summaryrefslogtreecommitdiff
path: root/arch/x86/include/asm/vdso.h
AgeCommit message (Collapse)AuthorFilesLines
2023-01-25x86/vdso: Move VDSO image init to vdso2c generated codeBrian Gerst1-1/+1
Generate an init function for each VDSO image, replacing init_vdso() and sysenter_setup(). Signed-off-by: Brian Gerst <brgerst@gmail.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230124184019.26850-1-brgerst@gmail.com
2022-03-15x86: Remove toolchain check for X32 ABI capabilityMasahiro Yamada1-1/+1
Commit 0bf6276392e9 ("x32: Warn and disable rather than error if binutils too old") added a small test in arch/x86/Makefile because binutils 2.22 or newer is needed to properly support elf32-x86-64. This check is no longer necessary, as the minimum supported version of binutils is 2.23, which is enforced at configuration time with scripts/min-tool-version.sh. Remove this check and replace all uses of CONFIG_X86_X32 with CONFIG_X86_X32_ABI, as two symbols are no longer necessary. [nathan: Rebase, fix up a few places where CONFIG_X86_X32 was still used, and simplify commit message to satisfy -tip requirements] Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Signed-off-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220314194842.3452-2-nathan@kernel.org
2020-12-15Merge tag 'core-entry-2020-12-14' of ↵Linus Torvalds1-0/+2
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull core entry/exit updates from Thomas Gleixner: "A set of updates for entry/exit handling: - More generalization of entry/exit functionality - The consolidation work to reclaim TIF flags on x86 and also for non-x86 specific TIF flags which are solely relevant for syscall related work and have been moved into their own storage space. The x86 specific part had to be merged in to avoid a major conflict. - The TIF_NOTIFY_SIGNAL work which replaces the inefficient signal delivery mode of task work and results in an impressive performance improvement for io_uring. The non-x86 consolidation of this is going to come seperate via Jens. - The selective syscall redirection facility which provides a clean and efficient way to support the non-Linux syscalls of WINE by catching them at syscall entry and redirecting them to the user space emulation. This can be utilized for other purposes as well and has been designed carefully to avoid overhead for the regular fastpath. This includes the core changes and the x86 support code. - Simplification of the context tracking entry/exit handling for the users of the generic entry code which guarantee the proper ordering and protection. - Preparatory changes to make the generic entry code accomodate S390 specific requirements which are mostly related to their syscall restart mechanism" * tag 'core-entry-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits) entry: Add syscall_exit_to_user_mode_work() entry: Add exit_to_user_mode() wrapper entry_Add_enter_from_user_mode_wrapper entry: Rename exit_to_user_mode() entry: Rename enter_from_user_mode() docs: Document Syscall User Dispatch selftests: Add benchmark for syscall user dispatch selftests: Add kselftest for syscall user dispatch entry: Support Syscall User Dispatch on common syscall entry kernel: Implement selective syscall userspace redirection signal: Expose SYS_USER_DISPATCH si_code type x86: vdso: Expose sigreturn address on vdso to the kernel MAINTAINERS: Add entry for common entry code entry: Fix boot for !CONFIG_GENERIC_ENTRY x86: Support HAVE_CONTEXT_TRACKING_OFFSTACK context_tracking: Only define schedule_user() on !HAVE_CONTEXT_TRACKING_OFFSTACK archs sched: Detect call to schedule from critical entry code context_tracking: Don't implement exception_enter/exit() on CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK context_tracking: Introduce HAVE_CONTEXT_TRACKING_OFFSTACK x86: Reclaim unused x86 TI flags ...
2020-12-02x86: vdso: Expose sigreturn address on vdso to the kernelGabriel Krisman Bertazi1-0/+2
Syscall user redirection requires the signal trampoline code to not be captured, in order to support returning with a locked selector while avoiding recursion back into the signal handler. For ia-32, which has the trampoline in the vDSO, expose the entry points to the kernel, such that it can avoid dispatching syscalls from that region to userspace. Suggested-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Andy Lutomirski <luto@kernel.org> Acked-by: Andy Lutomirski <luto@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20201127193238.821364-2-krisman@collabora.com
2020-11-18x86/vdso: Add support for exception fixup in vDSO functionsSean Christopherson1-0/+5
Signals are a horrid little mechanism. They are especially nasty in multi-threaded environments because signal state like handlers is global across the entire process. But, signals are basically the only way that userspace can “gracefully” handle and recover from exceptions. The kernel generally does not like exceptions to occur during execution. But, exceptions are a fact of life and must be handled in some circumstances. The kernel handles them by keeping a list of individual instructions which may cause exceptions. Instead of truly handling the exception and returning to the instruction that caused it, the kernel instead restarts execution at a *different* instruction. This makes it obvious to that thread of execution that the exception occurred and lets *that* code handle the exception instead of the handler. This is not dissimilar to the try/catch exceptions mechanisms that some programming languages have, but applied *very* surgically to single instructions. It effectively changes the visible architecture of the instruction. Problem ======= SGX generates a lot of signals, and the code to enter and exit enclaves and muck with signal handling is truly horrid. At the same time, an approach like kernel exception fixup can not be easily applied to userspace instructions because it changes the visible instruction architecture. Solution ======== The vDSO is a special page of kernel-provided instructions that run in userspace. Any userspace calling into the vDSO knows that it is special. This allows the kernel a place to legitimately rewrite the user/kernel contract and change instruction behavior. Add support for fixing up exceptions that occur while executing in the vDSO. This replaces what could traditionally only be done with signal handling. This new mechanism will be used to replace previously direct use of SGX instructions by userspace. Just introduce the vDSO infrastructure. Later patches will actually replace signal generation with vDSO exception fixup. Suggested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Jethro Beekman <jethro@fortanix.com> Link: https://lkml.kernel.org/r/20201112220135.165028-17-jarkko@kernel.org
2020-01-14x86/vdso: Add time napespace pageDmitry Safonov1-0/+1
To support time namespaces in the VDSO with a minimal impact on regular non time namespace affected tasks, the namespace handling needs to be hidden in a slow path. The most obvious place is vdso_seq_begin(). If a task belongs to a time namespace then the VVAR page which contains the system wide VDSO data is replaced with a namespace specific page which has the same layout as the VVAR page. That page has vdso_data->seq set to 1 to enforce the slow path and vdso_data->clock_mode set to VCLOCK_TIMENS to enforce the time namespace handling path. The extra check in the case that vdso_data->seq is odd, e.g. a concurrent update of the VDSO data is in progress, is not really affecting regular tasks which are not part of a time namespace as the task is spin waiting for the update to finish and vdso_data->seq to become even again. If a time namespace task hits that code path, it invokes the corresponding time getter function which retrieves the real VVAR page, reads host time and then adds the offset for the requested clock which is stored in the special VVAR page. Allocate the time namespace page among VVAR pages and place vdso_data on it. Provide __arch_get_timens_vdso_data() helper for VDSO code to get the code-relative position of VVARs on that special page. Co-developed-by: Andrei Vagin <avagin@openvz.org> Signed-off-by: Andrei Vagin <avagin@openvz.org> Signed-off-by: Dmitry Safonov <dima@arista.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20191112012724.250792-23-dima@arista.com
2019-05-08x86/vdso: Remove hpet_page from vDSOJia Zhang1-1/+0
This trivial cleanup finalizes the removal of vDSO HPET support. Fixes: 1ed95e52d902 ("x86/vdso: Remove direct HPET access through the vDSO") Signed-off-by: Jia Zhang <zhang.jia@linux.alibaba.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: luto@kernel.org Cc: bp@alien8.de Link: https://lkml.kernel.org/r/20190401114045.7280-1-zhang.jia@linux.alibaba.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman1-0/+1
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-03-11x86/vdso: Add VCLOCK_HVCLOCK vDSO clock read methodVitaly Kuznetsov1-0/+1
Hyper-V TSC page clocksource is suitable for vDSO, however, the protocol defined by the hypervisor is different from VCLOCK_PVCLOCK. Implement the required support by adding hvclock_page VVAR. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Dexuan Cui <decui@microsoft.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: devel@linuxdriverproject.org Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: virtualization@lists.linux-foundation.org Link: http://lkml.kernel.org/r/20170303132142.25595-4-vkuznets@redhat.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-09-14x86/arch_prctl/vdso: Add ARCH_MAP_VDSO_*Dmitry Safonov1-0/+2
Add API to change vdso blob type with arch_prctl. As this is usefull only by needs of CRIU, expose this interface under CONFIG_CHECKPOINT_RESTORE. Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com> Acked-by: Andy Lutomirski <luto@kernel.org> Cc: 0x7f454c46@gmail.com Cc: oleg@redhat.com Cc: linux-mm@kvack.org Cc: gorcunov@openvz.org Cc: xemul@virtuozzo.com Link: http://lkml.kernel.org/r/20160905133308.28234-4-dsafonov@virtuozzo.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-01-12x86/vdso: Use .fault for the vDSO text mappingAndy Lutomirski1-3/+0
The old scheme for mapping the vDSO text is rather complicated. vdso2c generates a struct vm_special_mapping and a blank .pages array of the correct size for each vdso image. Init code in vdso/vma.c populates the .pages array for each vDSO image, and the mapping code selects the appropriate struct vm_special_mapping. With .fault, we can use a less roundabout approach: vdso_fault() just returns the appropriate page for the selected vDSO image. Signed-off-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/f886954c186bafd74e1b967c8931d852ae199aa2.1451446564.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-11x86/vdso: Get pvclock data from the vvar VMA instead of the fixmapAndy Lutomirski1-0/+1
Signed-off-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/9d37826fdc7e2d2809efe31d5345f97186859284.1449702533.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-09x86/vdso/32: Save extra registers in the INT80 vsyscall pathAndy Lutomirski1-0/+1
The goal is to integrate the SYSENTER and SYSCALL32 entry paths with the INT80 path. SYSENTER clobbers ESP and EIP. SYSCALL32 clobbers ECX (and, invisibly, R11). SYSRETL (long mode to compat mode) clobbers ECX and, invisibly, R11. SYSEXIT (which we only need for native 32-bit) clobbers ECX and EDX. This means that we'll need to provide ESP to the kernel in a register (I chose ECX, since it's only needed for SYSENTER) and we need to provide the args that normally live in ECX and EDX in memory. The epilogue needs to restore ECX and EDX, since user code relies on regs being preserved. We don't need to do anything special about EIP, since the kernel already knows where we are. The kernel will eventually need to know where int $0x80 lands, so add a vdso_image entry for it. The only user-visible effect of this code is that ptrace-induced changes to ECX and EDX during fast syscalls will be lost. This is already the case for the SYSENTER path. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/b860925adbee2d2627a0671fbfe23a7fd04127f8.1444091584.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-07x86/vdso: Remove runtime 32-bit vDSO selectionAndy Lutomirski1-8/+1
32-bit userspace will now always see the same vDSO, which is exactly what used to be the int80 vDSO. Subsequent patches will clean it up and make it support SYSENTER and SYSCALL using alternatives. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/e7e6b3526fa442502e6125fe69486aab50813c32.1444091584.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-12x86, vdso: Move the vvar area before the vdso textAndy Lutomirski1-9/+9
Putting the vvar area after the vdso text is rather complicated: it only works of the total length of the vdso text mapping is known at vdso link time, and the linker doesn't allow symbol addresses to depend on the sizes of non-allocatable data after the PT_LOAD segment. Moving the vvar area before the vdso text will allow is to safely map non-allocatable data after the vdso text, which is a nice simplification. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/156c78c0d93144ff1055a66493783b9e56813983.1405040914.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-05-20x86, mm: Improve _install_special_mapping and fix x86 vdso namingAndy Lutomirski1-1/+5
Using arch_vma_name to give special mappings a name is awkward. x86 currently implements it by comparing the start address of the vma to the expected address of the vdso. This requires tracking the start address of special mappings and is probably buggy if a special vma is split or moved. Improve _install_special_mapping to just name the vma directly. Use it to give the x86 vvar area a name, which should make CRIU's life easier. As a side effect, the vvar area will show up in core dumps. This could be considered weird and is fixable. [hpa: I say we accept this as-is but be prepared to deal with knocking out the vvars from core dumps if this becomes a problem.] Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/276b39b6b645fb11e345457b503f17b83c2c6fd0.1400538962.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-05-06x86, vdso: Move the 32-bit vdso special pages after the textAndy Lutomirski1-0/+4
This unifies the vdso mapping code and teaches it how to map special pages at addresses corresponding to symbols in the vdso image. The new code is used for all vdso variants, but so far only the 32-bit variants use the new vvar page position. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/b6d7858ad7b5ac3fd3c29cab6d6d769bc45d195e.1399317206.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-05-06x86, vdso: Reimplement vdso.so preparation in build-time CAndy Lutomirski1-45/+25
Currently, vdso.so files are prepared and analyzed by a combination of objcopy, nm, some linker script tricks, and some simple ELF parsers in the kernel. Replace all of that with plain C code that runs at build time. All five vdso images now generate .c files that are compiled and linked in to the kernel image. This should cause only one userspace-visible change: the loaded vDSO images are stripped more heavily than they used to be. Everything outside the loadable segment is dropped. In particular, this causes the section table and section name strings to be missing. This should be fine: real dynamic loaders don't load or inspect these tables anyway. The result is roughly equivalent to eu-strip's --strip-sections option. The purpose of this change is to enable the vvar and hpet mappings to be moved to the page following the vDSO load segment. Currently, it is possible for the section table to extend into the page after the load segment, so, if we map it, it risks overlapping the vvar or hpet page. This happens whenever the load segment is just under a multiple of PAGE_SIZE. The only real subtlety here is that the old code had a C file with inline assembler that did 'call VDSO32_vsyscall' and a linker script that defined 'VDSO32_vsyscall = __kernel_vsyscall'. This most likely worked by accident: the linker script entry defines a symbol associated with an address as opposed to an alias for the real dynamic symbol __kernel_vsyscall. That caused ld to relocate the reference at link time instead of leaving an interposable dynamic relocation. Since the VDSO32_vsyscall hack is no longer needed, I now use 'call __kernel_vsyscall', and I added -Bsymbolic to make it work. vdso2c will generate an error and abort the build if the resulting image contains any dynamic relocations, so we won't silently generate bad vdso images. (Dynamic relocations are a problem because nothing will even attempt to relocate the vdso.) Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/2c4fcf45524162a34d87fdda1eb046b2a5cecee7.1399317206.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-03-21x86, vdso: Finish removing VDSO32_PRELINKAndy Lutomirski1-2/+0
It's a declaration of a nonexistent symbol. We can get rid of the 64-bit versions, too, but that's more intrusive. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Cc: Stefani Seibold <stefani@seibold.net> Link: http://lkml.kernel.org/r/2ce2ce18447d8a0b78d44a278a066b6c0af06b32.1395366931.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2014-03-21x86, vdso: Move more vdso definitions into vdso.hAndy Lutomirski1-0/+38
This fixes the Xen build and gets rid of a silly header file. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Cc: Stefani Seibold <stefani@seibold.net> Link: http://lkml.kernel.org/r/1df77311795aff75f5742c787d277518314a38d3.1395366931.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2014-03-21x86: Load the 32-bit vdso in place, just like the 64-bit vdsosAndy Lutomirski1-8/+0
This replaces a decent amount of incomprehensible and buggy code with much more straightforward code. It also brings the 32-bit vdso more in line with the 64-bit vdsos, so maybe someday they can share even more code. This wastes a small amount of kernel .data and .text space, but it avoids a couple of allocations on startup, so it should be more or less a wash memory-wise. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Cc: Stefani Seibold <stefani@seibold.net> Link: http://lkml.kernel.org/r/b8093933fad09ce181edb08a61dcd5d2592e9814.1395352498.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-03-18x86, vdso: Add 32 bit VDSO time support for 32 bit kernelStefani Seibold1-0/+5
This patch add the time support for 32 bit a VDSO to a 32 bit kernel. For 32 bit programs running on a 32 bit kernel, the same mechanism is used as for 64 bit programs running on a 64 bit kernel. Reviewed-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Stefani Seibold <stefani@seibold.net> Link: http://lkml.kernel.org/r/1395094933-14252-10-git-send-email-stefani@seibold.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-03-18x86, vdso: Patch alternatives in the 32-bit VDSOAndy Lutomirski1-0/+2
We need the alternatives mechanism for rdtsc_barrier() to work. Signed-off-by: Stefani Seibold <stefani@seibold.net> Link: http://lkml.kernel.org/r/1395094933-14252-9-git-send-email-stefani@seibold.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-03-14x86, vdso: Remove compat vdso supportAndy Lutomirski1-4/+1
The compat vDSO is a complicated hack that's needed to maintain compatibility with a small range of glibc versions. This removes it and replaces it with a much simpler hack: a config option to disable the 32-bit vDSO by default. This also changes the default value of CONFIG_COMPAT_VDSO to n -- users configuring kernels from scratch almost certainly want that choice. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/4bb4690899106eb11430b1186d5cc66ca9d1660c.1394751608.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2012-09-05x86/vdso: Add __user annotation to VDSO32_SYMBOLMathias Krause1-1/+2
The address calculated by VDSO32_SYMBOL() is a pointer into userland. Add the __user annotation to fix related sparse warnings in its users. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Andy Lutomirski <luto@MIT.EDU> Link: http://lkml.kernel.org/r/1346621506-30857-3-git-send-email-minipli@googlemail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2011-05-24x86-64: Clean up vdso/kernel shared variablesAndy Lutomirski1-14/+0
Variables that are shared between the vdso and the kernel are currently a bit of a mess. They are each defined with their own magic, they are accessed differently in the kernel, the vsyscall page, and the vdso, and one of them (vsyscall_clock) doesn't even really exist. This changes them all to use a common mechanism. All of them are delcared in vvar.h with a fixed address (validated by the linker script). In the kernel (as before), they look like ordinary read-write variables. In the vsyscall page and the vdso, they are accessed through a new macro VVAR, which gives read-only access. The vdso is now loaded verbatim into memory without any fixups. As a side bonus, access from the vdso is faster because a level of indirection is removed. While we're at it, pack jiffies and vgetcpu_mode into the same cacheline. Signed-off-by: Andy Lutomirski <luto@mit.edu> Cc: Andi Kleen <andi@firstfloor.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Borislav Petkov <bp@amd64.org> Link: http://lkml.kernel.org/r/%3C7357882fbb51fa30491636a7b6528747301b7ee9.1306156808.git.luto%40mit.edu%3E Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-10-23x86: Fix ASM_X86__ header guardsH. Peter Anvin1-3/+3
Change header guards named "ASM_X86__*" to "_ASM_X86_*" since: a. the double underscore is ugly and pointless. b. no leading underscore violates namespace constraints. Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2008-10-23x86, um: ... and asm-x86 moveAl Viro1-0/+47
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: H. Peter Anvin <hpa@zytor.com>