0);
See Documentation/userspace-api/spec_ctrl.rst.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181125185005.866780996@linutronix.de
|
|
The seccomp speculation control operates on all tasks of a process, but
only the current task of a process can update the MSR immediately. For the
other threads the update is deferred to the next context switch.
This creates the following situation with Process A and B:
Process A task 2 and Process B task 1 are pinned on CPU1. Process A task 2
does not have the speculation control TIF bit set. Process B task 1 has the
speculation control TIF bit set.
CPU0 CPU1
MSR bit is set
ProcB.T1 schedules out
ProcA.T2 schedules in
MSR bit is cleared
ProcA.T1
seccomp_update()
set TIF bit on ProcA.T2
ProcB.T1 schedules in
MSR is not updated <-- FAIL
This happens because the context switch code tries to avoid the MSR update
if the speculation control TIF bits of the incoming and the outgoing task
are the same. In the worst case ProcB.T1 and ProcA.T2 are the only tasks
scheduling back and forth on CPU1, which keeps the MSR stale forever.
In theory this could be remedied by IPIs, but chasing the remote task which
could be migrated is complex and full of races.
The straight forward solution is to avoid the asychronous update of the TIF
bit and defer it to the next context switch. The speculation control state
is stored in task_struct::atomic_flags by the prctl and seccomp updates
already.
Add a new TIF_SPEC_FORCE_UPDATE bit and set this after updating the
atomic_flags. Check the bit on context switch and force a synchronous
update of the speculation control if set. Use the same mechanism for
updating the current task.
Reported-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1811272247140.1875@nanos.tec.linutronix.de
|
|
The IBPB speculation barrier is issued from switch_mm() when the kernel
switches to a user space task with a different mm than the user space task
which ran last on the same CPU.
An additional optimization is to avoid IBPB when the incoming task can be
ptraced by the outgoing task. This optimization only works when switching
directly between two user space tasks. When switching from a kernel task to
a user space task the optimization fails because the previous task cannot
be accessed anymore. So for quite some scenarios the optimization is just
adding overhead.
The upcoming conditional IBPB support will issue IBPB only for user space
tasks which have the TIF_SPEC_IB bit set. This requires to handle the
following cases:
1) Switch from a user space task (potential attacker) which has
TIF_SPEC_IB set to a user space task (potential victim) which has
TIF_SPEC_IB not set.
2) Switch from a user space task (potential attacker) which has
TIF_SPEC_IB not set to a user space task (potential victim) which has
TIF_SPEC_IB set.
This needs to be optimized for the case where the IBPB can be avoided when
only kernel threads ran in between user space tasks which belong to the
same process.
The current check whether two tasks belong to the same context is using the
tasks context id. While correct, it's simpler to use the mm pointer because
it allows to mangle the TIF_SPEC_IB bit into it. The context id based
mechanism requires extra storage, which creates worse code.
When a task is scheduled out its TIF_SPEC_IB bit is mangled as bit 0 into
the per CPU storage which is used to track the last user space mm which was
running on a CPU. This bit can be used together with the TIF_SPEC_IB bit of
the incoming task to make the decision whether IBPB needs to be issued or
not to cover the two cases above.
As conditional IBPB is going to be the default, remove the dubious ptrace
check for the IBPB always case and simply issue IBPB always when the
process changes.
Move the storage to a different place in the struct as the original one
created a hole.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181125185005.466447057@linutronix.de
|
|
The TIF_SPEC_IB bit does not need to be evaluated in the decision to invoke
__switch_to_xtra() when:
- CONFIG_SMP is disabled
- The conditional STIPB mode is disabled
The TIF_SPEC_IB bit still controls IBPB in both cases so the TIF work mask
checks might invoke __switch_to_xtra() for nothing if TIF_SPEC_IB is the
only set bit in the work masks.
Optimize it out by masking the bit at compile time for CONFIG_SMP=n and at
run time when the static key controlling the conditional STIBP mode is
disabled.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181125185005.374062201@linutronix.de
|
|
Move the conditional invocation of __switch_to_xtra() into an inline
function so the logic can be shared between 32 and 64 bit.
Remove the handthrough of the TSS pointer and retrieve the pointer directly
in the bitmap handling function. Use this_cpu_ptr() instead of the
per_cpu() indirection.
This is a preparatory change so integration of conditional indirect branch
speculation optimization happens only in one place.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181125185005.280855518@linutronix.de
|