Age | Commit message (Collapse) | Author | Files | Lines |
|
Cortex-A55 is affected by an erratum where in rare circumstances the
CPUs may not handle a race between a break-before-make sequence on one
CPU, and another CPU accessing the same page. This could allow a store
to a page that has been unmapped.
Work around this by adding the affected CPUs to the list that needs
TLB sequences to be done twice.
Signed-off-by: James Morse <james.morse@arm.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20220930131959.3082594-1-james.morse@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- arm64 perf: DDR PMU driver for Alibaba's T-Head Yitian 710 SoC, SVE
vector granule register added to the user regs together with SVE perf
extensions documentation.
- SVE updates: add HWCAP for SVE EBF16, update the SVE ABI
documentation to match the actual kernel behaviour (zeroing the
registers on syscall rather than "zeroed or preserved" previously).
- More conversions to automatic system registers generation.
- vDSO: use self-synchronising virtual counter access in gettimeofday()
if the architecture supports it.
- arm64 stacktrace cleanups and improvements.
- arm64 atomics improvements: always inline assembly, remove LL/SC
trampolines.
- Improve the reporting of EL1 exceptions: rework BTI and FPAC
exception handling, better EL1 undefs reporting.
- Cortex-A510 erratum 2658417: remove BF16 support due to incorrect
result.
- arm64 defconfig updates: build CoreSight as a module, enable options
necessary for docker, memory hotplug/hotremove, enable all PMUs
provided by Arm.
- arm64 ptrace() support for TPIDR2_EL0 (register provided with the SME
extensions).
- arm64 ftraces updates/fixes: fix module PLTs with mcount, remove
unused function.
- kselftest updates for arm64: simple HWCAP validation, FP stress test
improvements, validation of ZA regs in signal handlers, include
larger SVE and SME vector lengths in signal tests, various cleanups.
- arm64 alternatives (code patching) improvements to robustness and
consistency: replace cpucap static branches with equivalent
alternatives, associate callback alternatives with a cpucap.
- Miscellaneous updates: optimise kprobe performance of patching
single-step slots, simplify uaccess_mask_ptr(), move MTE registers
initialisation to C, support huge vmalloc() mappings, run softirqs on
the per-CPU IRQ stack, compat (arm32) misalignment fixups for
multiword accesses.
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (126 commits)
arm64: alternatives: Use vdso/bits.h instead of linux/bits.h
arm64/kprobe: Optimize the performance of patching single-step slot
arm64: defconfig: Add Coresight as module
kselftest/arm64: Handle EINTR while reading data from children
kselftest/arm64: Flag fp-stress as exiting when we begin finishing up
kselftest/arm64: Don't repeat termination handler for fp-stress
ARM64: reloc_test: add __init/__exit annotations to module init/exit funcs
arm64/mm: fold check for KFENCE into can_set_direct_map()
arm64: ftrace: fix module PLTs with mcount
arm64: module: Remove unused plt_entry_is_initialized()
arm64: module: Make plt_equals_entry() static
arm64: fix the build with binutils 2.27
kselftest/arm64: Don't enable v8.5 for MTE selftest builds
arm64: uaccess: simplify uaccess_mask_ptr()
arm64: asm/perf_regs.h: Avoid C++-style comment in UAPI header
kselftest/arm64: Fix typo in hwcap check
arm64: mte: move register initialization to C
arm64: mm: handle ARM64_KERNEL_USES_PMD_MAPS in vmemmap_populate()
arm64: dma: Drop cache invalidation from arch_dma_prep_coherent()
arm64/sve: Add Perf extensions documentation
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull kcfi updates from Kees Cook:
"This replaces the prior support for Clang's standard Control Flow
Integrity (CFI) instrumentation, which has required a lot of special
conditions (e.g. LTO) and work-arounds.
The new implementation ("Kernel CFI") is specific to C, directly
designed for the Linux kernel, and takes advantage of architectural
features like x86's IBT. This series retains arm64 support and adds
x86 support.
GCC support is expected in the future[1], and additional "generic"
architectural support is expected soon[2].
Summary:
- treewide: Remove old CFI support details
- arm64: Replace Clang CFI support with Clang KCFI support
- x86: Introduce Clang KCFI support"
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=107048 [1]
Link: https://github.com/samitolvanen/llvm-project/commits/kcfi_generic [2]
* tag 'kcfi-v6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (22 commits)
x86: Add support for CONFIG_CFI_CLANG
x86/purgatory: Disable CFI
x86: Add types to indirectly called assembly functions
x86/tools/relocs: Ignore __kcfi_typeid_ relocations
kallsyms: Drop CONFIG_CFI_CLANG workarounds
objtool: Disable CFI warnings
objtool: Preserve special st_shndx indexes in elf_update_symbol
treewide: Drop __cficanonical
treewide: Drop WARN_ON_FUNCTION_MISMATCH
treewide: Drop function_nocfi
init: Drop __nocfi from __init
arm64: Drop unneeded __nocfi attributes
arm64: Add CFI error handling
arm64: Add types to indirect called assembly functions
psci: Fix the function type for psci_initcall_t
lkdtm: Emit an indirect call for CFI tests
cfi: Add type helper macros
cfi: Switch to -fsanitize=kcfi
cfi: Drop __CFI_ADDRESSABLE
cfi: Remove CONFIG_CFI_CLANG_SHADOW
...
|
|
The objects placed at the head of vmlinux need special treatments:
- arch/$(SRCARCH)/Makefile adds them to head-y in order to place
them before other archives in the linker command line.
- arch/$(SRCARCH)/kernel/Makefile adds them to extra-y instead of
obj-y to avoid them going into built-in.a.
This commit gets rid of the latter.
Create vmlinux.a to collect all the objects that are unconditionally
linked to vmlinux. The objects listed in head-y are moved to the head
of vmlinux.a by using 'ar m'.
With this, arch/$(SRCARCH)/kernel/Makefile can consistently use obj-y
for builtin objects.
There is no *.o that is directly linked to vmlinux. Drop unneeded code
in scripts/clang-tools/gen_compile_commands.py.
$(AR) mPi needs 'T' to workaround the llvm-ar bug. The fix was suggested
by Nathan Chancellor [1].
[1]: https://lore.kernel.org/llvm/YyjjT5gQ2hGMH0ni@dev-arch.thelio-3990X/
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nicolas Schier <nicolas@fjasle.eu>
|
|
* for-next/misc:
: Miscellaneous patches
arm64/kprobe: Optimize the performance of patching single-step slot
ARM64: reloc_test: add __init/__exit annotations to module init/exit funcs
arm64/mm: fold check for KFENCE into can_set_direct_map()
arm64: uaccess: simplify uaccess_mask_ptr()
arm64: mte: move register initialization to C
arm64: mm: handle ARM64_KERNEL_USES_PMD_MAPS in vmemmap_populate()
arm64: dma: Drop cache invalidation from arch_dma_prep_coherent()
arm64: support huge vmalloc mappings
arm64: spectre: increase parameters that can be used to turn off bhb mitigation individually
arm64: run softirqs on the per-CPU IRQ stack
arm64: compat: Implement misalignment fixups for multiword loads
|
|
* for-next/alternatives:
: Alternatives (code patching) improvements
arm64: fix the build with binutils 2.27
arm64: avoid BUILD_BUG_ON() in alternative-macros
arm64: alternatives: add shared NOP callback
arm64: alternatives: add alternative_has_feature_*()
arm64: alternatives: have callbacks take a cap
arm64: alternatives: make alt_region const
arm64: alternatives: hoist print out of __apply_alternatives()
arm64: alternatives: proton-pack: prepare for cap changes
arm64: alternatives: kvm: prepare for cap changes
arm64: cpufeature: make cpus_have_cap() noinstr-safe
|
|
'for-next/gettimeofday', 'for-next/stacktrace', 'for-next/atomics', 'for-next/el1-exceptions', 'for-next/a510-erratum-2658417', 'for-next/defconfig', 'for-next/tpidr2_el0' and 'for-next/ftrace', remote-tracking branch 'arm64/for-next/perf' into for-next/core
* arm64/for-next/perf:
arm64: asm/perf_regs.h: Avoid C++-style comment in UAPI header
arm64/sve: Add Perf extensions documentation
perf: arm64: Add SVE vector granule register to user regs
MAINTAINERS: add maintainers for Alibaba' T-Head PMU driver
drivers/perf: add DDR Sub-System Driveway PMU driver for Yitian 710 SoC
docs: perf: Add description for Alibaba's T-Head PMU driver
* for-next/doc:
: Documentation/arm64 updates
arm64/sve: Document our actual ABI for clearing registers on syscall
* for-next/sve:
: SVE updates
arm64/sysreg: Add hwcap for SVE EBF16
* for-next/sysreg: (35 commits)
: arm64 system registers generation (more conversions)
arm64/sysreg: Fix a few missed conversions
arm64/sysreg: Convert ID_AA64AFRn_EL1 to automatic generation
arm64/sysreg: Convert ID_AA64DFR1_EL1 to automatic generation
arm64/sysreg: Convert ID_AA64FDR0_EL1 to automatic generation
arm64/sysreg: Use feature numbering for PMU and SPE revisions
arm64/sysreg: Add _EL1 into ID_AA64DFR0_EL1 definition names
arm64/sysreg: Align field names in ID_AA64DFR0_EL1 with architecture
arm64/sysreg: Add defintion for ALLINT
arm64/sysreg: Convert SCXTNUM_EL1 to automatic generation
arm64/sysreg: Convert TIPDR_EL1 to automatic generation
arm64/sysreg: Convert ID_AA64PFR1_EL1 to automatic generation
arm64/sysreg: Convert ID_AA64PFR0_EL1 to automatic generation
arm64/sysreg: Convert ID_AA64MMFR2_EL1 to automatic generation
arm64/sysreg: Convert ID_AA64MMFR1_EL1 to automatic generation
arm64/sysreg: Convert ID_AA64MMFR0_EL1 to automatic generation
arm64/sysreg: Convert HCRX_EL2 to automatic generation
arm64/sysreg: Standardise naming of ID_AA64PFR1_EL1 SME enumeration
arm64/sysreg: Standardise naming of ID_AA64PFR1_EL1 BTI enumeration
arm64/sysreg: Standardise naming of ID_AA64PFR1_EL1 fractional version fields
arm64/sysreg: Standardise naming for MTE feature enumeration
...
* for-next/gettimeofday:
: Use self-synchronising counter access in gettimeofday() (if FEAT_ECV)
arm64: vdso: use SYS_CNTVCTSS_EL0 for gettimeofday
arm64: alternative: patch alternatives in the vDSO
arm64: module: move find_section to header
* for-next/stacktrace:
: arm64 stacktrace cleanups and improvements
arm64: stacktrace: track hyp stacks in unwinder's address space
arm64: stacktrace: track all stack boundaries explicitly
arm64: stacktrace: remove stack type from fp translator
arm64: stacktrace: rework stack boundary discovery
arm64: stacktrace: add stackinfo_on_stack() helper
arm64: stacktrace: move SDEI stack helpers to stacktrace code
arm64: stacktrace: rename unwind_next_common() -> unwind_next_frame_record()
arm64: stacktrace: simplify unwind_next_common()
arm64: stacktrace: fix kerneldoc comments
* for-next/atomics:
: arm64 atomics improvements
arm64: atomic: always inline the assembly
arm64: atomics: remove LL/SC trampolines
* for-next/el1-exceptions:
: Improve the reporting of EL1 exceptions
arm64: rework BTI exception handling
arm64: rework FPAC exception handling
arm64: consistently pass ESR_ELx to die()
arm64: die(): pass 'err' as long
arm64: report EL1 UNDEFs better
* for-next/a510-erratum-2658417:
: Cortex-A510: 2658417: remove BF16 support due to incorrect result
arm64: errata: remove BF16 HWCAP due to incorrect result on Cortex-A510
arm64: cpufeature: Expose get_arm64_ftr_reg() outside cpufeature.c
arm64: cpufeature: Force HWCAP to be based on the sysreg visible to user-space
* for-next/defconfig:
: arm64 defconfig updates
arm64: defconfig: Add Coresight as module
arm64: Enable docker support in defconfig
arm64: defconfig: Enable memory hotplug and hotremove config
arm64: configs: Enable all PMUs provided by Arm
* for-next/tpidr2_el0:
: arm64 ptrace() support for TPIDR2_EL0
kselftest/arm64: Add coverage of TPIDR2_EL0 ptrace interface
arm64/ptrace: Support access to TPIDR2_EL0
arm64/ptrace: Document extension of NT_ARM_TLS to cover TPIDR2_EL0
kselftest/arm64: Add test coverage for NT_ARM_TLS
* for-next/ftrace:
: arm64 ftraces updates/fixes
arm64: ftrace: fix module PLTs with mcount
arm64: module: Remove unused plt_entry_is_initialized()
arm64: module: Make plt_equals_entry() static
|
|
Single-step slot would not be used until kprobe is enabled, that means
no race condition occurs on it under SMP, hence it is safe to pacth ss
slot without stopping machine.
Since I and D caches are coherent within single-step slot from
aarch64_insn_patch_text_nosync(), hence no need to do it again via
flush_icache_range().
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Liao Chang <liaochang1@huawei.com>
Link: https://lore.kernel.org/r/20220927022435.129965-4-liaochang1@huawei.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Add missing __init/__exit annotations to module init/exit funcs.
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Link: https://lore.kernel.org/r/20220911034747.132098-1-xiujianfeng@huawei.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Li Huafei reports that mcount-based ftrace with module PLTs was broken
by commit:
a6253579977e4c6f ("arm64: ftrace: consistently handle PLTs.")
When a module PLTs are used and a module is loaded sufficiently far away
from the kernel, we'll create PLTs for any branches which are
out-of-range. These are separate from the special ftrace trampoline
PLTs, which the module PLT code doesn't directly manipulate.
When mcount is in use this is a problem, as each mcount callsite in a
module will be initialized to point to a module PLT, but since commit
a6253579977e4c6f ftrace_make_nop() will assume that the callsite has
been initialized to point to the special ftrace trampoline PLT, and
ftrace_find_callable_addr() rejects other cases.
This means that when ftrace tries to initialize a callsite via
ftrace_make_nop(), the call to ftrace_find_callable_addr() will find
that the `_mcount` stub is out-of-range and is not handled by the ftrace
PLT, resulting in a splat:
| ftrace_test: loading out-of-tree module taints kernel.
| ftrace: no module PLT for _mcount
| ------------[ ftrace bug ]------------
| ftrace failed to modify
| [<ffff800029180014>] 0xffff800029180014
| actual: 44:00:00:94
| Initializing ftrace call sites
| ftrace record flags: 2000000
| (0)
| expected tramp: ffff80000802eb3c
| ------------[ cut here ]------------
| WARNING: CPU: 3 PID: 157 at kernel/trace/ftrace.c:2120 ftrace_bug+0x94/0x270
| Modules linked in:
| CPU: 3 PID: 157 Comm: insmod Tainted: G O 6.0.0-rc6-00151-gcd722513a189-dirty #22
| Hardware name: linux,dummy-virt (DT)
| pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : ftrace_bug+0x94/0x270
| lr : ftrace_bug+0x21c/0x270
| sp : ffff80000b2bbaf0
| x29: ffff80000b2bbaf0 x28: 0000000000000000 x27: ffff0000c4d38000
| x26: 0000000000000001 x25: ffff800009d7e000 x24: ffff0000c4d86e00
| x23: 0000000002000000 x22: ffff80000a62b000 x21: ffff8000098ebea8
| x20: ffff0000c4d38000 x19: ffff80000aa24158 x18: ffffffffffffffff
| x17: 0000000000000000 x16: 0a0d2d2d2d2d2d2d x15: ffff800009aa9118
| x14: 0000000000000000 x13: 6333626532303830 x12: 3030303866666666
| x11: 203a706d61727420 x10: 6465746365707865 x9 : 3362653230383030
| x8 : c0000000ffffefff x7 : 0000000000017fe8 x6 : 000000000000bff4
| x5 : 0000000000057fa8 x4 : 0000000000000000 x3 : 0000000000000001
| x2 : ad2cb14bb5438900 x1 : 0000000000000000 x0 : 0000000000000022
| Call trace:
| ftrace_bug+0x94/0x270
| ftrace_process_locs+0x308/0x430
| ftrace_module_init+0x44/0x60
| load_module+0x15b4/0x1ce8
| __do_sys_init_module+0x1ec/0x238
| __arm64_sys_init_module+0x24/0x30
| invoke_syscall+0x54/0x118
| el0_svc_common.constprop.4+0x84/0x100
| do_el0_svc+0x3c/0xd0
| el0_svc+0x1c/0x50
| el0t_64_sync_handler+0x90/0xb8
| el0t_64_sync+0x15c/0x160
| ---[ end trace 0000000000000000 ]---
| ---------test_init-----------
Fix this by reverting to the old behaviour of ignoring the old
instruction when initialising an mcount callsite in a module, which was
the behaviour prior to commit a6253579977e4c6f.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Fixes: a6253579977e ("arm64: ftrace: consistently handle PLTs.")
Reported-by: Li Huafei <lihuafei1@huawei.com>
Link: https://lore.kernel.org/linux-arm-kernel/20220929094134.99512-1-lihuafei1@huawei.com
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220929134525.798593-1-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Since commit 4e69ecf4da1e ("arm64/module: ftrace: deal with place
relative nature of PLTs"), plt_equals_entry() is not used outside of
module-plts.c, so make it static.
Signed-off-by: Li Huafei <lihuafei1@huawei.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20220929094134.99512-2-lihuafei1@huawei.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Rework for_each_mte_vma() to use a VMA iterator instead of an explicit
linked-list.
Link: https://lkml.kernel.org/r/20220906194824.2110408-32-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220218023650.672072-1-Liam.Howlett@oracle.com
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Tested-by: Yu Zhao <yuzhao@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Use the VMA iterator instead.
Link: https://lkml.kernel.org/r/20220906194824.2110408-31-Liam.Howlett@oracle.com
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Tested-by: Yu Zhao <yuzhao@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
With -fsanitize=kcfi, we no longer need function_nocfi() as
the compiler won't change function references to point to a
jump table. Remove all implementations and uses of the macro.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220908215504.3686827-14-samitolvanen@google.com
|
|
With -fsanitize=kcfi, CONFIG_CFI_CLANG no longer has issues
with address space confusion in functions that switch to linear
mapping. Now that the indirectly called assembly functions have
type annotations, drop the __nocfi attributes.
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220908215504.3686827-12-samitolvanen@google.com
|
|
With -fsanitize=kcfi, CFI always traps. Add arm64 support for handling CFI
failures. The registers containing the target address and the expected type
are encoded in the first ten bits of the ESR as follows:
- 0-4: n, where the register Xn contains the target address
- 5-9: m, where the register Wm contains the type hash
This produces the following oops on CFI failure (generated using lkdtm):
[ 21.885179] CFI failure at lkdtm_indirect_call+0x2c/0x44 [lkdtm]
(target: lkdtm_increment_int+0x0/0x1c [lkdtm]; expected type: 0x7e0c52a)
[ 21.886593] Internal error: Oops - CFI: 0 [#1] PREEMPT SMP
[ 21.891060] Modules linked in: lkdtm
[ 21.893363] CPU: 0 PID: 151 Comm: sh Not tainted
5.19.0-rc1-00021-g852f4e48dbab #1
[ 21.895560] Hardware name: linux,dummy-virt (DT)
[ 21.896543] pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 21.897583] pc : lkdtm_indirect_call+0x2c/0x44 [lkdtm]
[ 21.898551] lr : lkdtm_CFI_FORWARD_PROTO+0x3c/0x6c [lkdtm]
[ 21.899520] sp : ffff8000083a3c50
[ 21.900191] x29: ffff8000083a3c50 x28: ffff0000027e0ec0 x27: 0000000000000000
[ 21.902453] x26: 0000000000000000 x25: ffffc2aa3d07e7b0 x24: 0000000000000002
[ 21.903736] x23: ffffc2aa3d079088 x22: ffffc2aa3d07e7b0 x21: ffff000003379000
[ 21.905062] x20: ffff8000083a3dc0 x19: 0000000000000012 x18: 0000000000000000
[ 21.906371] x17: 000000007e0c52a5 x16: 000000003ad55aca x15: ffffc2aa60d92138
[ 21.907662] x14: ffffffffffffffff x13: 2e2e2e2065707974 x12: 0000000000000018
[ 21.909775] x11: ffffc2aa62322b88 x10: ffffc2aa62322aa0 x9 : c7e305fb5195d200
[ 21.911898] x8 : ffffc2aa3d077e20 x7 : 6d20676e696c6c61 x6 : 43203a6d74646b6c
[ 21.913108] x5 : ffffc2aa6266c9df x4 : ffffc2aa6266c9e1 x3 : ffff8000083a3968
[ 21.914358] x2 : 80000000fffff122 x1 : 00000000fffff122 x0 : ffffc2aa3d07e8f8
[ 21.915827] Call trace:
[ 21.916375] lkdtm_indirect_call+0x2c/0x44 [lkdtm]
[ 21.918060] lkdtm_CFI_FORWARD_PROTO+0x3c/0x6c [lkdtm]
[ 21.919030] lkdtm_do_action+0x34/0x4c [lkdtm]
[ 21.919920] direct_entry+0x170/0x1ac [lkdtm]
[ 21.920772] full_proxy_write+0x84/0x104
[ 21.921759] vfs_write+0x188/0x3d8
[ 21.922387] ksys_write+0x78/0xe8
[ 21.922986] __arm64_sys_write+0x1c/0x2c
[ 21.923696] invoke_syscall+0x58/0x134
[ 21.924554] el0_svc_common+0xb4/0xf4
[ 21.925603] do_el0_svc+0x2c/0xb4
[ 21.926563] el0_svc+0x2c/0x7c
[ 21.927147] el0t_64_sync_handler+0x84/0xf0
[ 21.927985] el0t_64_sync+0x18c/0x190
[ 21.929133] Code: 728a54b1 72afc191 6b11021f 54000040 (d4304500)
[ 21.930690] ---[ end trace 0000000000000000 ]---
[ 21.930971] Kernel panic - not syncing: Oops - CFI: Fatal exception
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220908215504.3686827-11-samitolvanen@google.com
|
|
With CONFIG_CFI_CLANG, assembly functions indirectly called from C
code must be annotated with type identifiers to pass CFI checking. Use
SYM_TYPED_FUNC_START for the indirectly called functions, and ensure
we emit `bti c` also with SYM_TYPED_FUNC_START.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220908215504.3686827-10-samitolvanen@google.com
|
|
In preparation for removing CC_FLAGS_CFI from CC_FLAGS_LTO, explicitly
filter out CC_FLAGS_CFI in all the makefiles where we currently filter
out CC_FLAGS_LTO.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220908215504.3686827-2-samitolvanen@google.com
|
|
If FEAT_MTE2 is disabled via the arm64.nomte command line argument on a
CPU that claims to support FEAT_MTE2, the kernel will use Tagged Normal
in the MAIR. If we interpret arm64.nomte to mean that the CPU does not
in fact implement FEAT_MTE2, setting the system register like this may
lead to UNSPECIFIED behavior. Fix it by arranging for MAIR to be set
in the C function cpu_enable_mte which is called based on the sanitized
version of the system register.
There is no need for the rest of the MTE-related system register
initialization to happen from assembly, with the exception of TCR_EL1,
which must be set to include at least TBI1 because the secondary CPUs
access KASan-allocated data structures early. Therefore, make the TCR_EL1
initialization unconditional and move the rest of the initialization to
cpu_enable_mte so that we no longer have a dependency on the unsanitized
ID register value.
Co-developed-by: Evgenii Stepanov <eugenis@google.com>
Signed-off-by: Peter Collingbourne <pcc@google.com>
Signed-off-by: Evgenii Stepanov <eugenis@google.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: kernel test robot <lkp@intel.com>
Fixes: 3b714d24ef17 ("arm64: mte: CPU feature detection and initial sysreg configuration")
Cc: <stable@vger.kernel.org> # 5.10.x
Link: https://lore.kernel.org/r/20220915222053.3484231-1-eugenis@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Dwarf based unwinding in a function that pushes SVE registers onto
the stack requires the unwinder to know the length of the SVE register
to calculate the stack offsets correctly. This was added to the Arm
specific Dwarf spec as the VG pseudo register[1].
Add the vector length at position 46 if it's requested by userspace and
SVE is supported. If it's not supported then fail to open the event.
The vector length must be on each sample because it can be changed
at runtime via a prctl or ptrace call. Also by adding it as a register
rather than a separate attribute, minimal changes will be required in an
unwinder that already indexes into the register list.
[1]: https://github.com/ARM-software/abi-aa/blob/main/aadwarf64/aadwarf64.rst
Reviewed-by: Mark Brown <broonie@kernel.org>
Signed-off-by: James Clark <james.clark@arm.com>
Link: https://lore.kernel.org/r/20220901132658.1024635-2-james.clark@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
cpufreq_get_hw_max_freq() returns max frequency in kHz as *unsigned int*,
while freq_inv_set_max_ratio() gets passed this frequency in Hz as 'u64'.
Multiplying max frequency by 1000 can potentially result in overflow --
multiplying by 1000ULL instead should avoid that...
Found by Linux Verification Center (linuxtesting.org) with the SVACE static
analysis tool.
Fixes: cd0ed03a8903 ("arm64: use activity monitors for frequency invariance")
Signed-off-by: Sergey Shtylyov <s.shtylyov@omp.ru>
Link: https://lore.kernel.org/r/01493d64-2bce-d968-86dc-11a122a9c07d@omp.ru
Signed-off-by: Will Deacon <will@kernel.org>
|
|
SME introduces an additional EL0 register, TPIDR2_EL0, intended for use
by userspace as part of the SME. Provide ptrace access to it through the
existing NT_ARM_TLS regset used for TPIDR_EL0 by expanding it to two
registers with TPIDR2_EL0 being the second one.
Existing programs that query the size of the register set will be able
to observe the increased size of the register set. Programs that assume
the register set is single register will see no change. On systems that
do not support SME TPIDR2_EL0 will read as 0 and writes will be ignored,
support for SME should be queried via hwcaps as normal.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220829154921.837871-4-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The stub is used in different execution environments, but on arm64,
RISC-V and LoongArch, we still use the core kernel's implementation of
memcpy and memset, as they are just a branch instruction away, and can
generally be reused even from code such as the EFI stub that runs in a
completely different address space.
KAsan complicates this slightly, resulting in the need for some hacks to
expose the uninstrumented, __ prefixed versions as the normal ones, as
the latter are instrumented to include the KAsan checks, which only work
in the core kernel.
Unfortunately, #define'ing memcpy to __memcpy when building C code does
not guarantee that no explicit memcpy() calls will be emitted. And with
the upcoming zboot support, which consists of a separate binary which
therefore needs its own implementation of memcpy/memset anyway, it's
better to provide one explicitly instead of linking to the existing one.
Given that EFI exposes implementations of memmove() and memset() via the
boot services table, let's wire those up in the appropriate way, and
drop the references to the core kernel ones.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
For each instance of an alternative, the compiler outputs a distinct
copy of the alternative instructions into a subsection. As the compiler
doesn't have special knowledge of alternatives, it cannot coalesce these
to save space.
In a defconfig kernel built with GCC 12.1.0, there are approximately
10,000 instances of alternative_has_feature_likely(), where the
replacement instruction is always a NOP. As NOPs are
position-independent, we don't need a unique copy per alternative
sequence.
This patch adds a callback to patch an alternative sequence with NOPs,
and make use of this in alternative_has_feature_likely(). So that this
can be used for other sites in future, this is written to patch multiple
instructions up to the original sequence length.
For NVHE, an alias is added to image-vars.h.
For modules, the callback is exported. Note that as modules are loaded
within 2GiB of the kernel, an alt_instr entry in a module can always
refer directly to the callback, and no special handling is necessary.
When building with GCC 12.1.0, the vmlinux is ~158KiB smaller, though
the resulting Image size is unchanged due to alignment constraints and
padding:
| % ls -al vmlinux-*
| -rwxr-xr-x 1 mark mark 134644592 Sep 1 14:52 vmlinux-after
| -rwxr-xr-x 1 mark mark 134486232 Sep 1 14:50 vmlinux-before
| % ls -al Image-*
| -rw-r--r-- 1 mark mark 37108224 Sep 1 14:52 Image-after
| -rw-r--r-- 1 mark mark 37108224 Sep 1 14:50 Image-before
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-9-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Currrently we use a mixture of alternative sequences and static branches
to handle features detected at boot time. For ease of maintenance we
generally prefer to use static branches in C code, but this has a few
downsides:
* Each static branch has metadata in the __jump_table section, which is
not discarded after features are finalized. This wastes some space,
and slows down the patching of other static branches.
* The static branches are patched at a different point in time from the
alternatives, so changes are not atomic. This leaves a transient
period where there could be a mismatch between the behaviour of
alternatives and static branches, which could be problematic for some
features (e.g. pseudo-NMI).
* More (instrumentable) kernel code is executed to patch each static
branch, which can be risky when patching certain features (e.g.
irqflags management for pseudo-NMI).
* When CONFIG_JUMP_LABEL=n, static branches are turned into a load of a
flag and a conditional branch. This means it isn't safe to use such
static branches in an alternative address space (e.g. the NVHE/PKVM
hyp code), where the generated address isn't safe to acccess.
To deal with these issues, this patch introduces new
alternative_has_feature_*() helpers, which work like static branches but
are patched using alternatives. This ensures the patching is performed
at the same time as other alternative patching, allows the metadata to
be freed after patching, and is safe for use in alternative address
spaces.
Note that all supported toolchains have asm goto support, and since
commit:
a0a12c3ed057af57 ("asm goto: eradicate CC_HAS_ASM_GOTO)"
... the CC_HAS_ASM_GOTO Kconfig symbol has been removed, so no feature
check is necessary, and we can always make use of asm goto.
Additionally, note that:
* This has no impact on cpus_have_cap(), which is a dynamic check.
* This has no functional impact on cpus_have_const_cap(). The branches
are patched slightly later than before this patch, but these branches
are not reachable until caps have been finalised.
* It is now invalid to use cpus_have_final_cap() in the window between
feature detection and patching. All existing uses are only expected
after patching anyway, so this should not be a problem.
* The LSE atomics will now be enabled during alternatives patching
rather than immediately before. As the LL/SC an LSE atomics are
functionally equivalent this should not be problematic.
When building defconfig with GCC 12.1.0, the resulting Image is 64KiB
smaller:
| % ls -al Image-*
| -rw-r--r-- 1 mark mark 37108224 Aug 23 09:56 Image-after
| -rw-r--r-- 1 mark mark 37173760 Aug 23 09:54 Image-before
According to bloat-o-meter.pl:
| add/remove: 44/34 grow/shrink: 602/1294 up/down: 39692/-61108 (-21416)
| Function old new delta
| [...]
| Total: Before=16618336, After=16596920, chg -0.13%
| add/remove: 0/2 grow/shrink: 0/0 up/down: 0/-1296 (-1296)
| Data old new delta
| arm64_const_caps_ready 16 - -16
| cpu_hwcap_keys 1280 - -1280
| Total: Before=8987120, After=8985824, chg -0.01%
| add/remove: 0/0 grow/shrink: 0/0 up/down: 0/0 (0)
| RO Data old new delta
| Total: Before=18408, After=18408, chg +0.00%
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-8-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Today, callback alternatives are special-cased within
__apply_alternatives(), and are applied alongside patching for system
capabilities as ARM64_NCAPS is not part of the boot_capabilities feature
mask.
This special-casing is less than ideal. Giving special meaning to
ARM64_NCAPS for this requires some structures and loops to use
ARM64_NCAPS + 1 (AKA ARM64_NPATCHABLE), while others use ARM64_NCAPS.
It's also not immediately clear callback alternatives are only applied
when applying alternatives for system-wide features.
To make this a bit clearer, changes the way that callback alternatives
are identified to remove the special-casing of ARM64_NCAPS, and to allow
callback alternatives to be associated with a cpucap as with all other
alternatives.
New cpucaps, ARM64_ALWAYS_BOOT and ARM64_ALWAYS_SYSTEM are added which
are always detected alongside boot cpu capabilities and system
capabilities respectively. All existing callback alternatives are made
to use ARM64_ALWAYS_SYSTEM, and so will be patched at the same point
during the boot flow as before.
Subsequent patches will make more use of these new cpucaps.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-7-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
We never alter a struct alt_region after creation, and we open-code the
bounds of the kernel alternatives region in two functions. The
duplication is a bit unfortunate for clarity (and in future we're likely
to have more functions altering alternative regions), and to avoid
accidents it would be good to make the structure const.
This patch adds a shared struct `kernel_alternatives` alt_region for the
main kernel image, and marks the alt_regions as const to prevent
unintentional modification.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-6-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Printing in the middle of __apply_alternatives() is potentially unsafe
and not all that helpful given these days we practically always patch
*something*.
Hoist the print out of __apply_alternatives(), and add separate prints
to __apply_alternatives() and apply_alternatives_all(), which will make
it easier to spot if either patching call goes wrong.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Joey Gouly <joey.gouly@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The spectre patching callbacks use cpus_have_final_cap(), and subsequent
patches will make it invalid to call cpus_have_final_cap() before
alternatives patching has completed.
In preparation for said change, this patch modifies the spectre patching
callbacks use cpus_have_cap(). This is not subject to patching, and will
dynamically check the cpu_hwcaps array, which is functionally equivalent
to the existing behaviour.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220912162210.3626215-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Cortex-A510's erratum #2658417 causes two BF16 instructions to return the
wrong result in rare circumstances when a pair of A510 CPUs are using
shared neon hardware.
The two instructions affected are BFMMLA and VMMLA, support for these is
indicated by the BF16 HWCAP. Remove it on affected platforms.
Signed-off-by: James Morse <james.morse@arm.com>
Link: https://lore.kernel.org/r/20220909165938.3931307-4-james.morse@arm.com
[catalin.marinas@arm.com: add revision to the Kconfig help; remove .type]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
get_arm64_ftr_reg() returns the properties of a system register based
on its instruction encoding.
This is needed by erratum workaround in cpu_errata.c to modify the
user-space visible view of id registers.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20220909165938.3931307-3-james.morse@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
arm64 advertises hardware features to user-space via HWCAPs, and by
emulating access to the CPUs id registers. The cpufeature code has a
sanitised system-wide view of an id register, and a sanitised user-space
view of an id register, where some features use their 'safe' value
instead of the hardware value.
It is currently possible for a HWCAP to be advertised where the user-space
view of the id register does not show the feature as supported.
Erratum workaround need to remove both the HWCAP, and the feature from
the user-space view of the id register. This involves duplicating the
code, and spreading it over cpufeature.c and cpu_errata.c.
Make the HWCAP code use the user-space view of id registers. This ensures
the values never diverge, and allows erratum workaround to remove HWCAP
by modifying the user-space view of the id register.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Link: https://lore.kernel.org/r/20220909165938.3931307-2-james.morse@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Currently the kernel refers to the versions of the PMU and SPE features by
the version of the architecture where those features were updated but the
ARM refers to them using the FEAT_ names for the features. To improve
consistency and help with updating for newer features and since v9 will
make our current naming scheme a bit more confusing update the macros
identfying features to use the FEAT_ based scheme.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220910163354.860255-4-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Normally we include the full register name in the defines for fields within
registers but this has not been followed for ID registers. In preparation
for automatic generation of defines add the _EL1s into the defines for
ID_AA64DFR0_EL1 to follow the convention. No functional changes.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220910163354.860255-3-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The naming scheme the architecture uses for the fields in ID_AA64DFR0_EL1
does not align well with kernel conventions, using as it does a lot of
MixedCase in various arrangements. In preparation for automatically
generating the defines for this register rename the defines used to match
what is in the architecture.
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220910163354.860255-2-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
If a BTI exception is taken from EL1, the entry code will treat this as
an unhandled exception and will panic() the kernel. This is inconsistent
with the way we handle FPAC exceptions, which have a dedicated handler
and only necessarily kill the thread from which the exception was taken
from, and we don't log all the information that could be relevant to
debug the issue.
The code in do_bti() has:
BUG_ON(!user_mode(regs));
... and it seems like the intent was to call this for EL1 BTI
exceptions, as with FPAC, but this was omitted due to an oversight.
This patch adds separate EL0 and EL1 BTI exception handlers, with the
latter calling die() directly to report the original context the BTI
exception was taken from. This matches our handling of FPAC exceptions.
Prior to this patch, a BTI failure is reported as:
| Unhandled 64-bit el1h sync exception on CPU0, ESR 0x0000000034000002 -- BTI
| CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc3-00131-g7d937ff0221d-dirty #9
| Hardware name: linux,dummy-virt (DT)
| pstate: 20400809 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=-c)
| pc : test_bti_callee+0x4/0x10
| lr : test_bti_caller+0x1c/0x28
| sp : ffff80000800bdf0
| x29: ffff80000800bdf0 x28: 0000000000000000 x27: 0000000000000000
| x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
| x23: ffff80000a2b8000 x22: 0000000000000000 x21: 0000000000000000
| x20: ffff8000099fa5b0 x19: ffff800009ff7000 x18: fffffbfffda37000
| x17: 3120676e696d7573 x16: 7361202c6e6f6974 x15: 0000000041a90000
| x14: 0040000000000041 x13: 0040000000000001 x12: ffff000001a90000
| x11: fffffbfffda37480 x10: 0068000000000703 x9 : 0001000040000000
| x8 : 0000000000090000 x7 : 0068000000000f03 x6 : 0060000000000f83
| x5 : ffff80000a2b6000 x4 : ffff0000028d0000 x3 : ffff800009f78378
| x2 : 0000000000000000 x1 : 0000000040210000 x0 : ffff8000080257e4
| Kernel panic - not syncing: Unhandled exception
| CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc3-00131-g7d937ff0221d-dirty #9
| Hardware name: linux,dummy-virt (DT)
| Call trace:
| dump_backtrace.part.0+0xcc/0xe0
| show_stack+0x18/0x5c
| dump_stack_lvl+0x64/0x80
| dump_stack+0x18/0x34
| panic+0x170/0x360
| arm64_exit_nmi.isra.0+0x0/0x80
| el1h_64_sync_handler+0x64/0xd0
| el1h_64_sync+0x64/0x68
| test_bti_callee+0x4/0x10
| smp_cpus_done+0xb0/0xbc
| smp_init+0x7c/0x8c
| kernel_init_freeable+0x128/0x28c
| kernel_init+0x28/0x13c
| ret_from_fork+0x10/0x20
With this patch applied, a BTI failure is reported as:
| Internal error: Oops - BTI: 0000000034000002 [#1] PREEMPT SMP
| Modules linked in:
| CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc3-00132-g0ad98265d582-dirty #8
| Hardware name: linux,dummy-virt (DT)
| pstate: 20400809 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=-c)
| pc : test_bti_callee+0x4/0x10
| lr : test_bti_caller+0x1c/0x28
| sp : ffff80000800bdf0
| x29: ffff80000800bdf0 x28: 0000000000000000 x27: 0000000000000000
| x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
| x23: ffff80000a2b8000 x22: 0000000000000000 x21: 0000000000000000
| x20: ffff8000099fa5b0 x19: ffff800009ff7000 x18: fffffbfffda37000
| x17: 3120676e696d7573 x16: 7361202c6e6f6974 x15: 0000000041a90000
| x14: 0040000000000041 x13: 0040000000000001 x12: ffff000001a90000
| x11: fffffbfffda37480 x10: 0068000000000703 x9 : 0001000040000000
| x8 : 0000000000090000 x7 : 0068000000000f03 x6 : 0060000000000f83
| x5 : ffff80000a2b6000 x4 : ffff0000028d0000 x3 : ffff800009f78378
| x2 : 0000000000000000 x1 : 0000000040210000 x0 : ffff800008025804
| Call trace:
| test_bti_callee+0x4/0x10
| smp_cpus_done+0xb0/0xbc
| smp_init+0x7c/0x8c
| kernel_init_freeable+0x128/0x28c
| kernel_init+0x28/0x13c
| ret_from_fork+0x10/0x20
| Code: d50323bf d53cd040 d65f03c0 d503233f (d50323bf)
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220913101732.3925290-6-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
If an FPAC exception is taken from EL1, the entry code will call
do_ptrauth_fault(), where due to:
BUG_ON(!user_mode(regs))
... the kernel will report a problem within do_ptrauth_fault() rather
than reporting the original context the FPAC exception was taken from.
The pt_regs and ESR value reported will be from within
do_ptrauth_fault() and the code dump will be for the BRK in BUG_ON(),
which isn't sufficient to debug the cause of the original exception.
This patch makes the reporting better by having separate EL0 and EL1
FPAC exception handlers, with the latter calling die() directly to
report the original context the FPAC exception was taken from.
Note that we only need to prevent kprobes of the EL1 FPAC handler, since
the EL0 FPAC handler cannot be called recursively.
For consistency with do_el0_svc*(), I've named the split functions
do_el{0,1}_fpac() rather than do_el{0,1}_ptrauth_fault(). I've also
clarified the comment to not imply there are casues other than FPAC
exceptions.
Prior to this patch FPAC exceptions are reported as:
| kernel BUG at arch/arm64/kernel/traps.c:517!
| Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
| Modules linked in:
| CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc3-00130-g9c8a180a1cdf-dirty #12
| Hardware name: FVP Base RevC (DT)
| pstate: 00400009 (nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : do_ptrauth_fault+0x3c/0x40
| lr : el1_fpac+0x34/0x54
| sp : ffff80000a3bbc80
| x29: ffff80000a3bbc80 x28: ffff0008001d8000 x27: 0000000000000000
| x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
| x23: 0000000020400009 x22: ffff800008f70fa4 x21: ffff80000a3bbe00
| x20: 0000000072000000 x19: ffff80000a3bbcb0 x18: fffffbfffda37000
| x17: 3120676e696d7573 x16: 7361202c6e6f6974 x15: 0000000081a90000
| x14: 0040000000000041 x13: 0040000000000001 x12: ffff000001a90000
| x11: fffffbfffda37480 x10: 0068000000000703 x9 : 0001000080000000
| x8 : 0000000000090000 x7 : 0068000000000f03 x6 : 0060000000000783
| x5 : ffff80000a3bbcb0 x4 : ffff0008001d8000 x3 : 0000000072000000
| x2 : 0000000000000000 x1 : 0000000020400009 x0 : ffff80000a3bbcb0
| Call trace:
| do_ptrauth_fault+0x3c/0x40
| el1h_64_sync_handler+0xc4/0xd0
| el1h_64_sync+0x64/0x68
| test_pac+0x8/0x10
| smp_init+0x7c/0x8c
| kernel_init_freeable+0x128/0x28c
| kernel_init+0x28/0x13c
| ret_from_fork+0x10/0x20
| Code: 97fffe5e a8c17bfd d50323bf d65f03c0 (d4210000)
With this patch applied FPAC exceptions are reported as:
| Internal error: Oops - FPAC: 0000000072000000 [#1] PREEMPT SMP
| Modules linked in:
| CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc3-00132-g78846e1c4757-dirty #11
| Hardware name: FVP Base RevC (DT)
| pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : test_pac+0x8/0x10
| lr : 0x0
| sp : ffff80000a3bbe00
| x29: ffff80000a3bbe00 x28: 0000000000000000 x27: 0000000000000000
| x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
| x23: ffff80000a2c8000 x22: 0000000000000000 x21: 0000000000000000
| x20: ffff8000099fa5b0 x19: ffff80000a007000 x18: fffffbfffda37000
| x17: 3120676e696d7573 x16: 7361202c6e6f6974 x15: 0000000081a90000
| x14: 0040000000000041 x13: 0040000000000001 x12: ffff000001a90000
| x11: fffffbfffda37480 x10: 0068000000000703 x9 : 0001000080000000
| x8 : 0000000000090000 x7 : 0068000000000f03 x6 : 0060000000000783
| x5 : ffff80000a2c6000 x4 : ffff0008001d8000 x3 : ffff800009f88378
| x2 : 0000000000000000 x1 : 0000000080210000 x0 : ffff000001a90000
| Call trace:
| test_pac+0x8/0x10
| smp_init+0x7c/0x8c
| kernel_init_freeable+0x128/0x28c
| kernel_init+0x28/0x13c
| ret_from_fork+0x10/0x20
| Code: d50323bf d65f03c0 d503233f aa1f03fe (d50323bf)
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220913101732.3925290-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Currently, bug_handler() and kasan_handler() call die() with '0' as the
'err' value, whereas die_kernel_fault() passes the ESR_ELx value.
For consistency, this patch ensures we always pass the ESR_ELx value to
die(). As this is only called for exceptions taken from kernel mode,
there should be no user-visible change as a result of this patch.
For UNDEFINED exceptions, I've had to modify do_undefinstr() and its
callers to pass the ESR_ELx value. In all cases the ESR_ELx value had
already been read and was available.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220913101732.3925290-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Recently, we reworked a lot of code to consistentlt pass ESR_ELx as a
64-bit quantity. However, we missed that this can be passed into die()
and __die() as the 'err' parameter where it is truncated to a 32-bit
int.
As notify_die() already takes 'err' as a long, this patch changes die()
and __die() to also take 'err' as a long, ensuring that the full value
of ESR_ELx is retained.
At the same time, die() is updated to consistently log 'err' as a
zero-padded 64-bit quantity.
Subsequent patches will pass the ESR_ELx value to die() for a number of
exceptions.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220913101732.3925290-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
If an UNDEFINED exception is taken from EL1, and do_undefinstr() doesn't
find any suitable undef_hook, it will call:
BUG_ON(!user_mode(regs))
... and the kernel will report a failure witin do_undefinstr() rather
than reporting the original context that the UNDEFINED exception was
taken from. The pt_regs and ESR value reported within the BUG() handler
will be from within do_undefinstr() and the code dump will be for the
BRK in BUG_ON(), which isn't sufficient to debug the cause of the
original exception.
This patch makes the reporting better by having do_undefinstr() call
die() directly in this case to report the original context from which
the UNDEFINED exception was taken.
Prior to this patch, an undefined instruction is reported as:
| kernel BUG at arch/arm64/kernel/traps.c:497!
| Internal error: Oops - BUG: 0 [#1] PREEMPT SMP
| Modules linked in:
| CPU: 0 PID: 0 Comm: swapper Not tainted 5.19.0-rc3-00127-geff044f1b04e-dirty #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 000000c5 (nzcv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : do_undefinstr+0x28c/0x2ac
| lr : do_undefinstr+0x298/0x2ac
| sp : ffff800009f63bc0
| x29: ffff800009f63bc0 x28: ffff800009f73c00 x27: ffff800009644a70
| x26: ffff8000096778a8 x25: 0000000000000040 x24: 0000000000000000
| x23: 00000000800000c5 x22: ffff800009894060 x21: ffff800009f63d90
| x20: 0000000000000000 x19: ffff800009f63c40 x18: 0000000000000006
| x17: 0000000000403000 x16: 00000000bfbfd000 x15: ffff800009f63830
| x14: ffffffffffffffff x13: 0000000000000000 x12: 0000000000000019
| x11: 0101010101010101 x10: 0000000000161b98 x9 : 0000000000000000
| x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000
| x5 : ffff800009f761d0 x4 : 0000000000000000 x3 : ffff80000a2b80f8
| x2 : 0000000000000000 x1 : ffff800009f73c00 x0 : 00000000800000c5
| Call trace:
| do_undefinstr+0x28c/0x2ac
| el1_undef+0x2c/0x4c
| el1h_64_sync_handler+0x84/0xd0
| el1h_64_sync+0x64/0x68
| setup_arch+0x550/0x598
| start_kernel+0x88/0x6ac
| __primary_switched+0xb8/0xc0
| Code: 17ffff95 a9425bf5 17ffffb8 a9025bf5 (d4210000)
With this patch applied, an undefined instruction is reported as:
| Internal error: Oops - Undefined instruction: 0 [#1] PREEMPT SMP
| Modules linked in:
| CPU: 0 PID: 0 Comm: swapper Not tainted 5.19.0-rc3-00128-gf27cfcc80e52-dirty #5
| Hardware name: linux,dummy-virt (DT)
| pstate: 800000c5 (Nzcv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : setup_arch+0x550/0x598
| lr : setup_arch+0x50c/0x598
| sp : ffff800009f63d90
| x29: ffff800009f63d90 x28: 0000000081000200 x27: ffff800009644a70
| x26: ffff8000096778c8 x25: 0000000000000040 x24: 0000000000000000
| x23: 0000000000000100 x22: ffff800009f69a58 x21: ffff80000a2b80b8
| x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000006
| x17: 0000000000403000 x16: 00000000bfbfd000 x15: ffff800009f63830
| x14: ffffffffffffffff x13: 0000000000000000 x12: 0000000000000019
| x11: 0101010101010101 x10: 0000000000161b98 x9 : 0000000000000000
| x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000
| x5 : 0000000000000008 x4 : 0000000000000010 x3 : 0000000000000000
| x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000
| Call trace:
| setup_arch+0x550/0x598
| start_kernel+0x88/0x6ac
| __primary_switched+0xb8/0xc0
| Code: b4000080 90ffed80 912ac000 97db745f (00000000)
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20220913101732.3925290-2-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Only x86 has own release_thread(), introduce a new weak release_thread()
function to clean empty definitions in other ARCHs.
Link: https://lkml.kernel.org/r/20220819014406.32266-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: Guo Ren <guoren@kernel.org> [csky]
Acked-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Brian Cain <bcain@quicinc.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Acked-by: Stafford Horne <shorne@gmail.com> [openrisc]
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Acked-by: Huacai Chen <chenhuacai@kernel.org> [LoongArch]
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Chris Zankel <chris@zankel.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Guo Ren <guoren@kernel.org> [csky]
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Xuerui Wang <kernel@xen0n.name>
Cc: Yoshinori Sato <ysato@users.osdn.me>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
__cpu_setup() was changed to take the actual number of VA bits in x0,
however the resume path was not updated at the same time.
Load `vabits_actual` in the resume path, to ensure that the correct
number of VA bits is used.
This fixes booting v6.0-rc kernels on my Juno.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Fixes: 0aaa68532e9d ("arm64: mm: fix booting with 52-bit address space")
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220909124311.38489-1-joey.gouly@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
mitigation individually
In our environment, it was found that the mitigation BHB has a great
impact on the benchmark performance. For example, in the lmbench test,
the "process fork && exit" test performance drops by 20%.
So it is necessary to have the ability to turn off the mitigation
individually through cmdline, thus avoiding having to compile the
kernel by adjusting the config.
Signed-off-by: Liu Song <liusong@linux.alibaba.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/1661514050-22263-1-git-send-email-liusong@linux.alibaba.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Currently arm64 supports per-CPU IRQ stack, but softirqs
are still handled in the task context.
Since any call to local_bh_enable() at any level in the task's
call stack may trigger a softirq processing run, which could
potentially cause a task stack overflow if the combined stack
footprints exceed the stack's size, let's run these softirqs
on the IRQ stack as well.
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220815124739.15948-1-zhengqi.arch@bytedance.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Currently unwind_next_frame_record() has an optional callback to convert
the address space of the FP. This is necessary for the NVHE unwinder,
which tracks the stacks in the hyp VA space, but accesses the frame
records in the kernel VA space.
This is a bit unfortunate since it clutters unwind_next_frame_record(),
which will get in the way of future rework.
Instead, this patch changes the NVHE unwinder to track the stacks in the
kernel's VA space and translate to FP prior to calling
unwind_next_frame_record(). This removes the need for the translate_fp()
callback, as all unwinders consistently track stacks in the native
address space of the unwinder.
At the same time, this patch consolidates the generation of the stack
addresses behind the stackinfo_get_*() helpers.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-10-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Currently we call an on_accessible_stack() callback for each step of the
unwinder, requiring redundant work to be performed in the core of the
unwind loop (e.g. disabling preemption around accesses to per-cpu
variables containing stack boundaries). To prevent unwind loops which go
through a stack multiple times, we have to track the set of unwound
stacks, requiring a stack_type enum which needs to cater for all the
stacks of all possible callees. To prevent loops within a stack, we must
track the prior FP values.
This patch reworks the unwinder to minimize the work in the core of the
unwinder, and to remove the need for the stack_type enum. The set of
accessible stacks (and their boundaries) are determined at the start of
the unwind, and the current stack is tracked during the unwind, with
completed stacks removed from the set of accessible stacks. This makes
the boundary checks more accurate (e.g. detecting overlapped frame
records), and removes the need for separate tracking of the prior FP and
visited stacks.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-9-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
In subsequent patches we'll want to acquire the stack boundaries
ahead-of-time, and we'll need to be able to acquire the relevant
stack_info regardless of whether we have an object the happens to be on
the stack.
This patch replaces the on_XXX_stack() helpers with stackinfo_get_XXX()
helpers, with the caller being responsible for the checking whether an
object is on a relevant stack. For the moment this is moved into the
on_accessible_stack() functions, making these slightly larger;
subsequent patches will remove the on_accessible_stack() functions and
simplify the logic.
The on_irq_stack() and on_task_stack() helpers are kept as these are
used by IRQ entry sequences and stackleak respectively. As they're only
used as predicates, the stack_info pointer parameter is removed in both
cases.
As the on_accessible_stack() functions are always passed a non-NULL info
pointer, these now update info unconditionally. When updating the type
to STACK_TYPE_UNKNOWN, the low/high bounds are also modified, but as
these will not be consumed this should have no adverse affect.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-7-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
For clarity and ease of maintenance, it would be helpful for all the
stack helpers to be in the same place.
Move the SDEI stack helpers into the stacktrace code where all the other
stack helpers live.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The unwind_next_common() function unwinds a single frame record. There
are other unwind steps (e.g. unwinding through trampolines) which are
handled in the regular kernel unwinder, and in future there may be other
common unwind helpers.
Clarify the purpose of unwind_next_common() by renaming it to
unwind_next_frame_record(). At the same time, add commentary, and delete
the redundant comment at the top of asm/stacktrace/common.h.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-4-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Currently unwind_next_common() takes a pointer to a stack_info which is
only ever used within unwind_next_common().
Make it a local variable and simplify callers.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kalesh Singh <kaleshsingh@google.com>
Reviewed-by: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Reviewed-by: Mark Brown <broonie@kernel.org>
Cc: Fuad Tabba <tabba@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220901130646.1316937-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|