summaryrefslogtreecommitdiff
path: root/arch/x86/include/asm/kvm_host.h
AgeCommit message (Collapse)AuthorFilesLines
2023-02-15Merge tag 'kvm-x86-pmu-6.3' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini1-1/+14
KVM x86 PMU changes for 6.3: - Add support for created masked events for the PMU filter to allow userspace to heavily restrict what events the guest can use without needing to create an absurd number of events - Clean up KVM's handling of "PMU MSRs to save", especially when vPMU support is disabled - Add PEBS support for Intel SPR
2023-02-14Merge branch kvm-arm64/misc into kvmarm/nextOliver Upton1-2/+0
* kvm-arm64/misc: : Miscellaneous updates : : - Convert CPACR_EL1_TTA to the new, generated system register : definitions. : : - Serialize toggling CPACR_EL1.SMEN to avoid unexpected exceptions when : accessing SVCR in the host. : : - Avoid quiescing the guest if a vCPU accesses its own redistributor's : SGIs/PPIs, eliminating the need to IPI. Largely an optimization for : nested virtualization, as the L1 accesses the affected registers : rather often. : : - Conversion to kstrtobool() : : - Common definition of INVALID_GPA across architectures : : - Enable CONFIG_USERFAULTFD for CI runs of KVM selftests KVM: arm64: Fix non-kerneldoc comments KVM: selftests: Enable USERFAULTFD KVM: selftests: Remove redundant setbuf() arm64/sysreg: clean up some inconsistent indenting KVM: MMU: Make the definition of 'INVALID_GPA' common KVM: arm64: vgic-v3: Use kstrtobool() instead of strtobool() KVM: arm64: vgic-v3: Limit IPI-ing when accessing GICR_{C,S}ACTIVER0 KVM: arm64: Synchronize SMEN on vcpu schedule out KVM: arm64: Kill CPACR_EL1_TTA definition Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-02-14Merge branch kvm/kvm-hw-enable-refactor into kvmarm/nextOliver Upton1-14/+8
Merge the kvm_init() + hardware enable rework to avoid conflicts with kvmarm. Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-02-01KVM: x86: Use emulator callbacks instead of duplicating "host flags"Maxim Levitsky1-3/+3
Instead of re-defining the "host flags" bits, just expose dedicated helpers for each of the two remaining flags that are consumed by the emulator. The emulator never consumes both "is guest" and "is SMM" in close proximity, so there is no motivation to avoid additional indirect branches. Also while at it, garbage collect the recently removed host flags. No functional change is intended. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Tested-by: Santosh Shukla <Santosh.Shukla@amd.com> Link: https://lore.kernel.org/r/20221129193717.513824-6-mlevitsk@redhat.com [sean: fix CONFIG_KVM_SMM=n builds, tweak names of wrappers] Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-31KVM: x86: Move HF_NMI_MASK and HF_IRET_MASK into "struct vcpu_svm"Maxim Levitsky1-2/+0
Move HF_NMI_MASK and HF_IRET_MASK (a.k.a. "waiting for IRET") out of the common "hflags" and into dedicated flags in "struct vcpu_svm". The flags are used only for the SVM and thus should not be in hflags. Tracking NMI masking in software isn't SVM specific, e.g. VMX has a similar flag (soft_vnmi_blocked), but that's much more of a hack as VMX can't intercept IRET, is useful only for ancient CPUs, i.e. will hopefully be removed at some point, and again the exact behavior is vendor specific and shouldn't ever be referenced in common code. converting VMX No functional change is intended. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Tested-by: Santosh Shukla <Santosh.Shukla@amd.com> Link: https://lore.kernel.org/r/20221129193717.513824-5-mlevitsk@redhat.com [sean: split from HF_GIF_MASK patch] Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-31KVM: x86: Move HF_GIF_MASK into "struct vcpu_svm" as "guest_gif"Maxim Levitsky1-1/+0
Move HF_GIF_MASK out of the common "hflags" and into vcpu_svm.guest_gif. GIF is an SVM-only concept and has should never be consulted outside of SVM-specific code. No functional change is intended. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Tested-by: Santosh Shukla <Santosh.Shukla@amd.com> Link: https://lore.kernel.org/r/20221129193717.513824-5-mlevitsk@redhat.com [sean: split to separate patch] Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-27KVM: x86/pmu: Don't tell userspace to save MSRs for non-existent fixed PMCsLike Xu1-0/+1
Limit the set of MSRs for fixed PMU counters based on the number of fixed counters actually supported by the host so that userspace doesn't waste time saving and restoring dummy values. Signed-off-by: Like Xu <likexu@tencent.com> [sean: split for !enable_pmu logic, drop min(), write changelog] Link: https://lore.kernel.org/r/20230124234905.3774678-6-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-24KVM: x86/pmu: Introduce masked events to the pmu event filterAaron Lewis1-1/+13
When building a list of filter events, it can sometimes be a challenge to fit all the events needed to adequately restrict the guest into the limited space available in the pmu event filter. This stems from the fact that the pmu event filter requires each event (i.e. event select + unit mask) be listed, when the intention might be to restrict the event select all together, regardless of it's unit mask. Instead of increasing the number of filter events in the pmu event filter, add a new encoding that is able to do a more generalized match on the unit mask. Introduce masked events as another encoding the pmu event filter understands. Masked events has the fields: mask, match, and exclude. When filtering based on these events, the mask is applied to the guest's unit mask to see if it matches the match value (i.e. umask & mask == match). The exclude bit can then be used to exclude events from that match. E.g. for a given event select, if it's easier to say which unit mask values shouldn't be filtered, a masked event can be set up to match all possible unit mask values, then another masked event can be set up to match the unit mask values that shouldn't be filtered. Userspace can query to see if this feature exists by looking for the capability, KVM_CAP_PMU_EVENT_MASKED_EVENTS. This feature is enabled by setting the flags field in the pmu event filter to KVM_PMU_EVENT_FLAG_MASKED_EVENTS. Events can be encoded by using KVM_PMU_ENCODE_MASKED_ENTRY(). It is an error to have a bit set outside the valid bits for a masked event, and calls to KVM_SET_PMU_EVENT_FILTER will return -EINVAL in such cases, including the high bits of the event select (35:32) if called on Intel. With these updates the filter matching code has been updated to match on a common event. Masked events were flexible enough to handle both event types, so they were used as the common event. This changes how guest events get filtered because regardless of the type of event used in the uAPI, they will be converted to masked events. Because of this there could be a slight performance hit because instead of matching the filter event with a lookup on event select + unit mask, it does a lookup on event select then walks the unit masks to find the match. This shouldn't be a big problem because I would expect the set of common event selects to be small, and if they aren't the set can likely be reduced by using masked events to generalize the unit mask. Using one type of event when filtering guest events allows for a common code path to be used. Signed-off-by: Aaron Lewis <aaronlewis@google.com> Link: https://lore.kernel.org/r/20221220161236.555143-5-aaronlewis@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-24KVM: x86/xen: update Xen CPUID Leaf 4 (tsc info) sub-leaves, if presentPaul Durrant1-0/+1
The scaling information in subleaf 1 should match the values set by KVM in the 'vcpu_info' sub-structure 'time_info' (a.k.a. pvclock_vcpu_time_info) which is shared with the guest, but is not directly available to the VMM. The offset values are not set since a TSC offset is already applied. The TSC frequency should also be set in sub-leaf 2. Signed-off-by: Paul Durrant <pdurrant@amazon.com> Reviewed-by: David Woodhouse <dwmw@amazon.co.uk> Link: https://lore.kernel.org/r/20230106103600.528-3-pdurrant@amazon.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-24KVM: x86/cpuid: generalize kvm_update_kvm_cpuid_base() and also capture limitPaul Durrant1-1/+6
A subsequent patch will need to acquire the CPUID leaf range for emulated Xen so explicitly pass the signature of the hypervisor we're interested in to the new function. Also introduce a new kvm_hypervisor_cpuid structure so we can neatly store both the base and limit leaf indices. Signed-off-by: Paul Durrant <pdurrant@amazon.com> Reviewed-by: David Woodhouse <dwmw@amazon.co.uk> Link: https://lore.kernel.org/r/20230106103600.528-2-pdurrant@amazon.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-24KVM: x86: Replace cpu_dirty_logging_count with nr_memslots_dirty_loggingDavid Matlack1-1/+0
Drop cpu_dirty_logging_count in favor of nr_memslots_dirty_logging. Both fields count the number of memslots that have dirty-logging enabled, with the only difference being that cpu_dirty_logging_count is only incremented when using PML. So while nr_memslots_dirty_logging is not a direct replacement for cpu_dirty_logging_count, it can be combined with enable_pml to get the same information. Signed-off-by: David Matlack <dmatlack@google.com> Link: https://lore.kernel.org/r/20230105214303.2919415-1-dmatlack@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-24Merge branch 'kvm-lapic-fix-and-cleanup' into HEADPaolo Bonzini1-13/+39
The first half or so patches fix semi-urgent, real-world relevant APICv and AVIC bugs. The second half fixes a variety of AVIC and optimized APIC map bugs where KVM doesn't play nice with various edge cases that are architecturally legal(ish), but are unlikely to occur in most real world scenarios Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-24Merge branch 'kvm-v6.2-rc4-fixes' into HEADPaolo Bonzini1-0/+1
ARM: * Fix the PMCR_EL0 reset value after the PMU rework * Correctly handle S2 fault triggered by a S1 page table walk by not always classifying it as a write, as this breaks on R/O memslots * Document why we cannot exit with KVM_EXIT_MMIO when taking a write fault from a S1 PTW on a R/O memslot * Put the Apple M2 on the naughty list for not being able to correctly implement the vgic SEIS feature, just like the M1 before it * Reviewer updates: Alex is stepping down, replaced by Zenghui x86: * Fix various rare locking issues in Xen emulation and teach lockdep to detect them * Documentation improvements * Do not return host topology information from KVM_GET_SUPPORTED_CPUID
2023-01-20KVM: MMU: Make the definition of 'INVALID_GPA' commonYu Zhang1-2/+0
KVM already has a 'GPA_INVALID' defined as (~(gpa_t)0) in kvm_types.h, and it is used by ARM code. We do not need another definition of 'INVALID_GPA' for X86 specifically. Instead of using the common 'GPA_INVALID' for X86, replace it with 'INVALID_GPA', and change the users of 'GPA_INVALID' so that the diff can be smaller. Also because the name 'INVALID_GPA' tells the user we are using an invalid GPA, while the name 'GPA_INVALID' is emphasizing the GPA is an invalid one. No functional change intended. Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com> Reviewed-by: Paul Durrant <paul@xen.org> Reviewed-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20230105130127.866171-1-yu.c.zhang@linux.intel.com Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
2023-01-13KVM: x86: Track required APICv inhibits with variable, not callbackSean Christopherson1-0/+1
Track the per-vendor required APICv inhibits with a variable instead of calling into vendor code every time KVM wants to query the set of required inhibits. The required inhibits are a property of the vendor's virtualization architecture, i.e. are 100% static. Using a variable allows the compiler to inline the check, e.g. generate a single-uop TEST+Jcc, and thus eliminates any desire to avoid checking inhibits for performance reasons. No functional change intended. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-32-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: SVM: Inhibit AVIC if vCPUs are aliased in logical modeSean Christopherson1-0/+6
Inhibit SVM's AVIC if multiple vCPUs are aliased to the same logical ID. Architecturally, all CPUs whose logical ID matches the MDA are supposed to receive the interrupt; overwriting existing entries in AVIC's logical=>physical map can result in missed IPIs. Fixes: 18f40c53e10f ("svm: Add VMEXIT handlers for AVIC") Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-25-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: x86: Inhibit APICv/AVIC if the optimized physical map is disabledSean Christopherson1-0/+6
Inhibit APICv/AVIC if the optimized physical map is disabled so that KVM KVM provides consistent APIC behavior if xAPIC IDs are aliased due to vcpu_id being truncated and the x2APIC hotplug hack isn't enabled. If the hotplug hack is disabled, events that are emulated by KVM will follow architectural behavior (all matching vCPUs receive events, even if the "match" is due to truncation), whereas APICv and AVIC will deliver events only to the first matching vCPU, i.e. the vCPU that matches without truncation. Note, the "extra" inhibit is needed because KVM deliberately ignores mismatches due to truncation when applying the APIC_ID_MODIFIED inhibit so that large VMs (>255 vCPUs) can run with APICv/AVIC. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-24-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: x86: Explicitly track all possibilities for APIC map's logical modesSean Christopherson1-9/+20
Track all possibilities for the optimized APIC map's logical modes instead of overloading the pseudo-bitmap and treating any "unknown" value as "invalid". As documented by the now-stale comment above the mode values, the values did have meaning when the optimized map was originally added. That dependent logical was removed by commit e45115b62f9a ("KVM: x86: use physical LAPIC array for logical x2APIC"), but the obfuscated behavior and its comment were left behind. Opportunistically rename "mode" to "logical_mode", partly to make it clear that the "disabled" case applies only to the logical map, but also to prove that there is no lurking code that expects "mode" to be a bitmap. Functionally, this is a glorified nop. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20230106011306.85230-19-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: x86: Inhibit APIC memslot if x2APIC and AVIC are enabledSean Christopherson1-4/+6
Free the APIC access page memslot if any vCPU enables x2APIC and SVM's AVIC is enabled to prevent accesses to the virtual APIC on vCPUs with x2APIC enabled. On AMD, if its "hybrid" mode is enabled (AVIC is enabled when x2APIC is enabled even without x2AVIC support), keeping the APIC access page memslot results in the guest being able to access the virtual APIC page as x2APIC is fully emulated by KVM. I.e. hardware isn't aware that the guest is operating in x2APIC mode. Exempt nested SVM's update of APICv state from the new logic as x2APIC can't be toggled on VM-Exit. In practice, invoking the x2APIC logic should be harmless precisely because it should be a glorified nop, but play it safe to avoid latent bugs, e.g. with dropping the vCPU's SRCU lock. Intel doesn't suffer from the same issue as APICv has fully independent VMCS controls for xAPIC vs. x2APIC virtualization. Technically, KVM should provide bus error semantics and not memory semantics for the APIC page when x2APIC is enabled, but KVM already provides memory semantics in other scenarios, e.g. if APICv/AVIC is enabled and the APIC is hardware disabled (via APIC_BASE MSR). Note, checking apic_access_memslot_enabled without taking locks relies it being set during vCPU creation (before kvm_vcpu_reset()). vCPUs can race to set the inhibit and delete the memslot, i.e. can get false positives, but can't get false negatives as apic_access_memslot_enabled can't be toggled "on" once any vCPU reaches KVM_RUN. Opportunistically drop the "can" while updating avic_activate_vmcb()'s comment, i.e. to state that KVM _does_ support the hybrid mode. Move the "Note:" down a line to conform to preferred kernel/KVM multi-line comment style. Opportunistically update the apicv_update_lock comment, as it isn't actually used to protect apic_access_memslot_enabled (which is protected by slots_lock). Fixes: 0e311d33bfbe ("KVM: SVM: Introduce hybrid-AVIC mode") Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20230106011306.85230-11-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-12KVM: x86/xen: Avoid deadlock by adding kvm->arch.xen.xen_lock leaf node lockDavid Woodhouse1-0/+1
In commit 14243b387137a ("KVM: x86/xen: Add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery") the clever version of me left some helpful notes for those who would come after him: /* * For the irqfd workqueue, using the main kvm->lock mutex is * fine since this function is invoked from kvm_set_irq() with * no other lock held, no srcu. In future if it will be called * directly from a vCPU thread (e.g. on hypercall for an IPI) * then it may need to switch to using a leaf-node mutex for * serializing the shared_info mapping. */ mutex_lock(&kvm->lock); In commit 2fd6df2f2b47 ("KVM: x86/xen: intercept EVTCHNOP_send from guests") the other version of me ran straight past that comment without reading it, and introduced a potential deadlock by taking vcpu->mutex and kvm->lock in the wrong order. Solve this as originally suggested, by adding a leaf-node lock in the Xen state rather than using kvm->lock for it. Fixes: 2fd6df2f2b47 ("KVM: x86/xen: intercept EVTCHNOP_send from guests") Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Message-Id: <20230111180651.14394-4-dwmw2@infradead.org> [Rebase, add docs. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-12-29KVM: x86: Move CPU compat checks hook to kvm_x86_ops (from kvm_x86_init_ops)Sean Christopherson1-1/+2
Move the .check_processor_compatibility() callback from kvm_x86_init_ops to kvm_x86_ops to allow a future patch to do compatibility checks during CPU hotplug. Do kvm_ops_update() before compat checks so that static_call() can be used during compat checks. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Message-Id: <20221130230934.1014142-40-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-12-29KVM: x86: Do VMX/SVM support checks directly in vendor codeSean Christopherson1-2/+0
Do basic VMX/SVM support checks directly in vendor code instead of implementing them via kvm_x86_ops hooks. Beyond the superficial benefit of providing common messages, which isn't even clearly a net positive since vendor code can provide more precise/detailed messages, there's zero advantage to bouncing through common x86 code. Consolidating the checks will also simplify performing the checks across all CPUs (in a future patch). Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20221130230934.1014142-37-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-12-29KVM: x86: Move guts of kvm_arch_init() to standalone helperSean Christopherson1-0/+3
Move the guts of kvm_arch_init() to a new helper, kvm_x86_vendor_init(), so that VMX can do _all_ arch and vendor initialization before calling kvm_init(). Calling kvm_init() must be the _very_ last step during init, as kvm_init() exposes /dev/kvm to userspace, i.e. allows creating VMs. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20221130230934.1014142-14-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-12-29KVM: x86: Hyper-V invariant TSC controlVitaly Kuznetsov1-0/+1
Normally, genuine Hyper-V doesn't expose architectural invariant TSC (CPUID.80000007H:EDX[8]) to its guests by default. A special PV MSR (HV_X64_MSR_TSC_INVARIANT_CONTROL, 0x40000118) and corresponding CPUID feature bit (CPUID.0x40000003.EAX[15]) were introduced. When bit 0 of the PV MSR is set, invariant TSC bit starts to show up in CPUID. When the feature is exposed to Hyper-V guests, reenlightenment becomes unneeded. Add the feature to KVM. Keep CPUID output intact when the feature wasn't exposed to L1 and implement the required logic for hiding invariant TSC when the feature was exposed and invariant TSC control MSR wasn't written to. Copy genuine Hyper-V behavior and forbid to disable the feature once it was enabled. For the reference, for linux guests, support for the feature was added in commit dce7cd62754b ("x86/hyperv: Allow guests to enable InvariantTSC"). Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Message-Id: <20221013095849.705943-4-vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-12-29KVM: x86/mmu: Change tdp_mmu to a read-only parameterDavid Matlack1-11/+2
Change tdp_mmu to a read-only parameter and drop the per-vm tdp_mmu_enabled. For 32-bit KVM, make tdp_mmu_enabled a macro that is always false so that the compiler can continue omitting cals to the TDP MMU. The TDP MMU was introduced in 5.10 and has been enabled by default since 5.15. At this point there are no known functionality gaps between the TDP MMU and the shadow MMU, and the TDP MMU uses less memory and scales better with the number of vCPUs. In other words, there is no good reason to disable the TDP MMU on a live system. Purposely do not drop tdp_mmu=N support (i.e. do not force 64-bit KVM to always use the TDP MMU) since tdp_mmu=N is still used to get test coverage of KVM's shadow MMU TDP support, which is used in 32-bit KVM. Signed-off-by: David Matlack <dmatlack@google.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20220921173546.2674386-2-dmatlack@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-12-28KVM: x86: Hyper-V invariant TSC controlVitaly Kuznetsov1-0/+1
Normally, genuine Hyper-V doesn't expose architectural invariant TSC (CPUID.80000007H:EDX[8]) to its guests by default. A special PV MSR (HV_X64_MSR_TSC_INVARIANT_CONTROL, 0x40000118) and corresponding CPUID feature bit (CPUID.0x40000003.EAX[15]) were introduced. When bit 0 of the PV MSR is set, invariant TSC bit starts to show up in CPUID. When the feature is exposed to Hyper-V guests, reenlightenment becomes unneeded. Add the feature to KVM. Keep CPUID output intact when the feature wasn't exposed to L1 and implement the required logic for hiding invariant TSC when the feature was exposed and invariant TSC control MSR wasn't written to. Copy genuine Hyper-V behavior and forbid to disable the feature once it was enabled. For the reference, for linux guests, support for the feature was added in commit dce7cd62754b ("x86/hyperv: Allow guests to enable InvariantTSC"). Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Message-Id: <20221013095849.705943-4-vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-12-27KVM: x86/mmu: Change tdp_mmu to a read-only parameterDavid Matlack1-11/+2
Change tdp_mmu to a read-only parameter and drop the per-vm tdp_mmu_enabled. For 32-bit KVM, make tdp_mmu_enabled a macro that is always false so that the compiler can continue omitting cals to the TDP MMU. The TDP MMU was introduced in 5.10 and has been enabled by default since 5.15. At this point there are no known functionality gaps between the TDP MMU and the shadow MMU, and the TDP MMU uses less memory and scales better with the number of vCPUs. In other words, there is no good reason to disable the TDP MMU on a live system. Purposely do not drop tdp_mmu=N support (i.e. do not force 64-bit KVM to always use the TDP MMU) since tdp_mmu=N is still used to get test coverage of KVM's shadow MMU TDP support, which is used in 32-bit KVM. Signed-off-by: David Matlack <dmatlack@google.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20220921173546.2674386-2-dmatlack@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-12-12Merge remote-tracking branch 'kvm/queue' into HEADPaolo Bonzini1-0/+2
x86 Xen-for-KVM: * Allow the Xen runstate information to cross a page boundary * Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured * add support for 32-bit guests in SCHEDOP_poll x86 fixes: * One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0). * Reinstate IBPB on emulated VM-Exit that was incorrectly dropped a few years back when eliminating unnecessary barriers when switching between vmcs01 and vmcs02. * Clean up the MSR filter docs. * Clean up vmread_error_trampoline() to make it more obvious that params must be passed on the stack, even for x86-64. * Let userspace set all supported bits in MSR_IA32_FEAT_CTL irrespective of the current guest CPUID. * Fudge around a race with TSC refinement that results in KVM incorrectly thinking a guest needs TSC scaling when running on a CPU with a constant TSC, but no hardware-enumerated TSC frequency. * Advertise (on AMD) that the SMM_CTL MSR is not supported * Remove unnecessary exports Selftests: * Fix an inverted check in the access tracking perf test, and restore support for asserting that there aren't too many idle pages when running on bare metal. * Fix an ordering issue in the AMX test introduced by recent conversions to use kvm_cpu_has(), and harden the code to guard against similar bugs in the future. Anything that tiggers caching of KVM's supported CPUID, kvm_cpu_has() in this case, effectively hides opt-in XSAVE features if the caching occurs before the test opts in via prctl(). * Fix build errors that occur in certain setups (unsure exactly what is unique about the problematic setup) due to glibc overriding static_assert() to a variant that requires a custom message. * Introduce actual atomics for clear/set_bit() in selftests Documentation: * Remove deleted ioctls from documentation * Various fixes
2022-12-09Merge tag 'kvmarm-6.2' of ↵Paolo Bonzini1-2/+0
https://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 updates for 6.2 - Enable the per-vcpu dirty-ring tracking mechanism, together with an option to keep the good old dirty log around for pages that are dirtied by something other than a vcpu. - Switch to the relaxed parallel fault handling, using RCU to delay page table reclaim and giving better performance under load. - Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping option, which multi-process VMMs such as crosvm rely on. - Merge the pKVM shadow vcpu state tracking that allows the hypervisor to have its own view of a vcpu, keeping that state private. - Add support for the PMUv3p5 architecture revision, bringing support for 64bit counters on systems that support it, and fix the no-quite-compliant CHAIN-ed counter support for the machines that actually exist out there. - Fix a handful of minor issues around 52bit VA/PA support (64kB pages only) as a prefix of the oncoming support for 4kB and 16kB pages. - Add/Enable/Fix a bunch of selftests covering memslots, breakpoints, stage-2 faults and access tracking. You name it, we got it, we probably broke it. - Pick a small set of documentation and spelling fixes, because no good merge window would be complete without those. As a side effect, this tag also drags: - The 'kvmarm-fixes-6.1-3' tag as a dependency to the dirty-ring series - A shared branch with the arm64 tree that repaints all the system registers to match the ARM ARM's naming, and resulting in interesting conflicts
2022-11-30KVM: x86/xen: Allow XEN_RUNSTATE_UPDATE flag behaviour to be configuredDavid Woodhouse1-0/+1
Closer inspection of the Xen code shows that we aren't supposed to be using the XEN_RUNSTATE_UPDATE flag unconditionally. It should be explicitly enabled by guests through the HYPERVISOR_vm_assist hypercall. If we randomly set the top bit of ->state_entry_time for a guest that hasn't asked for it and doesn't expect it, that could make the runtimes fail to add up and confuse the guest. Without the flag it's perfectly safe for a vCPU to read its own vcpu_runstate_info; just not for one vCPU to read *another's*. I briefly pondered adding a word for the whole set of VMASST_TYPE_* flags but the only one we care about for HVM guests is this, so it seemed a bit pointless. Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Message-Id: <20221127122210.248427-3-dwmw2@infradead.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-30KVM: x86/xen: Compatibility fixes for shared runstate areaDavid Woodhouse1-0/+1
The guest runstate area can be arbitrarily byte-aligned. In fact, even when a sane 32-bit guest aligns the overall structure nicely, the 64-bit fields in the structure end up being unaligned due to the fact that the 32-bit ABI only aligns them to 32 bits. So setting the ->state_entry_time field to something|XEN_RUNSTATE_UPDATE is buggy, because if it's unaligned then we can't update the whole field atomically; the low bytes might be observable before the _UPDATE bit is. Xen actually updates the *byte* containing that top bit, on its own. KVM should do the same. In addition, we cannot assume that the runstate area fits within a single page. One option might be to make the gfn_to_pfn cache cope with regions that cross a page — but getting a contiguous virtual kernel mapping of a discontiguous set of IOMEM pages is a distinctly non-trivial exercise, and it seems this is the *only* current use case for the GPC which would benefit from it. An earlier version of the runstate code did use a gfn_to_hva cache for this purpose, but it still had the single-page restriction because it used the uhva directly — because it needs to be able to do so atomically when the vCPU is being scheduled out, so it used pagefault_disable() around the accesses and didn't just use kvm_write_guest_cached() which has a fallback path. So... use a pair of GPCs for the first and potential second page covering the runstate area. We can get away with locking both at once because nothing else takes more than one GPC lock at a time so we can invent a trivial ordering rule. The common case where it's all in the same page is kept as a fast path, but in both cases, the actual guest structure (compat or not) is built up from the fields in @vx, following preset pointers to the state and times fields. The only difference is whether those pointers point to the kernel stack (in the split case) or to guest memory directly via the GPC. The fast path is also fixed to use a byte access for the XEN_RUNSTATE_UPDATE bit, then the only real difference is the dual memcpy. Finally, Xen also does write the runstate area immediately when it's configured. Flip the kvm_xen_update_runstate() and …_guest() functions and call the latter directly when the runstate area is set. This means that other ioctls which modify the runstate also write it immediately to the guest when they do so, which is also intended. Update the xen_shinfo_test to exercise the pathological case where the XEN_RUNSTATE_UPDATE flag in the top byte of the state_entry_time is actually in a different page to the rest of the 64-bit word. Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-18KVM: nVMX: hyper-v: Cache VP assist page in 'struct kvm_vcpu_hv'Vitaly Kuznetsov1-0/+2
In preparation to enabling L2 TLB flush, cache VP assist page in 'struct kvm_vcpu_hv'. While on it, rename nested_enlightened_vmentry() to nested_get_evmptr() and make it return eVMCS GPA directly. No functional change intended. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20221101145426.251680-26-vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-18KVM: x86: Introduce .hv_inject_synthetic_vmexit_post_tlb_flush() nested hookVitaly Kuznetsov1-0/+1
Hyper-V supports injecting synthetic L2->L1 exit after performing L2 TLB flush operation but the procedure is vendor specific. Introduce .hv_inject_synthetic_vmexit_post_tlb_flush nested hook for it. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20221101145426.251680-22-vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-18KVM: nVMX: Keep track of hv_vm_id/hv_vp_id when eVMCS is in useVitaly Kuznetsov1-0/+6
To handle L2 TLB flush requests, KVM needs to keep track of L2's VM_ID/ VP_IDs which are set by L1 hypervisor. 'Partition assist page' address is also needed to handle post-flush exit to L1 upon request. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20221101145426.251680-20-vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-18KVM: x86: hyper-v: Use preallocated buffer in 'struct kvm_vcpu_hv' instead ↵Vitaly Kuznetsov1-0/+3
of on-stack 'sparse_banks' To make kvm_hv_flush_tlb() ready to handle L2 TLB flush requests, KVM needs to allow for all 64 sparse vCPU banks regardless of KVM_MAX_VCPUs as L1 may use vCPU overcommit for L2. To avoid growing on-stack allocation, make 'sparse_banks' part of per-vCPU 'struct kvm_vcpu_hv' which is allocated dynamically. Note: sparse_set_to_vcpu_mask() can't currently be used to handle L2 requests as KVM does not keep L2 VM_ID -> L2 VCPU_ID -> L1 vCPU mappings, i.e. its vp_bitmap array is still bounded by the number of L1 vCPUs and so can remain an on-stack allocation. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20221101145426.251680-19-vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-18KVM: x86: hyper-v: Create a separate fifo for L2 TLB flushVitaly Kuznetsov1-1/+7
To handle L2 TLB flush requests, KVM needs to use a separate fifo from regular (L1) Hyper-V TLB flush requests: e.g. when a request to flush something in L2 is made, the target vCPU can transition from L2 to L1, receive a request to flush a GVA for L1 and then try to enter L2 back. The first request needs to be processed at this point. Similarly, requests to flush GVAs in L1 must wait until L2 exits to L1. No functional change as KVM doesn't handle L2 TLB flush requests from L2 yet. Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20221101145426.251680-18-vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-18KVM: x86: hyper-v: Introduce TLB flush fifoVitaly Kuznetsov1-0/+20
To allow flushing individual GVAs instead of always flushing the whole VPID a per-vCPU structure to pass the requests is needed. Use standard 'kfifo' to queue two types of entries: individual GVA (GFN + up to 4095 following GFNs in the lower 12 bits) and 'flush all'. The size of the fifo is arbitrarily set to '16'. Note, kvm_hv_flush_tlb() only queues 'flush all' entries for now and kvm_hv_vcpu_flush_tlb() doesn't actually read the fifo just resets the queue before returning -EOPNOTSUPP (which triggers full TLB flush) so the functional change is very small but the infrastructure is prepared to handle individual GVA flush requests. Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20221101145426.251680-10-vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-18KVM: x86: hyper-v: Resurrect dedicated KVM_REQ_HV_TLB_FLUSH flagVitaly Kuznetsov1-0/+2
In preparation to implementing fine-grained Hyper-V TLB flush and L2 TLB flush, resurrect dedicated KVM_REQ_HV_TLB_FLUSH request bit. As KVM_REQ_TLB_FLUSH_GUEST is a stronger operation, clear KVM_REQ_HV_TLB_FLUSH request in kvm_vcpu_flush_tlb_guest(). The flush itself is temporary handled by kvm_vcpu_flush_tlb_guest(). No functional change intended. Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20221101145426.251680-9-vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-18KVM: x86: Rename 'enable_direct_tlbflush' to 'enable_l2_tlb_flush'Vitaly Kuznetsov1-1/+1
To make terminology between Hyper-V-on-KVM and KVM-on-Hyper-V consistent, rename 'enable_direct_tlbflush' to 'enable_l2_tlb_flush'. The change eliminates the use of confusing 'direct' and adds the missing underscore. No functional change. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20221101145426.251680-6-vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-17KVM: x86/mmu: Use BIT{,_ULL}() for PFERR masksDavid Matlack1-10/+10
Use the preferred BIT() and BIT_ULL() to construct the PFERR masks rather than open-coding the bit shifting. No functional change intended. Signed-off-by: David Matlack <dmatlack@google.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20221102184654.282799-6-dmatlack@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2022-11-10KVM: Move declaration of kvm_cpu_dirty_log_size() to kvm_dirty_ring.hGavin Shan1-2/+0
Not all architectures like ARM64 need to override the function. Move its declaration to kvm_dirty_ring.h to avoid the following compiling warning on ARM64 when the feature is enabled. arch/arm64/kvm/../../../virt/kvm/dirty_ring.c:14:12: \ warning: no previous prototype for 'kvm_cpu_dirty_log_size' \ [-Wmissing-prototypes] \ int __weak kvm_cpu_dirty_log_size(void) Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Gavin Shan <gshan@redhat.com> Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20221110104914.31280-3-gshan@redhat.com
2022-11-09KVM: x86/pmu: Defer counter emulated overflow via pmc->prev_counterLike Xu1-2/+3
Defer reprogramming counters and handling overflow via KVM_REQ_PMU when incrementing counters. KVM skips emulated WRMSR in the VM-Exit fastpath, the fastpath runs with IRQs disabled, skipping instructions can increment and reprogram counters, reprogramming counters can sleep, and sleeping is disallowed while IRQs are disabled. [*] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:580 [*] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 2981888, name: CPU 15/KVM [*] preempt_count: 1, expected: 0 [*] RCU nest depth: 0, expected: 0 [*] INFO: lockdep is turned off. [*] irq event stamp: 0 [*] hardirqs last enabled at (0): [<0000000000000000>] 0x0 [*] hardirqs last disabled at (0): [<ffffffff8121222a>] copy_process+0x146a/0x62d0 [*] softirqs last enabled at (0): [<ffffffff81212269>] copy_process+0x14a9/0x62d0 [*] softirqs last disabled at (0): [<0000000000000000>] 0x0 [*] Preemption disabled at: [*] [<ffffffffc2063fc1>] vcpu_enter_guest+0x1001/0x3dc0 [kvm] [*] CPU: 17 PID: 2981888 Comm: CPU 15/KVM Kdump: 5.19.0-rc1-g239111db364c-dirty #2 [*] Call Trace: [*] <TASK> [*] dump_stack_lvl+0x6c/0x9b [*] __might_resched.cold+0x22e/0x297 [*] __mutex_lock+0xc0/0x23b0 [*] perf_event_ctx_lock_nested+0x18f/0x340 [*] perf_event_pause+0x1a/0x110 [*] reprogram_counter+0x2af/0x1490 [kvm] [*] kvm_pmu_trigger_event+0x429/0x950 [kvm] [*] kvm_skip_emulated_instruction+0x48/0x90 [kvm] [*] handle_fastpath_set_msr_irqoff+0x349/0x3b0 [kvm] [*] vmx_vcpu_run+0x268e/0x3b80 [kvm_intel] [*] vcpu_enter_guest+0x1d22/0x3dc0 [kvm] Add a field to kvm_pmc to track the previous counter value in order to defer overflow detection to kvm_pmu_handle_event() (the counter must be paused before handling overflow, and that may increment the counter). Opportunistically shrink sizeof(struct kvm_pmc) a bit. Suggested-by: Wanpeng Li <wanpengli@tencent.com> Fixes: 9cd803d496e7 ("KVM: x86: Update vPMCs when retiring instructions") Signed-off-by: Like Xu <likexu@tencent.com> Link: https://lore.kernel.org/r/20220831085328.45489-6-likexu@tencent.com [sean: avoid re-triggering KVM_REQ_PMU on overflow, tweak changelog] Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220923001355.3741194-5-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86/pmu: Defer reprogram_counter() to kvm_pmu_handle_event()Like Xu1-0/+1
Batch reprogramming PMU counters by setting KVM_REQ_PMU and thus deferring reprogramming kvm_pmu_handle_event() to avoid reprogramming a counter multiple times during a single VM-Exit. Deferring programming will also allow KVM to fix a bug where immediately reprogramming a counter can result in sleeping (taking a mutex) while interrupts are disabled in the VM-Exit fastpath. Introduce kvm_pmu_request_counter_reprogam() to make it obvious that KVM is _requesting_ a reprogram and not actually doing the reprogram. Opportunistically refine related comments to avoid misunderstandings. Signed-off-by: Like Xu <likexu@tencent.com> Link: https://lore.kernel.org/r/20220831085328.45489-5-likexu@tencent.com Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220923001355.3741194-4-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86/pmu: Force reprogramming of all counters on PMU filter changeSean Christopherson1-1/+10
Force vCPUs to reprogram all counters on a PMU filter change to provide a sane ABI for userspace. Use the existing KVM_REQ_PMU to do the programming, and take advantage of the fact that the reprogram_pmi bitmap fits in a u64 to set all bits in a single atomic update. Note, setting the bitmap and making the request needs to be done _after_ the SRCU synchronization to ensure that vCPUs will reprogram using the new filter. KVM's current "lazy" approach is confusing and non-deterministic. It's confusing because, from a developer perspective, the code is buggy as it makes zero sense to let userspace modify the filter but then not actually enforce the new filter. The lazy approach is non-deterministic because KVM enforces the filter whenever a counter is reprogrammed, not just on guest WRMSRs, i.e. a guest might gain/lose access to an event at random times depending on what is going on in the host. Note, the resulting behavior is still non-determinstic while the filter is in flux. If userspace wants to guarantee deterministic behavior, all vCPUs should be paused during the filter update. Jim Mattson <jmattson@google.com> Fixes: 66bb8a065f5a ("KVM: x86: PMU Event Filter") Cc: Aaron Lewis <aaronlewis@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220923001355.3741194-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86/mmu: Track the number of TDP MMU pages, but not the actual pagesSean Christopherson1-8/+3
Track the number of TDP MMU "shadow" pages instead of tracking the pages themselves. With the NX huge page list manipulation moved out of the common linking flow, elminating the list-based tracking means the happy path of adding a shadow page doesn't need to acquire a spinlock and can instead inc/dec an atomic. Keep the tracking as the WARN during TDP MMU teardown on leaked shadow pages is very, very useful for detecting KVM bugs. Tracking the number of pages will also make it trivial to expose the counter to userspace as a stat in the future, which may or may not be desirable. Note, the TDP MMU needs to use a separate counter (and stat if that ever comes to be) from the existing n_used_mmu_pages. The TDP MMU doesn't bother supporting the shrinker nor does it honor KVM_SET_NR_MMU_PAGES (because the TDP MMU consumes so few pages relative to shadow paging), and including TDP MMU pages in that counter would break both the shrinker and shadow MMUs, e.g. if a VM is using nested TDP. Cc: Yan Zhao <yan.y.zhao@intel.com> Reviewed-by: Mingwei Zhang <mizhang@google.com> Reviewed-by: David Matlack <dmatlack@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Yan Zhao <yan.y.zhao@intel.com> Message-Id: <20221019165618.927057-6-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86/mmu: Rename NX huge pages fields/functions for consistencySean Christopherson1-4/+15
Rename most of the variables/functions involved in the NX huge page mitigation to provide consistency, e.g. lpage vs huge page, and NX huge vs huge NX, and also to provide clarity, e.g. to make it obvious the flag applies only to the NX huge page mitigation, not to any condition that prevents creating a huge page. Add a comment explaining what the newly named "possible_nx_huge_pages" tracks. Leave the nx_lpage_splits stat alone as the name is ABI and thus set in stone. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Mingwei Zhang <mizhang@google.com> Message-Id: <20221019165618.927057-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: smm: use smram structs in the common codeMaxim Levitsky1-2/+3
Use kvm_smram union instad of raw arrays in the common smm code. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20221025124741.228045-18-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: do not define SMM-related constants if SMM disabledPaolo Bonzini1-1/+2
The hidden processor flags HF_SMM_MASK and HF_SMM_INSIDE_NMI_MASK are not needed if CONFIG_KVM_SMM is turned off. Remove the definitions altogether and the code that uses them. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: do not define KVM_REQ_SMI if SMM disabledPaolo Bonzini1-0/+2
This ensures that all the relevant code is compiled out, in fact the process_smi stub can be removed too. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20220929172016.319443-9-pbonzini@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09KVM: x86: remove SMRAM address space if SMM is not supportedPaolo Bonzini1-5/+8
If CONFIG_KVM_SMM is not defined HF_SMM_MASK will always be zero, and we can spare userspace the hassle of setting up the SMRAM address space simply by reporting that only one address space is supported. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20220929172016.319443-8-pbonzini@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>